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Preface

The subject of relative homological algebra was introduced by S. Eilenberg and
J. C. Moore in their 1965 AMS Memoir ‘Foundations of Relative Homological Al-
gebra’. We now have in hand more theorems guaranteeing the existence of precovers,
covers, preenvelopes and envelopes. These are basic objects of the subject and are
used to construct resolutions and then left and right derived functors. Also, several
new useful ideas have come into play since the appearance of Eilenberg and Moore’s
work. Among others these include the various versions of what is now known as
Wakamatsu lemma, the notions of special precovers and preenvelopes and the or-
thogonality of classes of objects of an Abelian category with respect to the extension
functor. Hence it seems opportune to now give a systematic treatment of this subject
along with the new developments and applications.

This book is aimed at graduate students. For that reason, we have attempted to
make the book a reasonably self-contained treatment of the subject requiring only
familiarity with basic notions in module and ring theory at the level of Basic Algebra I
by N. Jacobson [118].

The first three chapters give the basic tools and notation that will be used throughout
the book. This material constitutes notes from our lectures at our respective universi-
ties and is suitable for an introductory course in module and ring theory.

The material in chapter four which deals with torsion free covers over integral do-
mains is not essential to what follows in the book, but the ideas and proofs in this
chapter give the flavor of what is to come. Chapter five gives information about pre-
covers and covers and chapter six deals with preenvelopes and envelopes. Chapter
seven introduces the notion of cotorsion theory which is used to prove the existence
of special covers and envelopes. Chapter eight introduces balance (on the left or the
right) of a functor of two variables. Balance means that we have two specific kinds of
resolutions of each of the two variables each of which can be used to compute the rel-
ative derived functors. We show that the basic functors Hom and Tensor are balanced
using resolutions different from the usual projective, injective and flat resolutions.
This allows us to compute useful versions of the Extension and Torsion functors with
negative indices. We consider chapters five, six, seven and eight as the heart of the
book. This material together with chapters four and nine is suitable for a course in rel-
ative homological algebra and its applications to commutative and noncommutative
algebra.

The remainder of the book gives applications to ring theory and is more special-
ized. The commutative rings that we consider include local Cohen–Macaulay rings
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admitting a dualizing module with the Gorenstein local rings as a special case. For
example, we prove Auslander’s announced (but unpublished) result concerning the ex-
istence of maximal Cohen–Macaulay approximations over Gorenstein local rings. We
also consider a noncommutative version of Gorenstein rings which we call Iwanaga–
Gorenstein rings. Over these rings there is an especially pleasant application of rela-
tive homological algebra. We define relative versions of projective, injective and flat
modules which we label Gorenstein. We prove that over an Iwanaga–Gorenstein ring
there are enough Gorenstein projectives, injectives and flats (that is, the appropriate
precovers and preenvelopes exist). We then show that Hom and Tensor are balanced
when we use these Gorenstein versions of the projective, injective and flat modules
to compute the resolutions over Iwanaga–Gorenstein rings. Then we prove that these
rings have finite global dimension in this situation.

This book was planned while we were visiting the Department of Mathematics and
Computer Science at University of Antwerp, UIA, Belgium. We would like to thank
the department for its hospitality.

We would like to thank the many colleagues who have discussed and studied these
topics with us through the years. These include (but are not limited to) Tom Cheatham,
Richard Belshoff, Jinzhong Xu, Mark Teply, and Freddy Van Oystaeyen. We also
appreciate the interest our colleagues in Spain have shown in this subject. These
include Juan Martinez, Alberto del Valle, Manolo Saorin and Pepe Asensio in Murcia
and Blas Torrecillas, Juan Ramon Garcia Rozas, Luis Oyonarte, Juan Antonio Lopez
Ramos, and Maria Jesus Asensio in Almeria.

Finally, we would like to thank Mrs. Rosie Torbert for the excellent job she has
done typing the manuscript.

Lexington/Auburn, 2000 Edgar E. Enochs, Overtoun M. G. Jenda



Preface to the Second Edition

In this new edition, now titled Relative Homological Algebra Volume I, we have added
well-known additional material in the first three chapters, and added new material that
was not available at the time the original edition was published. In particular, the
major changes are the following:

� Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the begin-
ner, and this has necessitated a new Section 1.3.

� Chapter 3: The classic work of D. G. Northcott [155] on injective envelopes and
inverse polynomials is finally included. This provides additional examples for
the reader.

� Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to
date. The material in this section was not available at the time the first edition
was published.

We have clarified some text throughout the book and updated the bibliography by
adding new references.

We would like to thank our colleague, Darrel Hankerson, who over the years has
continued to provide technical support for our books and research projects. Also
thanks to Mrs. Rosie Torbert who continues to do an excellent job typing the manu-
scripts.

Lexington/Auburn, June 2011 Edgar E. Enochs, Overtoun M. G. Jenda
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Chapter 1

Basic Concepts

In this chapter we introduce basic terminology, notation, and results concerning set
theory, modules, categories, and complexes.

1.1 Zorn’s Lemma, Ordinal and Cardinal Numbers

We start by introducing an informal and naive set theory. To avoid the usual contra-
dictions of set theory, we will use the term class for a collection which may be too
large to be called a set. Some definitions which we give concerning sets can obviously
be applied to classes.

Definition 1.1.1. A partially ordered set is a set X with a relation � such that (1)
x � x, (2) x � y and y � z implies x � z, and (3) x � y and y � x implies x D y,
for all x; y, z 2 X . A partially ordered set X is said to be totally ordered if for all x,
y 2 X either x � y or y � x. If S � X for the partially ordered set X , then S has
an induced order with x � y in S exactly when this relation holds in X .

Definition 1.1.2. If X is a partially ordered set, an element x 2 X is said to be an
upper bound of a subset S � X if y � x for all y 2 S . An x 2 X is said to be a
maximal element of X if x � y for y 2 X implies x D y. The partially ordered set
X is said to be inductively ordered if every subset S � X which is totally ordered
with the induced order has an upper bound in X .

Theorem 1.1.3 (Zorn’s Lemma). Every inductively ordered set has a maximal ele-
ment.

Zorn’s Lemma is implied by (and in fact equivalent to) the axiom of choice which
states that the Cartesian product of a nonempty family of nonempty sets is nonempty.
There are other versions of the result which can be found in standard books on set
theory and logic.

Definition 1.1.4. An element x of a partially ordered set X is said to be a least ele-
ment of X if x � y for all y 2 X . A totally ordered set X is said to be well ordered
if every nonempty subset S has a least element (when S is given the induced order).

We note that a totally ordered setX is well ordered if and only if whenever we have
x0 � x1 � x2 � x3 � � � � for elements xn of X there is an n0 such that xn D xn0

for n � n0.
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Definition 1.1.5. Two well ordered sets X and Y are said to be isomorphic if there
is a bijection f W X ! Y which preserves order, that is, x1 � x2 in X implies
f .x1/ � f .x2/ in Y . Such an f W X ! Y is called an isomorphism. We note that if
f is an isomorphism, then so is f �1.

Definition 1.1.6. If X is a well ordered set, then a subset S � X is said to be a
segment of X if y � x and x 2 S implies y 2 S .

The union and intersection of any collection of segments of the well ordered set X
are segments of X . If S and T are segments of X , then either S � T or T � S .
X is a segment ofX . If S ¤ X is a segment ofX and x 2 X is the least element of

X not in S , then S D ¹y W y 2 X; y < xº. Conversely, any such S (for any x 2 X ) is
a segment of X . Thus the set of proper segments of X ordered by inclusion is a well
ordered set which is isomorphic to X . So we see that if S0 � S1 � S2 � � � � are
segments of X , then for some n0 � 0, Sn D Sn0

for all n � n0.

Proposition 1.1.7. Every set can be well ordered.

Proof. Let X be a set. We consider the set X of well ordered sets S such that as a
set S � X . We order these sets so that S � T if and only if S is a segment of T
and if the order on S is induced by that on T . S D ; is an example of such an S .
If C � X is a nonempty totally ordered subset of X, there is a unique way to order
Y D S

S2C S so that the order induced on each S 2 C is the original order on S .
Then in fact Y is well ordered (and each S 2 C is a segment of Y ), that is, C has
an upper bound in X. So by Zorn’s Lemma, there is a maximal element S of X. If
S ¤ X and y 2 X , y … S , we order T D S [ ¹yº with x < y for all x 2 S and with
the induced order on S the original order on S . Then T is well ordered and S < T ,
contradicting the choice of S . Hence S D X and so X can be well ordered.

Theorem 1.1.8. Suppose S is a segment of the well ordered setX and that f W X ! S

is an isomorphism. Then S D X and f D idX .

Proof. We only need to argue that f .x/ D x for all x 2 X . If this is not the case, let
x be the least element of X such that f .x/ ¤ x. Then f .x/ > x, for if f .x/ < x we
have f .f .x// D f .x/ by the choice of x. But this means f is not an injection. So
f .x/ > x and hence x 2 S . Now let x D f .y/. Then f .x/ > f .y/ and so x > y.
So again by the choice of x, f .y/ D y. But then x D y contradicting the fact that
f .x/ ¤ x.

Corollary 1.1.9. If X and Y are well ordered sets, then there is at most one isomor-
phism f W X ! Y .

Proof. If f; g W X ! Y are isomorphisms, then by the preceding result, g�1 ı f D
idX . Hence f D g.
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Theorem 1.1.10. If X and Y are well ordered sets, then exactly one of the following
holds:

(a) X is isomorphic to Y ,

(b) X is isomorphic to a proper segment of Y ,

(c) Y is isomorphic to a proper segment of X .

Proof. We first argue that one of (a), (b) or (c) holds. We consider the set of pairs
.S; T / where S and T are segments of X and Y respectively and where S is iso-
morphic to T . Given two such pairs .S; T /, .S 0; T 0/, we write .S; T / � .S 0; T 0/ if
S � S 0 and T � T 0. Note that the isomorphisms (necessarily unique) f W S ! T

and f 0 W S 0 ! T 0 agree on S . For T and f 0.S/ are isomorphic segments of
Y with y 7! f 0.f �1.y// the isomorphism. By Theorem 1.1.8, f 0.S/ D T and
f 0.f �1.y// D y for y 2 T . So with y D f .x/ we get f 0.x/ D f .x/ for x 2 S .

By taking unions, we see that any chain of such pairs .S; T / has an upper bound
(note that .;;;/ is such a pair and so by Zorn’s Lemma there is a maximal pair .S; T /).
If S ¤ X and T ¤ Y , let x0 be the least element of X not in S and let y0 be the least
element of Y not in T . Then S 0 D S [¹x0º, T 0 D T [¹y0º are isomorphic segments
of X and Y respectively. Since .S; T / < .S 0; T 0/, this contradicts our choice of
.S; T /.

It is not hard then to see by Theorem 1.1.8 that no two of (a), (b) and (c) can
simultaneously be true.

If X and Y are well ordered sets, we write OrdX D OrdY if X and Y are iso-
morphic. We write OrdX < OrdY if X is isomorphic to a proper segment of Y
and OrdX > OrdY if Y is isomorphic to a proper segment of X . Then by Theorem
1.1.10 we see (without actually specifying what OrdX is) that ¹OrdX W X is a setº
is a totally ordered class. Any two finite well ordered sets X; Y with n elements are
isomorphic. So we write OrdX D n for such an X . If N is the set of natural numbers
with the usual order, we write Ord.N/ D !. If ˛ D OrdX and ˇ D OrdY with X
and Y well ordered sets with X \ Y D ;, we let ˛C ˇ D Ord.X [ Y / where X [ Y
is ordered so that x < y for all x 2 X , y 2 Y and such that the induced orders on X
and Y are the original orders. We note that X [ Y is well ordered with this order.

An ordinal number ˛ > 0 with ˛ D OrdX is said to be a limit ordinal if X has no
largest element. By the definition of addition of ordinals above, we see that ˛ > 0 is
a limit ordinal if and only if ˛ ¤ ˇ C 1 for any ordinal ˇ.

Theorem 1.1.11. The class ¹OrdX W X is a setº is well ordered.

Proof. The statement means that any nonempty set of ordinals has a least element. So
it suffices to argue that if .Xi /i2I is a nonempty family of well ordered sets, then for
some j 2 I , Xj is isomorphic to a segment of each Xi , i 2 I . Suppose this is not
the case. Let i0 2 I . Then by Theorem 1.1.10 we see that there is an i1 2 I so that
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Xi1 is isomorphic to a proper segment S1 of Xi0 . Then repeating the argument with
i1 replacing i0 we see that there is an i2 2 I with Xi2 isomorphic to a proper segment
of Xi1 . But this implies Xi2 is isomorphic with a segment S2 of Xi0 with S2 ¨ S1.
Repeating the argument we see that we can find segments S1 © S2 © S3 © S4 © � � �
of Xi0 . But this is impossible.

Definition 1.1.12. IfX and Y are sets, we say thatX and Y have the same cardinality
if there is a bijection f W X ! Y , and we write CardX D CardY . We say CardX �
CardY if there is an injection f W X ! Y .

Theorem 1.1.13. If X and Y are sets, then either CardX � CardY or CardY �
CardX .

Proof. We consider subsets S � X � Y with the property that if .x; y/, .x0; y0/ 2 S
and .x; y/ ¤ .x0; y0/ then x ¤ x0, y ¤ y0. Among such subsets one can clearly pick
a maximal one, say T , by Zorn’s Lemma. We claim that T is the graph of a function
from X to Y or T 0 D ¹.y; x/ W .x; y/ 2 T º is the graph of a function from Y to X .
For if neither holds, then for some x0 2 X , .x0; y/ … T for any y 2 Y and for some
y0 2 Y , .x; y0/ … T for any x 2 X . Then we note that T [ ¹.x0; y0/º © T and
has the property above, contradicting the maximality of T . Hence either T is a graph
of a function from X to Y so that there is an injection X ! Y or T 0 is a graph of a
function from Y to X and so there is an injection Y ! X .

Theorem 1.1.14 (Cantor, Schröder, Bernstein). Let X and Y be sets. If CardX �
CardY and CardY � CardX , then CardX D CardY .

Proof. Let f W X ! Y and g W Y ! X be injections and let h D gf , R D
X � g.Y /, and A D R [ h.R/ [ h2.R/ [ � � � so that h.A/ � A � X . Hence if
we let A0 D f .A/, then g.A0/ D h.A/ � A. Now let B D X � A, B 0 D Y � A0.
Then A \ B D ;, A0 \ B 0 D ;, A [ B D X , A0 [ B 0 D Y , and CardA D CardA0.
So if CardB D CardB 0, then CardX D Card.A [ B/ D CardA C CardB D
CardA0 C CardB 0 D Card.A0 [ B 0/ D CardY and so we are done. Thus it suffices
to show that CardB D CardB 0. But then we only need to argue that g.B 0/ D B .
So let x 2 B . Then x … A and so x … R since R � A. Hence x 2 g.Y / and so
x D g.y/ for some y 2 Y . If y 2 A0, then g.y/ D x 2 A, a contradiction. So
y 2 B 0 and thus x 2 g.B 0/. Hence B � g.B 0/. To show g.B 0/ � B we let y 2 B 0
and argue g.y/ 2 B . Suppose g.y/ 2 A. Then g.y/ … R since R D X � g.Y / and
so g.y/ 2 hn.R/ for some n � 1. Let g.y/ D hn.z/ for some z 2 R � A. Then
g.y/ D h.hn�1.z// D g.f .hn�1.z///. So y D f .hn�1.z//. But hn�1.z/ 2 A.
Hence y 2 A0, a contradiction since y 2 B 0. So g.y/ 2 B and we are done.

Theorem 1.1.15. The class ¹CardX W X a setº is well ordered.
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Proof. We need to argue that if .Xi /i2I is any nonempty family of sets then there is
an i0 2 I such that for each i 2 I there is an injectionXi0 ! Xi . We consider subsets
S �Q

i2I Xi with the property that if .xi /i2I , .yi /i2I 2 S and if .xi /i2I ¤ .yi /i2I
then xi ¤ yi for all i 2 I . Partially ordering these S by inclusion we see that an
application of Zorn’s Lemma gives a maximal such S . If �i .S/ ¤ Xi for each i 2 I ,
then choosing yi 2 Xi , yi … �i .S/ for each i , we see that the set S [ ¹.yi /i2I º
contradicts the maximality of S . Hence for some i0 2 I , �i0.S/ D Xi0 . Then given
x 2 Xi0 there is a unique .xi /i2I 2 S with xi0 D x. Hence for i 2 I we can define a
function Xi0 ! Xi which, with this notation, maps x to xi . By the property imposed
on S , this function is an injection.

As usual, we use the symbols 0; 1; 2; 3; : : : ; n; : : : to denote the finite cardinals. The
infinite cardinals are written @˛ where ˛ is an ordinal number. So @0 is the smallest
infinite cardinal. Hence @0 D Card N. Then for any @˛ , @˛C1 is the least cardinal
number larger than @˛. If ˇ is a limit ordinal, @ˇ is the least cardinal number greater
that @˛ for all ordinals ˛ < ˇ.

Definition 1.1.16. Given cardinal numbers m1 and m2 with m1 D CardX1, m2 D
CardX2, we definem1m2 to be Card.X1�X2/ and definem1Cm2 to be Card.X1[
X2/ if X1 \X2 D ;.

We see that nC@0 D @0 for any finite n � 0. Also, the usual arguments show that
@0 C @0 D @0, n � @0 D @0 if n � 1 and that @0 � @0 D @0 (that is, @20 D @0).

Proposition 1.1.17. For any infinite cardinal @˛ , @2˛ D @˛ .

Proof. Clearly @˛ � @2˛ since there is an injection X ! X � X for any set X . So if
@2˛ D @˛ fails then @2˛ > @˛. So assume @2˛ > @˛ for some ˛. We can then assume
@˛ is the least infinite cardinal with @2˛ > @˛. Let @˛ D CardX for some set X . By
Proposition 1.1.7, X can be well ordered. We consider the set of segments S � X

such that CardS D @˛ (for example, S D X ). Since the segments are well ordered
by inclusion, there is a least such S . So we can suppose that S D X . This then means
that for every proper segment T of X , CardT < CardX . Hence by our assumption
on @˛ D CardX , CardT 2 D CardT for every infinite proper segment T .

We now order X � X so that .x1; y1/ � .x2; y2/ if sup¹x1; y1º < sup¹x2; y2º,
so that .x1; y1/ � .x2; y2/ if sup¹x1; y1º D sup¹x2; y2º and if x1 < x2, and so that
.x1; y1/ � .x2; y2/ if sup¹x1; y1º D sup¹x2; y2º and x1 D x2 and y1 � y2. Then it
is easy to see that Y D X �X is well ordered. Now we apply Theorem 1.1.10. If Y is
isomorphic to a segment ofX (possiblyX itself) then @2˛ D CardY � CardX D @˛ ,
contradicting our choice of @˛. So suppose X is isomorphic to a proper segment U
of Y D X � X . Then there is a z 2 X so that .x; y/ < .z; z/ for all .x; y/ 2 U .
Let T be the segment of X determined by z, that is T D ¹x W x 2 X; x < zº. Then
noting that T is infinite and that CardT < CardX we have CardT 2 D CardT . But
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U � T � T . So CardU � CardT . But then CardX D CardU � CardT < CardX .
This gives a contradiction and so proves the proposition.

Proposition 1.1.18 (The principle of transfinite induction). If ˇ � 0 is an ordinal, let
X D ¹˛ W ˛ is an ordinal number; ˛ < ˇº. Let S � X . If (1) 0 2 S , (2) ˛ C 1 < ˇ

and ˛ 2 S implies ˛ C 1 2 S , and (3) � < ˇ is a limit ordinal and ˛ 2 S for all
˛ < � implies � 2 S , then S D X .

Proof. If S ¤ X , let � be the least ordinal � < ˇ which is not in S . By (1), � > 0.
If � is not a limit ordinal then � D ˛ C 1. But then ˛ 2 S and so ˛ C 1 D � 2 S by
(2). If � is a limit ordinal we get � 2 S by (3) and so we get a contradiction in both
cases. Hence S D X .

When ˇ D !, we haveX D N and we get the usual induction ((3) does not apply).
If we are given a statement P˛ for each ˛ < ˇ and we let S be those ˛ for which

P˛ is true. Then to argue all P˛ are true we only need check (1), (2) and (3) for S .
For example, if we can argue P˛ implies P˛C1 for ˛ C 1 < ˇ, then we get (2) for S .

There is an analogous principle of transfinite construction. This principle says, for
example, that in order to construct a set M˛ for all ˛ < ˇ, it suffices to give M0, to
show how to get M˛C1 from M˛ when ˛ C 1 < ˇ, and how to get M� from all the
M˛, ˛ < � when � < ˇ is a limit ordinal.

Exercises

1. Argue that if f W Y ! Z is a surjective function, then CardZ � CardY .

2. If X is an infinite set, argue that X admits a partition P into countable subsets
S � X . (That is, (1) if S 2 P then S � X and CardS D @0, (2) if S , T 2 P

then S D T or S \ T D ;, (3) X DS

S2P S ).

Hint: Use Zorn’s Lemma on sets P satisfying (1) and (2). If P is a maximal such
set, argue that X �S

S2P is finite.

3. If @˛ and @ˇ are infinite cardinals, argue that @˛ C @ˇ D @˛ � @ˇ D @� where
� D sup.˛; ˇ/.

4. (a) Let X be an infinite set and let X1 D X , X2 D X � X and in general
XnC1 D Xn � X for n � 1. Let Y D S1

nD1Xn. Argue that CardY �
@0 � CardX D CardX and so deduce that CardY D CardX .

(b) Use (a) and Problem 1 to argue that if F .X/ is the set of finite subsets of X ,
then Card F .X/ D CardX .

5. (a) Let X be any set and let P .X/ be the set of all subsets of X . Argue that there
is no surjection � W X ! P .X/ by arguing that for any function � W X !
P .X/ the set Y D ¹x W x 2 X; x … �.x/º is not �.y/ for any y 2 X .

(b) Deduce that CardX < Card P .X/ for any set X .
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6. If .mi /i2I is any family of cardinal numbers, define
P

i2I mi and
Q

i2I mi
to be the cardinality of

S

i2I Xi and
Q

i2I Xi where the Xi are sets such that
CardXi D mi for each i 2 I and where Xi \Xj D ; if i ¤ j . Now let I D N
and suppose 0 < m0 < m1 < m2 < � � � . Argue that

P1
iD0mi <

Q1
iD0mi .

Hint: With the notation above, argue that there is no surjection
S1
iD0Xi !

Q1
iD0Xi as follows: Let f W S1

iD0Xi !
Q1
iD0Xi be a function. Let x0 2 X0

be any element. Since mn < mnC1, the function x 7! �nC1.f .x// from Xn
to XnC1 is not surjective and so let xnC1 2 XnC1; xnC1 2 �nC1.f .Xn// for
n � 0. Then argue that .xn/n�0 is not in the image of f .

7. (a) Noting that
P1
nD0 @n � @0 � @! , argue that

P1
nD0 @n D @! .

(b) Argue that
Q1
nD0 @n � @@0

!

(c) Use (a), (b) and Problem 6 to deduce that @! < @@0
! .

Note. If m, n are any cardinal numbers and if CardX D m, CardY D n, then
mn is defined to be CardXY .

8. (a) Let ˛ and ˇ be ordinals and let X and Y be well ordered sets such that
OrdX D ˛ and OrdY D ˇ. Suppose that f W X ! Y is an injective
function which preserves order. Argue that ˛ � ˇ and that ˛ D ˇ if and only
if f is a bijection.

(b) If ˛ and ˇ are ordinal numbers, show that ˇ � ˛ C ˇ and that ˇ D ˛ C ˇ if
and only if ˛ D 0.

9. (a) Let X be any well ordered set and .˛x/x2X be a family of ordinals indexed
by X . For each x 2 X , let Yx be a well ordered set such that OrdYx D ˛x
and such that Yx \Yx0 D ; if x ¤ x0. Order Y DS

x2X Yx so that if y 2 Yx
and y0 2 Yx0 where x < x0 then y < y0 and so that if y; y0 2 Yx (for some x)
then y � y0 if and only if this holds in the original order on Yx . Argue that Y
is well ordered with this order.

(b) With this Y , OrdY is denoted
P

x2X ˛x . Show that for each Nx 2 X , ˛ Nx �
P

x2X ˛x .

10. Use the following steps to give another proof of Proposition 1.1.17.

Let X be an infinite set. We want to prove that there is a bijection X ! X � X .
If S � X is a countable subset then there is a bijection � W S ! S � S . Using
Zorn’s Lemma find a maximal pair .T; �/ where T � X is an infinite subset and
where � W T ! T � T is a bijection. If Card.T / D Card.X/ deduce that there is
a bijectionX ! X�X . If Card.T / < Card.X/ argue that there is a T 0 � X�T
such that Card.T 0/ D Card.T /. If T D T [ T 0 show that there is a bijection
� W T ! T � T which agrees with � on T . So contradict the choice of .T; �/.

Hint: Using T find an appropriate partition of T � T .
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1.2 Modules

Throughout this book, R will denote an associative ring with 1.
We will assume that the reader is familiar with modules and their elementary prop-

erties. By anR-moduleM , we shall mean a unitary leftR-module, that is, an Abelian
groupM with a map R�M !M , denoted .r; x/ 7! rx, such that for all x, y 2M ,
r , s 2 R

r.x C y/ D rx C ry
.r C s/x D rx C sx
.rs/x D r.sx/
1x D x where 1 2 R:

If .rs/x D r.sx/ is replaced by .sr/x D r.sx/, then M is said to be a right R-
module and we denote the image of .r; x/ by xr and so .sr/x D r.sx/ becomes
.sr/x D .xs/r .

Also recall that if R and S are rings, then an Abelian group M is said to be an
.R; S/-bimodule, denoted RMS , if M is a left R-module and right S -module and the
structures are compatible, that is, .rx/s D r.xs/ for all r 2 R, s 2 S , x 2 M . In
particular, any ring R is naturally an .R;R/-bimodule.

Definition 1.2.1. Let M;N be R-modules. Then a map f W M ! N is said to an
R-module homomorphism if

(1) f .x C y/ D f .x/C f .y/
(2) f .rx/ D rf .x/

for all x, y 2M , r 2 R.

Note that ifR is a field, then anR-module homomorphism is a linear transformation
of vector spaces.

Definition 1.2.2. Let M be a R-module, and M 0 be a subset of M . If M 0 is an
R-module, then we say that M 0 is an R-submodule of M .

Let M 0 be a submodule of M , then M=M 0 D ¹x CM 0 W x 2 M º is also an R-
module and is called quotient module. Note that in this case, scalar multiplication is
defined by r.x CM 0/ D rx CM 0 for r 2 R, x 2M .

Now let f W M ! N be an R-module homomorphism. Then the kernel of f
denoted Ker f , is defined by

Ker f D ¹x 2M W f .x/ D 0º

Ker f is an R-submodule of M .
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The image of f , denoted Imf of f .M/, is defined by

Imf D ¹f .x/ W x 2M º:
Imf is an R-submodule of N . But then N= Imf is also an R-module. N= Im f is
called the cokernel of f and is denoted by Coker f .

Theorem 1.2.3. Let f WM ! N be anR-homomorphism. ThenM=Ker f Š Imf .

Proof. This is left to the reader.

Definition 1.2.4. Let .Mi /i2I be a family of modules. Then
Q

i2I Mi is the set of all
families .xi /i2I of elements where xi 2Mi for each i 2 I . Then

Q

i2I Mi is clearly
a module. It is called the direct product of the family .Mi /i2I . The submodule of this
product consisting of all .xi /i2I such that xi D 0 except for a finite number of i 2 I
is called the direct sum of the family and is denoted

L

i2I Mi . If Mi D M for each
i then this product and direct sum are denoted M I and M .I /.

If I is the set of natural numbers N, then the elements of the product are often
written as .x0; x1; x2; : : :/ where xn 2Mn for each n.

The product and sum above are also denoted
Q

I Mi and
L

I Mi . So then their
elements are often written as .xi /I .

Definition 1.2.5. An R-module F is said to be free if it is a direct sum of copies of
R, or equivalently, if it has a basis. That is, if M D R.I / for some index set I .

Proposition 1.2.6. Every R-module is a quotient of a free R-module.

Proof. Let M be an R-module and ¹xi W i 2 I º be a set of generators of M . Then
R.I / is a free R-module. Define a map ' W R.I / ! M by '..ri /i2I / D

P

i2I rixi .
Then ' is onto and so M Š R.I /=Ker' by the theorem above.

Corollary 1.2.7. An R-module is finitely generated if and only if it is a quotient of
Rn for some integer n > 0.

Definition 1.2.8. IfM andN are R-modules, then by HomR.M;N / we mean all the
R-homomorphisms from M to N . Clearly HomR.M;N / is an Abelian group under
addition.

Now suppose M is an R-module and N is an .R; S/-bimodule. Let s 2 S , f 2
HomR.M;N / and define f s W M ! N by .f s/.x/ D f .x/s. Then clearly f .s1 C
s2/ D f s1 C f s2, .f C g/s D f s C gs, .f s/t D f .st/, and f � 1 D f for all f ,
g 2 HomR.M;N /, s1; s2; s; t , 1 2 S . That is, HomR.M;N / is a right S -module.
Similarly, if M is an .R; S/-bimodule and N is an R-module, then HomR.M;N / is
a left S -module where the map sf W M ! N is defined by .sf /.x/ D f .xs/. In
particular, if RMS and RNT are modules, then HomR.M;N / is an .S; T /-bimodule.
Likewise, given modules SMR, TNR, then HomR.M;N / is a .T; S/-bimodule.
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Proposition 1.2.9. If M is an R-module, then the map ' W HomR.R;M/ ! M

defined by '.f / D f .1/ is an R-isomorphism.

Proof. This is left to the reader.

Proposition 1.2.10. Let M be an R-module, .Ni /i2I be a family of R-modules, and
�j WQI Ni ! Nj for each j be the projection map. Then the map

' W HomR
�

M;
Y

I

Ni

�

!
Y

I

Hom.M;Ni /

defined by '.f / D .�i ı f /I is an isomorphism.

Proof. ' is clearly an R-homomorphism. Suppose .fi /I 2
Q

I Hom.M;Ni /. Then
fi is a map from M to Ni for each i . So we can define a map f W M ! Q

Ni by
f .x/ D .fi .x//I . f is clearly an R-homomorphism. Furthermore, �j ı f .x/ D
�j ..fi .x//I / D fj .x/ for all x 2 M and so �j ı f D fj for each j . Hence
'.f / D .�i ı f /I D .fi /I . That is, ' is onto.

Now suppose '.f / D 0. Then .�j ı f /.x/ D �j .f .x// D 0 for each j and each
x 2M . But then f .x/ D 0 for all x 2M . That is, f D 0 and so ' is one-to-one.

A similar proof gives the following.

Proposition 1.2.11. Let M be an R-module, .Ni /i2I be a family of R-modules, and
ej W Nj !L

I Ni be the j th embedding. Then the map

' W HomR
�

M

I

Ni ;M
�

!
Y

I

HomR.Ni ;M/

defined by '.f / D .f ı ei /I is an isomorphism.

Definition 1.2.12. If M;M 0; N;N 0 are R-modules and f W M 0 ! M , g W N ! N 0
are R-homomorphisms, then define a map ' W Hom.M;N / ! Hom.M 0; N 0/ by
'.h/ D ghf . ' is denoted by Hom.f; g/. We have that Hom.f; g/.h1 C h2/ D
Hom.f; g/.h1/ C Hom.f; g/.h2/, that is, Hom.f; g/ is additive. Furthermore, in
the situation RMS ; RM

0
S ; RN; RN

0, if f W M 0 ! M is an .R; S/-homomorphism
and g W N ! N 0 is an R-homomorphism, then Hom.f; g/ is an S -homomorphism
between the two left S -modules.

If M 0 f! M
f 0

! M 00 and N 00 g 0

! N
g! N 0 are homomorphisms, then it is easy to

see that Hom.f; g/ ı Hom.f 0; g0/ D Hom.f 0 ı f; g ı g0/.
The maps Hom.f; idN /, Hom.idM ; g/ are denoted by Hom.f;N /, Hom.M; g/ re-

spectively. We note that if f W M 0 ! M is an R-homomorphism, then we have
a homomorphism of Abelian groups Hom.f;N / W Hom.M;N / ! Hom.M 0; N /.
Similarly, for a map g W N ! N 0, we get a map Hom.M; g/ W Hom.M;N / !
Hom.M;N 0/.
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Definition 1.2.13. A sequence of R-modules and R-homomorphisms

� � � !M2 !M1
@1!M0

@0!M�1
@�1! M�2 ! � � �

is said to be exact at Mi if Im @iC1 D Ker @i . The sequence is said to be exact if it is

exact at eachMi . It is easy to see that a sequence 0! A
f! B of R-modules is exact

if and only if f is one-to-one, and a sequence B
g! C ! 0 is exact if and only if g

is onto. An exact sequence of the form 0 ! M 0 f! M
g! M 00 ! 0 is said to be a

short exact sequence. In this case, Coker f DM= Imf ŠM 00.

Remark 1.2.14. Let M be an R-module. Then M is a quotient of a free R-module,
say F0 by Proposition 1.2.6. Then we have a short exact sequence

0! K1 ! F0
@0!M ! 0 (1.1)

where M Š F0=K1 from the above.
But K1 is a quotient of a free, say F1. Then we have an exact sequence

0! K2 ! F1
@1! K1 ! 0: (1.2)

Now paste (1.1) and (1.2) to get

0! K2 ! F1
@1! F0

@0!M ! 0: (1.3)

Note that Im @1 D K1 D Ker @0.
Now repeat to get an exact sequence

� � � ! F2 ! F1 ! F0 !M ! 0

where each Fi is a free R-module. This is called a free resolution of M .

Proposition 1.2.15. The following statements hold:

(1) If 0 ! N 0 f! N
g! N 00 is an exact sequence of R-modules, then for each

R-module M the sequence

0! HomR.M;N
0/

Hom.M;f /�! HomR.M;N /
Hom.M;g/�! Hom.M;N 00/

is also exact.

(2) If M 0 f! M
g! M 00 ! 0 is an exact sequence of R-modules, then for each

module R-module N the sequence

0! Hom.M 00; N /
Hom.g;N/�! Hom.M;N /

Hom.f;N/�! Hom.M 0; N /

is exact.
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Proof. (1) Let � 2 Hom.M;N 0/ be such that Hom.M; f /.�/ D 0. Then f� D 0

and so � D 0 since f is one-to-one. Hence Hom.M; f / is one-to-one.
We now show exactness at Hom.M;N /. Let � 2 Hom.M;N 0/. Then Hom.M; g/ı

Hom.M; f /.�/ D gf� . But if x 2 M , then f .�.x// 2 Im f D Kerg. So
Hom.M; g/ ı Hom.M; f /.�/ D gf� D 0. Thus

Im.Hom.M; f // � Ker.Hom.M; g//:

Now let � 2 Ker.Hom.M; g//. Then Hom.M; g/.�/ D g� D 0. So Im � � Kerg D
Imf . Hence let � be the map from M to N 0 defined by � D f �1� . Then � 2
Hom.M;N 0/ is such that Hom.M; f /.�/ D f� D � . That is, � 2 Im.Hom.M; f //.
Thus we have exactness at Hom.M;N /.

(2) Follows similarly.

Proposition 1.2.16 (Snake Lemma). Suppose

M 0 f
��

� 0

��

M

�

��

g
�� M 00 ��

� 00

��

0

0 �� N 0 f 0

�� N
g 0

�� N 00

is a commutative diagram (that is, f 0� 0 D �f and g0� D � 00g) of R-modules with
exact rows. Then there is an exact sequence

Ker � 0
Nf! Ker � ! Ker � 00 d! Coker � 0 ! Coker �

Ng 0

! Coker � 00

Furthermore, if f is one-to-one, then Nf is also one-to-one, and if g0 is onto, then Ng0
is onto. d is called a connecting homomorphism.

Proof. The proof for exactness is routine once we define the map d .
Let x00 2 Ker � 00. Choose x 2 M such that g.x/ D x00. Then g0 ı �.x/ D

� 00 ı g.x/ D � 00.x00/ D 0. So �.x/ 2 Kerg0 D Imf 0. Thus �.x/ D f 0.y0/ for some
y0 2 N 0. So define d W Ker � 00 ! Coker � 0 by d.x00/ D y0 C Im � 0. Then d is a
well-defined homomorphism.

Definition 1.2.17. An exact sequence 0 ! M 0 f! M
g! M 00 ! 0 of R-modules is

said to be split exact, or we say the sequence splits, if Im f is a direct summand ofM .

Proposition 1.2.18. Let 0 ! M 0 f! M
g! M 00 ! 0 be an exact sequence of

R-modules. Then the following are equivalent:
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(1) The sequence is split exact.

(2) There exists an R-homomorphism f 0 WM !M 0 such that f 0 ı f D idM 0 .

(3) There exists an R-homomorphism g00 WM 00 !M such that g ı g00 D idM 00 .

Proof. This is left to the reader.

Exercises

1. Prove Theorem 1.2.3.

2. Prove Proposition 1.2.11.

3. Let M be an R-module and .Ni /i2I be a family of R-modules. Consider the
homomorphism of Abelian groups

' W
M

i2I
HomR.M;Ni /! HomR.M;˚Ni /

which maps .fi /i2I to f where f .x/ D .fi .x//i2I
(a) Argue that ' is an isomorphism if I is finite or if M is finitely generated.

(b) Find an example where ' is not an isomorphism.

4. If N is an R-module and .Mi /i2I is a family of R-modules define

' W
M

i2I
HomR.Mi ; N /! HomR

�

Y

i2I
Mi ; N

�

where '.fi /i2I D f with f ..xi /i2I / D
P

i2I fi .xi /
(a) Argue that ' is an isomorphism if I is finite.

(b) Find an example where ' is not an isomorphism.

5. (a) Let x 2 M where M is an R-module. For every R-module N consider the
homomorphism HomR.M;N /! N of Abelian groups that maps f to f .x/.
Argue that this is an isomorphism for all N if and only if M is isomorphic to
R under an isomorphism that maps x to 1.

(b) Find an example of an M with two different elements x, y 2 M such that
each of the maps f 7! f .x/ and f 7! f .y/ from HomR.M;N / to N are
isomorphisms for all N .

6. Prove the second part of Proposition 1.2.15.

7. Complete the proof of Proposition 1.2.16.

8. Prove that if M
f! N and N

g! M are such that g ı f D idM , then N Š
Im f ˚ Kerg.

9. Prove Proposition 1.2.18.
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10. (a) Let .Mi /i2I be a family of R-modules. Argue that
L

i2I Mi is finitely gen-
erated if and only if each Mi is finitely generated and Mi D 0 except for a
finite number of i 2 I .

(b) Find an example of a ringR and a family .Mi /i2I ofR-modules withMi ¤ 0
for an infinite number of i 2 I such that

Q

i2I Mi is a finitely generated R-
module.

1.3 Tensor Products of Modules and Nakayama Lemma

Definition 1.3.1. Let M be a right R-module, N a left R-module, and G an Abelian
group. Then a map � W M � N ! G is said to be balanced if it is additive in both
variables (biadditive), that is,

�.x C x0; y/ D �.x; y/C �.x0; y/;
�.x; y C y0/ D �.x; y/C �.x; y0/;

�.xr; y/ D �.x; ry/

for all x, x0 2M , y; y0 2 N , r 2 R.
Note that the term bilinear is used when R is commutative and when we add the

condition �.x; ry/ D r�.x; y/ for all x, y, and r .

Definition 1.3.2. A balanced map � WM �N ! G is said to be universal or we say
� solves the “universal mapping problem” for G if for every Abelian group G0 and
balanced map � 0 W M � N ! G0, there exists a unique map h W G ! G0 such that
� 0 D h� .

Definition 1.3.3. A tensor product of a right R-module M and left R-module N is
an Abelian group T together with a universal balanced map � WM �N ! T .

If � WM �N ! T , � 0 WM �N ! T 0 are both universal balanced maps, then we
can complete the diagram

T

h ��
M �N

�
���������

� 0

��
�

����
���

���
T 0

f ��
T

to a commutative diagram. But then f h D idT . Similarly, hf D idT 0 and thus h is
an isomorphism. Thus tensor products are unique up to isomorphism. We will thus
speak of the tensor product ofMR and RN , and will denote it byM ˝ RN or simply
M ˝N .
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Theorem 1.3.4. The tensor product of MR and RN exists.

Proof. Let F be the free Abelian group with base M �N , that is,

F D
°

X

i

mi .xi ; yi / W mi 2 Z; .xi ; yi / 2M �N
±

Š Z.M�N/

Let S be the subgroup of F generated by elements of F of the form

.x C x0; y/ � .x; y/ � .x0; y/; .x; y C y0/ � .x; y/ � .x; y0/; .rx; y/ � .x; ry/

where x, x0 2 M , y, y0 2 N , r 2 R. Define a map � W M � N ! F=S by
�.x; y/ D .x; y/C S . Then � is clearly balanced. Now let � 0 W M � N ! G0 be a
balanced map into an Abelian groupG0. But F is free onM �N . So there is a unique
homomorphism h0 W F ! G0 that extends � 0, that is, h0.x; y/ D � 0.x; y/. But clearly
S � Ker h0 since � 0 is balanced. So we get a unique induced map h W F=S ! G0
such that � 0 D h� . Thus F=S DM ˝ RN .

Remark 1.3.5. We see from the proof above that F=S is generated as an Abelian
group by cosets .x; y/ C S . We denote .x; y/ C S by x ˝ y. So M ˝ RN is
generated as an Abelian group by the elements x ˝ y. Since �.x ˝ y/ D .�x/˝ y,
the elements of M ˝ RN are of the form

P

xi ˝ yi . Furthermore, if x, x0 2 M , y,
y0 2 N , and r 2 R, then

.x C x0/˝ y D x ˝ y C x0 ˝ y;
x ˝ .y C y0/ D x ˝ y C x ˝ y0;

.xr/˝ y D x ˝ .ry/:

Proposition 1.3.6. MR ˝R ŠM for every right R-module M , and R˝ RN Š N
for every left R-module N .

Proof. The map M � R ! M given by .x; r/ 7! xr is balanced and so there is
a unique homomorphism h W M ˝ RR ! M such that h.x ˝ r/ D xr . But h0 W
M ! M ˝ RR given by h0.x/ D x ˝ 1 is a group homomorphism and hh0 D idM .
Moreover, M ˝ RR is generated by x ˝ 1, x 2 M and so easily h0h D idM˝RR.
Thus M ˝ RR ŠM .

Proposition 1.3.7. Let .Mi /I be a family of right R-modules andN a left R-module.
Then

�

M

I

Mi

�

˝ RN Š
M

I

.Mi ˝N/:
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Proof. The map .
L

Mi / �N !L

I .Mi ˝N/ given by ..xi /I ; y/ 7! .xi ˝ y/I is
balanced and so we have a unique homomorphism h W .LI Mi /˝N !L

I .Mi˝N/
such that h..xi /I ˝ y/ D .xi ˝ y/I . Similarly one gets a unique homomorphism
h0 WLI .Mi ˝N/! .

L

I Mi /˝N given by h0..xi ˝ yi /I / D
P

I ei .xi /˝ yi . It
is easy to see that h0 D h�1.

We note that with the appropriate hypothesis there is an isomorphism

M ˝ R

�

M

Ni

�

Š
M

I

.M ˝Ni /:

Proposition 1.3.8. Let f W MR ! M 0
R and g W RN ! RN

0 be homomorphisms.
Then there is a unique homomorphism h W M ˝ RN ! M 0 ˝ RN

0 such that
h.x ˝ y/ D f .x/˝ g.y/.

Proof. We consider the following commutative diagram

M �N
f �g

��

� ��

h0

����
���

���
���

M ˝ RN

M 0 �N 0 � 0

�� M 0 ˝ RN
0

where �; � 0 are the universal balanced maps .x; y/ 7! x ˝ y, .x0; y0/ 7! x0 ˝ y0,
respectively, and h0 D � 0.f � g/. But h0 is balanced. So there exists a unique
homomorphism h WM ˝ RN !M 0˝ RN

0 such that h.x˝y/ D f .x/˝g.y/.

Remark 1.3.9. The map h W M ˝ RN ! M 0 ˝ RN
0 in the proposition above is

denoted by f ˝ g. Now suppose f 0 W M 0
R ! M 00

R, g0 W RN 0 ! RN
00 are R-

homomorphisms. Then we get a map f 0 ˝ g0 W M 0 ˝ RN
0 ! M 00 ˝ RN

00 and it
is easy to see that .f 0 ˝ g0/ ı .f ˝ g/ D f 0f ˝ g0g by evaluating the maps on a
generator x ˝ y 2 M ˝ N . We also note that idM ˝ idN W M ˝ N ! M ˝ N is
clearly the identity on M ˝N , and if f WM !M 0, g W N ! N 0 are isomorphisms,
then f ˝ g is an isomorphism and .f ˝ g/�1 D f �1 ˝ g�1.

Proposition 1.3.10. If N 0 f! N
g! N 00 ! 0 is an exact sequence of left R-modules,

then for each right R-module M , the sequence M ˝ RN
0 idM˝f�! M ˝ RN

idM˝g�!
M ˝ RN

00 ! 0 is also exact.

Proof. Let x ˝ y00 2 M ˝ N 00. Then there is a y 2 N such that g.y/ D y00 and so
x ˝ y 2 M ˝ N is such that .idM ˝ g/.x ˝ y/ D x ˝ y00. That is, M ˝ RN !
M ˝ RN

00 ! 0 is exact.
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Clearly, Im.idM ˝ f / � Ker.idM ˝ g/ since Im f � Kerg. But Im.idM ˝ f / �
Ker.idM ˝ g/ means that we have an induced commutative diagram

M ˝ RN
0 idM˝f

�� M ˝N
idM˝g

��

�� .M ˝N/= Im.idM ˝ f /

h��� � � � � � �
�� 0

M ˝N 00

If we can show that h is an isomorphism, then we would be done for then Ker.idM ˝
g/ � Im.idM ˝ f /. So we now define an inverse of h. Define a map � WM �N 00 !
.M ˝N/= Im.idM ˝f / by �.x; y00/ D x˝yC Im.idM ˝f / where y00 D g.y/. �
is a well-defined balanced map. So there is a unique homomorphism h0 WM ˝N 00 !
.M ˝N/= Im.idM ˝ f / given by h0.x ˝ y00/ D x ˝ y C Im.idM ˝ f /. Then one
easily checks that h0 D h�1.

Now let I be a right ideal of R and M be an R-module. Then IM , the set of all
finite sums

Pn
iD1 rixi , ri 2 I , xi 2 M , is a subgroup of M . With this notation, we

have the following.

Corollary 1.3.11. Let I be a right ideal of R and M be a left R-module. Then

.R=I /˝ RM ŠM=IM:
Proof. We consider the exact sequence 0 ! I ! R ! R=I ! 0. But I ˝
M

f! M ! R=I ˝M ! 0 is exact by Propositions 1.3.6 and 1.3.10, and Im f D
¹Pi rixi W ri 2 I; xi 2M º D IM . Hence the result follows.

Now suppose M is an .S;R/-bimodule and N is a left R-module. Then the tensor
productM˝ RN is a left S -module with s.x˝y/ D .sx/˝y for all x 2M , y 2 N ,
s 2 S . If M is a right R-module and N is an .R; T /-bimodule, then M ˝ RN is a
right T -module with .x ˝ y/t D x ˝ .yt/ for all x 2 M , y 2 N , t 2 T . If M is an
.S;R/-bimodule andN is an .R; T /-bimodule, thenM ˝ RN is an .S; T /-bimodule
with s.x ˝ y/t D .sx/˝ .yt/.

We finally note that the associativity property holds for tensor products. That is,
given MR, RNS , SP , we have that .M ˝ RN/ ˝S P Š M ˝ R.N ˝S P /. One
begins by constructing a balanced map .M ˝ RN/�P !M ˝ R.N ˝S P /. To do
this let z 2 P and note that the function M � N ! M ˝ R.N ˝S P / which maps
.x; y/ to x ˝ .y ˝ z/ is balanced and gives a map M ˝ RN ! M ˝ R.N ˝S P /
mapping x ˝ y to x ˝ .y ˝ z/. Using these maps (for all z 2 P ), we get a map
.M ˝ RN/ � P !M ˝ R.N ˝S P / which maps .x ˝ y; z/ to x ˝ .y ˝ z/. This
map is balanced and so gives a map .M ˝ RN/˝S P !M ˝ R.N ˝S P / which
maps .x˝y/˝z to x˝.y˝z/. Similarly a mapM˝R.N˝SP /! .M˝RN/˝SP
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can be constructed which maps x˝ .y˝ z/ to .x˝ y/˝ z. Clearly the two maps are
inverses of one another.

Definition 1.3.12. The intersection of all maximal left ideals of a ring R is called the
Jacobson radical of R and is denoted rad.R/. An R-module M is said to be simple if
it is isomorphic to R=m for some maximal left ideal m of R, or equivalently, has no
submodules different from 0 and itself. Thus it is easy to see that rad.R/ D ¹r 2 R W
rM D 0 for every simple left R-module M º. So rad.R/ is a two-sided ideal of R.
Moreover, rad.R/ consists precisely of elements r 2 R such that 1 � sr is invertible
for all s 2 R. For if r 2 rad.R/, then r 2 m for each maximal left ideal m of R and
so sr 2 m for all s 2 R. But then 1 � sr … m for each maximal left ideal m and
every s 2 R. Hence 1 � sr is invertible for if not then the left-ideal R.1� sr/ would
be contained in some maximal left ideal of R. Conversely, if r … rad.R/, then r … m

for some maximal left ideal m. But then Rr Cm D R and so there is an s 2 R such
that 1 � sr 2 m. That is, 1 � sr is not invertible.

In particular, if r 2 rad.R/, then 1 � r is invertible.

Proposition 1.3.13 (Nakayama Lemma). Let M be an R-module and I be a sub-
group of the additive group of R such that either

(a) I is nilpotent (that is, In D 0 for some n � 1), or

(b) I � rad.R/ and M is finitely generated. Then IM DM implies M D 0.

Proof. (a) is trivial for M D IM D I 2M D � � � D 0.
(b) Suppose M ¤ 0. Then let ¹x1; : : : ; xnº be a minimal set of generators of M .

So x1 DPn
iD1 rixi for some ri 2 I since M D IM . But 1 � r1 is invertible. Thus

x1 2 Rx2 CRx3 C � � � CRxn which contradicts the minimality of ¹x1; : : : ; xnº.

Corollary 1.3.14. Let M be an R-module, N a submodule of M , and I a subgroup
of the additive group of R such that either

(a) I is nilpotent, or

(b) I � rad.R/ andM is finitely generated. Then IM CN DM impliesM D N .

Proof. We note that I.M=N/ D .IM C N/=N and so we apply Nakayama Lemma
to M=N .

Proposition 1.3.15. If M is a nonzero finitely generated R-module and I � rad.R/
is a right ideal, then .R=I /˝ RM ¤ 0.

Proof. This easily follows from Nakayama Lemma and Corollary 1.3.11.
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Exercises

1. If I � R is a two sided ideal of the ring R and if M is a right R=I -module, then
M is a right R-module with x � r D x � .r C I / for x 2M , r 2 R. Similarly any
left R=I -module N is a left R-module. In this situation argue that

M ˝ RN ŠM ˝R=I N:

2. Let M be a right R-module and let x 2M . For every left R-module N consider
the homomorphism ' W N ! M ˝ RN of Abelian groups with '.y/ D x ˝ y.
Argue that ' is an isomorphism for all N if and only if M is isomorphic to the
right R-module R under an isomorphism that maps x to 1.

3. (a) Let I � R be a left ideal. Consider the properties: (i) for every module M
and submodule S � M , IM C S D M implies S D M and (ii) for any
module M , IM D 0 implies M D 0. Argue that (i) and (ii) are equivalent.

(b) Let the left ideal I � R have properties (i) and (ii) above. Let F D R˚R˚
� � � and let S � F be the submodule generated by x1 D .1;�r1; 0; 0; : : : /,
x2 D .0; 1;�r2; 0; : : : /, x3 D .0; 0; 1;�r3; 0; : : : /; : : : . Show that I.F=S/ D
F=S and hence deduce that F=S D 0, that is, S D F . So .1; 0; 0; 0; : : : / 2 S
and thus .1; 0; 0; : : : / can be written as a sum s1x1 C � � � C snxn for some
n � 1 and s1; s2; : : : ; sn 2 R. Now solve for s1; s2; : : : ; sn and deduce that
r1r2 � � � rn D 0.

1.4 Categories and Functors

Definition 1.4.1. A category C consists of the following:

(1) a class of objects, denoted Ob.C/,

(2) for any pair A;B 2 Ob.C/, a set denoted HomC.A;B/ with the property that
HomC.A;B/\HomC.A

0; B 0/ D ; whenever .A;B/ ¤ .A0; B 0/. HomC.A;B/

is called the set of morphisms from A to B .
If f 2 HomC.A;B/ we write f W A! B and say f is a morphism of C from
A to B .

(3) a composition HomC.B; C / � HomC.A;B/ ! HomC.A; C / for all objects
A;B;C , denoted .g; f / 7! gf (or g ı f /, satisfying the following properties

(i) for each A 2 Ob.C/, there is an identity morphism idA 2 HomC.A;A/

such that f ı idA D idB ı f D f for all f 2 Hom.A;B/.

(ii) h.gf / D .hg/f for all f 2 HomC.A;B/; g 2 HomC.B; C / and h 2
HomC.C;D/.
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Examples include categories Sets, Ab, Top, and RMod whose objects are respec-
tively, sets, Abelian groups, topological spaces, and left R-modules, and morphisms
are functions, group homomorphisms, continuous maps, and R-homomorphisms, re-
spectively, with the usual compositions.

Now let Mor.C/ denote the set of all morphisms of C. Then

Mor.C/ D
[

A;B2Ob.C/

Hom.A;B/

If f W A ! B is a morphism in C, then f is said to be an isomorphism if there is a
morphism g W B ! A in C such that fg D idB and gf D idA. Clearly, g is unique
if it exists and is denoted by f �1. f is said to be a monomorphism (epimorphism) if
for every morphisms g, h W C ! A, .g; h W B ! C/ in C, fg D f h .gf D hf /

implies g D h.

Definition 1.4.2. If C and C0 are categories, then C0 is said to be a subcategory of C
if

(1) Ob.C0/ � Ob.C/, Mor.C0/ � Mor.C/ and HomC0.A0; B 0/ D HomC.A
0; B 0/ \

Mor.C0/
(2) For any A0 2 Ob.C0/, the identity morphisms on A0 in C and C0 are the same,

and if f 0 2 HomC0.A0; B 0/, g0 2 HomC0.B 0; C 0/, then the map g0 ı f 0 is the
same in C0 as in C.

Definition 1.4.3. A subcategory C0 of C is said to be a full subcategory if
HomC0.A;B/ D HomC.A;B/ for all A, B 2 Ob.C0/.

We note that for any category C and any subclass S of Ob.C/, there is a unique full
subcategory C0 of C with Ob.C0/ D S . Ab and the category of compact spaces are
full subcategories of the category of groups Grp and Top, respectively.

Definition 1.4.4. If C and D are categories, then we say that we have a functor F W
C! D if we have

(1) a function Ob.C/! Ob.D/ (denoted F )

(2) functions HomC.A;B/! HomD.F.A/; F.B// (also denoted F ) such that

(i) if f 2 HomC.A;B/, g 2 HomC.B; C /, then F.gf / D F.g/F.f /, and

ii) F.idA/ D idF.A/ for each A 2 Ob.C/.

A functor is sometimes called a covariant functor.

A function Ob.C/! Ob.D/ is said to be functorial if it agrees with a functor from
C to D (usually in some obvious way).
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Example 1.4.5.

1. We have the identify functor idC W C! C.

2. Define F W Grp ! Ab by F.G/ D G=G0 where G0 is the commutator sub-
group of G. Then it is easy to see that F is a covariant functor.

3. Let Top� denote the category of topological spaces with a base point. Define
F W Top� ! Grp by F.X/ D �1.X/, the fundamental group. Then continuous
maps get mapped to group homomorphisms and F satisfies the conditions of a
functor.

4. LetM be a leftR-module. DefineF W RMod! Ab byF.N/ D HomR.M;N /
and for f 2 Hom.N 0; N /, define F.f / W Hom.M;N 0/ ! Hom.M;N / by
F.f /.h/ D f h. Then F is a covariant functor. This functor is denoted by
HomR.M;�/.

5. Similarly, ifM is a rightR-module, we can define a function F W RMod! Ab
by F.N/ DM ˝ RN and for f 2 Hom.N 0; N /, define F.f / WM ˝ RN

0 !
M ˝ RN by F.f /.x˝ y0/ D x˝ f .y0/. Then F is again a covariant functor.
This functor is denoted by M ˝ R�.

Definition 1.4.6. We say that we have a contravariant functor F W C! D if we have

(1) a function Ob.C/! Ob.D/ (denoted F )

(2) functions HomC.A;B/! HomD.F.B/; F.A// (also denoted F ) such that

(i) if f 2 HomC.A;B/, g 2 HomC.B; C /, then F.gf / D F.f /F.g/, and

ii) F.idA/ D idF.A/ for each A 2 Ob.C/.

Example 1.4.7.

1. Let M be an R-module. Define F W RMod! Ab by F.N/ D HomR.N;M/

and for f 2 Hom.N 0; N /, define F.f / W Hom.N;M/ ! Hom.N 0;M/

by F.f /.h/ D hf . Then F is a contravariant functor and is denoted by
Hom.�;M/.

2. Define a function F W Top! Ab by F.X/ D Hn.X;G/, the nth cohomology
group of the topological spaceX with coefficients inG. Then F is a contravari-
ant functor.

3. Let C be the category of finite dimensional Galois extensions of k. Then define
a function F W C ! Grp by F.K/ D G .K=k/, the Galois group of K over k.
Then F is a contravariant functor.

Definition 1.4.8. If C and D are categories, the product C�D of C and D is the cate-
gory whose class of objects is Ob.C/�Ob.D/ and where HomC�D..A;D/, .B;E// D
HomC.A;B/ �HomD.D;E/ with .g; k/ ı .f; h/ D .g ı f; k ı h/ where f W A! B

and g W B ! C are in C and h W D ! E and k W E ! F are in D.
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Definition 1.4.9. If C is any category, we define C0 (the category opposite C) to be
the category such that Ob.C0/ D Ob.C/, and HomC0.B;A/ D HomC.A;B/ where
for g W C ! B , f W B ! A in C0, f ı g is defined to be the morphism g ı f of
C. So then a contravariant functor T W C ! D is simply a functor T W C0 ! D or a
functor T W C! D0.

Definition 1.4.10. A functor of the form F W C � D ! E is called a functor of two
variables. A functor F W C0�D! E is said to be a functor C�D! E which is con-
travariant in the first and covariant in the second variable. For example, Hom.�;�/ W
RMod� RMod! Ab is a functor of two variables which is contravariant in the first
and covariant in the second variable. The functor �˝ R� W ModR � RMod! Ab
is covariant in both variables where ModR denotes the category of right R-modules.

Definition 1.4.11. If F , G W C ! D are functors, then by a natural transformation
from F to G we mean a function � W Ob.C/! Mor.D/ with �.A/ W F.A/! G.A/

such that for any f 2 Mor.C/ there is a commutative diagram

F.A/
�.A/

��

F.f /

��

G.A/

G.f /

��
F.B/

�.B/

�� G.B/

that is, �.B/F.f / D G.f /�.A/.
We denote the natural transformation � by � W F ! G.
Suppose F;G;H W C ! D are functors and � W F ! G, � W G ! H are natural

transformations. Then we can form the composition diagrams to get the following
commutative diagram

F.A/
�.A/

��

F.f /

��

G.A/

G.f /

��

�.A/
�� H.A/

H.f /

��
F.B/

�.B/
�� G.B/

�.B/
�� H.B/

for any morphism f W A! B in C.
We can also form a category of functors from C to D, denoted DC, where objects

are functors and morphisms are natural transformations � W F ! G. Two functors
F;G in this category are said to be isomorphic if there are natural transformations
� W F ! G, � W G ! F such that � ı � D idF (identity transformation) and
� ı � D idG . It is easy to show that F and G are isomorphic if and only if for each
A 2 Ob.C/, �.A/ is an isomorphism in D.
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Definition 1.4.12. A category C is said to be additive if HomC.A;B/ is an Abelian
group such that if f; f1; f2 2 HomC.A;B/, g; g1; g2 2 HomC.B; C / then

g.f1 C f2/ D gf1 C gf2 and .g1 C g2/f D g1f C g2f:
We note that if C is an additive category, then HomC.A;B/ ¤ ; since the zero

morphism is always in HomC.A;B/. This is denoted 0AB or simply 0. Easily, RMod
is an additive category.

Definition 1.4.13. If C;D are additive categories, then a functor F W C ! D is said
to be additive if for all f , g 2 HomC.A;B/, F.f C g/ D F.f /C F.g/.

We note that the composition of additive functors is also additive. Furthermore, if
F is additive, then F.0AB/ D 0F.A/F .B/ and F.�f / D �F.f /. For example, let
M be an .R; S/-bimodule. Then HomR.M;�/ W RMod ! SMod is an additive
covariant functor while HomR.�;M/ W RMod!ModS is an additive contravariant
functor. Similarly �˝ RM and M ˝S � are additive covariant functors.

Definition 1.4.14. By a product of a family .Ai /i2I where Ai 2 Ob.C/ we mean an
object A of C together with morphisms �i W A ! Ai such that for each B 2 Ob.C/
and morphisms fi W B ! Ai there is a unique morphism f W B ! A such that
�i ıf D fi for all i 2 I . A is unique up to isomorphism and is denoted by

Q

i2I Ai .
Dually, a coproduct of a family .Ai /i2I of objects in C is an object A in C together

with morphisms ei W Ai ! A such that for each B 2 Ob.C/ and morphisms fi W
Ai ! B , there exists a unique morphism f W A ! B such that f ı ei D fi for all
i 2 I . Again a coproduct is unique up to isomorphism and is denoted by

`

Ai . If
the category C is additive, then the coproduct is called a direct sum and is denoted
L

I Ai .

Definition 1.4.15. Let f W A! B be a morphism in C. Then a kernel of f , denoted
ker f , is a morphism k W K ! A such that f k D 0 and for each morphism g W C !
A with fg D 0, there exists a unique morphism h W C ! K such that g D kh. K is
denoted by Ker f . It is easy to see that ker f is a unique monomorphism and that a
morphism f is a monomorphism if and only if Kerf D 0.

Dually, a cokernel of f , denoted coker f , is a morphism p W B ! C such that
pf D 0 and for each morphism g W B ! D with gf D 0, there exists a unique
morphism h W C ! D such that hp D g. C is denoted Coker f . coker f is a unique
epimorphism and a morphism f is an epimorphism if and only if Coker f D 0.

Suppose that in an additive category C all morphisms have kernels and cokernels.

Then a morphism f W A ! B gives rise to Ker f
kerf�! A

f! B
cokerf�! Coker f .

Then since f ı ker f D 0 we get a decomposition A ! Coker .ker f / ! B

of f . Since coker f ı f D 0 and A ! Coker.ker f / is an epimorphism we get
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that Coker.ker f / ! B ! Coker f is 0. So then Coker.ker f / ! B factors
as Coker.ker f / ! Ker.coker f / ! B giving us a morphism Coker.ker f / !
Ker.coker f /.

Definition 1.4.16. An additive category C is said to be an Abelian category if it sat-
isfies the following conditions

(1) C has products (and coproducts),

(2) every morphism in C has a kernel and a cokernel, and

(3) for every morphism f W A ! B , the map Coker.ker f / ! Ker.coker f / as
above is an isomorphism.

Examples of Abelian categories include RMod and ModR.

Definition 1.4.17. If C and D are Abelian categories, then a functor F W C ! D is
said to be left exact if for every short exact sequence 0 ! A ! B ! C ! 0 in
C the sequence 0 ! F.A/ ! F.B/ ! F.C / is exact in D. F is said to be right
exact if F.A/ ! F.B/ ! F.C / ! 0 is exact. If F is contravariant, then it is left
exact if 0! F.C /! F.B/! F.A/ is exact and right exact if F.C /! F.B/!
F.A/! 0 is exact. F is said to be an exact functor if it is both left and right exact.

It follows from Proposition 1.2.15 that functors Hom.M;�/ and Hom.�; N / are
left exact and from Proposition 1.3.10 that tensor product functors are right exact. As
an application, we have the following result.

Theorem 1.4.18. LetR be a commutative ring and T W RMod! Ab be a contravari-
ant left exact functor which converts sums to products. Then for some R-module D,
T .M/ Š HomR.M;D/, that is, T is isomorphic to HomR.�;D/.

Proof. Let D D T .R/. Then D can be viewed as an R-module. For if M is an R-
module, then for each x 2M , the map fx W R!M defined by fx.r/ D rx is an R-
homomorphism. But T is contravariant. So we have an R-homomorphism T .fx/ 2
Hom.T .M/; T .R//. But then we have a well-defined map � W R � T .R/ ! T .R/

given by �.r; x/ D T .fr/.x/. � gives T .R/ an R-module structure where we denote
�.r; x/ by rx noting that T .fr /T .fs/ D T .frs/ for all r , s 2 R since frs D fsfr
and T is contravariant and so .rs/x D �.rs; x/ D T .frs/.x/ D T .fr /T .fs/.x/ D
r.sx/.

We now define a map g
M
W T .M/! Hom.M; T .R// by g

M
.x/.a/ D T .fa/.x/.

Then g
M

is a natural transformation and g
R

is an isomorphism on T .R/. But T and
Hom.�; T .R// convert sums to products. So g

M
is an isomorphism for a free R-

module M . Now let M be an R-module and consider the presentation F1 ! F0 !
M ! 0 of M where F0; F1 are free. Since T and Hom.�;D/ are both left exact we
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have the following commutative diagram

0 �� T .M/

g
M

��

�� T .F0/

g
F0

��

�� T .F1/

g
F1

��
0 �� Hom.M;D/ �� Hom.F0;D/ �� Hom.F1;D/

with exact rows. But the last two vertical maps are isomorphisms by the above. So
g

M
is also an isomorphism and we are done.

Definition 1.4.19. Let C be an Abelian category. Then a pushout of the diagram

A
f

��

g

��

B

C

in C is an object D together with morphisms h W B ! D and k W C ! D such that
kg D hf and if

A
f

��

g

��

B

g 0

��
C

f 0

�� D0

is any commutative diagram in C, then there is a unique morphismD ! D0 such that
the diagram

A

g

��

f
�� B

h
��

g 0

���
��
��
��
��
��
��
��

C

f 0

����
���

���
���

���
�
k �� D

		�
��

��
��

D0

is commutative.
The diagram

A
f

��

g

��

B

h
��

C
k �� D

in the above is called a pushout diagram.
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Dually, a pullback diagram is a commutative diagram

P

k
��

h �� A

f
��

B
g

�� C

such that if

P 0

k0

��

h0

�� A

f
��

B
g

�� C

is any commutative diagram in C, then there is a unique morphism � W P 0 ! P such
that h� D h0 and k� D k0.

In this case P with morphisms h, k is called a pullback of morphisms f W A! C

and g W B ! C .
It is now easy to see that pullbacks and pushouts are unique up to isomorphism.

Example 1.4.20.

1. In the above, if we set D D .C ˚B/=K where K D ¹.g.a/;�f .a// W a 2 Aº,
and let h.b/ D .0; b/CK, k.c/ D .c; 0/CK, then D with morphisms h, k is
a pushout.

2. If we set P D ¹.b; a/ 2 B ˚ A W g.b/ D f .a/º and let h and k be projection
morphisms, then P with morphisms h, k is a pullback.

Exercises

1. (a) Let C and D be categories. Argue that there is a category whose objects are the
functors F W C ! D and whose morphisms are the natural transformations
� W F ! G (where F;G W C! D are functors).

(b) If the category D has products, argue that the category described in a) does
too.

2. (a) Let C be the category of commutative rings. Argue that C admits finite sums
(for commutative rings R and S argue that R ˝Z S can be made into a com-
mutative ring. Then consider the functions r 7! r ˝ 1 and s 7! 1˝ s from R

and S to R˝Z S ).
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(b) If R and S are subrings of Q, argue that R ˝Z S is isomorphic to a subring
of Q.

(c) Find a sequence of commutative rings R0; R1; R2; : : : no two of which are
isomorphic such that Q is a sum of R0; R1; R2; : : : in C.

3. Let C be a category and consider the category of functors C ! Sets. Argue
that any natural transformation HomC.X;�/! HomC.Y;�/ is given by a mor-
phism Y ! X of C. Deduce that HomC.X;�/ and HomC.Y;�/ are isomorphic
functors if and only if X and Y are isomorphic objects of C.

4. (a) For a ringR and anyR-modulesM andN , define a relation on HomR.M;N /
so that f and g are related if and only if f � g W M ! N can be factored
through a free R-module F , that is, f � g can be written as a composition
M ! F ! N . Check that this is an equivalence relation on HomR.M;N /.
For f 2 HomR.M;N /, let Œf 	 be the equivalence class of f . For f W M !
N and g W N ! P , check that the definition of Œg	 ı Œf 	 as Œg ı f 	 is well-
defined.

(b) Argue that there is an additive category C whose objects are the R-modules
M and whose morphisms are the Œf 	 WM ! N where f 2 HomR.M;N /.

(c) Argue that in C of (b), M and M ˚ F are isomorphic objects when F is a
free R-module.

5. Verify Example 1.4.20.

6. Prove that in the pullback and pushout diagrams in Example 1.4.20, if f is one-
to-one (onto), then so is k.

7. Let C be an Abelian category. Argue that

P

k
��

0 �� 0

0
��

B
g

�� C

is a pullback diagram if and only if P D Kerg. Now state and prove a dual result
and conclude that cokernels are pushouts.

1.5 Complexes of Modules and Homology

Definition 1.5.1. By a (chain) complex C of R-modules we mean a sequence

C W � � � ! C2
@2! C1

@1! C0
@0! C�1

@�1! C�2 ! � � �
of R-modules and R-homomorphisms such that @n�1 ı @n D 0 for all n 2 Z. C is
denoted by ..Cn/; .@n//. If F is a covariant additive functor into some category of
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modules, then F.C/ W � � � ! F.C2/
F.@2/! F.C1/

F.@1/! F.C0/
F.@0/! F.C�1/! � � �

is also a complex. Similarly if F is a contravariant additive functor, then the sequence

F.C/ W � � � ! F.C�1/
F.@0/! F.C0/

F.@1/! F.C1/! � � � is also a chain complex.
Let C0 D ..C 0n/; .@0n// be another complex of R-modules. Then by a map (or chain

map) f W C! C0 we mean a sequence of maps fn W Cn ! C 0n such that the diagram

Cn
@n ��

fn

��

Cn�1

fn�1

��
C 0n

@0
n �� C 0n�1

is commutative for each n 2 Z. f is denoted by .fn/.
We note that if g D .gn/ W C ! C0 is another map, then .fn C gn/ W C ! C0

is a map. If h W C0 ! C00 is another map of complexes, then we can define a map
hf W C ! C00 by hf D .hnfn/. So we obviously get a category, the category of
complexes of R-modules which is denoted by Comp. It is not hard to see that Comp
is an Abelian category.

Definition 1.5.2. If C D ..Cn/; .@n// is a complex, then Im @nC1 � Ker @n. The nth
homology module of C is defined to be Ker @n= Im @nC1 and is denoted byHn.C/. So
Hn.C/ D 0 if and only if C is exact at Cn. Ker @n, Im @nC1 are usually denoted by
Zn.C/, Bn.C/ and their elements are called n-cycles, n-boundaries respectively.

Definition 1.5.3. A chain complex of the form C W � � � ! C�2 ! C�1 @
�1

! C 0
@0

!
C 1

@1

! C 2 ! � � � is called a cochain complex. In this case, @n ı @n�1 D 0 for all n 2
Z. Ker @n, Im @n�1 are denoted by Zn.C/ and Bn.C/ respectively and their elements
are called n-cocycles, n-coboundaries, respectively. Ker @n= Im @.n�1/ is called the
nth cohomology module and is denoted by Hn.C/. We note that a cochain complex
is simply a chain complex with C i replaced by C�i and @i by @�i . Consequently, we
will only consider chain complexes in this section.

Now suppose f W C! C0 is a chain map. Then we have a commutative diagram

CnC1
@nC1

��

fnC1

��

Cn

fn

��

@n �� Cn�1

fn�1

��
C 0nC1

@0
nC1

�� C 0n
@0

n �� C 0n�1

If x 2 Ker @n, then @0n.fn.x// D fn�1.@n.x// D 0 and so fn.x/ 2 Ker @0n. Hence we
get an induced map Ker @n ! Ker @0n. Furthermore, suppose x 2 Im @nC1. Then x D
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@nC1.y/, y 2 CnC1. So @0nC1.fnC1.y// D fn.@nC1.y// D fn.x/. That is, fn.x/ 2
Im @0nC1. So we consider the composition Ker @n ! Ker @0n ! Ker @0n= Im @0nC1 D
Hn.C0/. This composition maps Im @nC1 onto zero by the above. So we get an
induced map

Hn.C/ D Ker @n= Im @nC1 ! Ker @0n= Im @0nC1 D Hn.C0/

given by x C Im @nC1 7! fn.x/C Im @0nC1. This map is denoted by Hn.f/.
We note that if g W C0 ! C00 is another chain map, then Hn.g/ W Hn.C0/ !

Hn.C00/ maps x0 C Im @0nC1 onto gn.x0/C Im @00nC1. Hence Hn.g/Hn.f/ D Hn.gf/.
Also easily Hn.idC/ D idHn.C/ and if f1; f2 W C! C0 are chain maps, then Hn.f1 C
f2/ D Hn.f1/CHn.f2/. Thus we have the following result.

Theorem 1.5.4. Hn W Comp ! RMod defined by Hn.C/ D Ker @n=Im @nC1 is an
additive covariant functor for each n 2 Z.

Definition 1.5.5. A complex C0 D ..C 0n/; .@0n// is said to be a subcomplex of a com-
plex C D ..Cn/; .@n// if C 0n � Cn and @n agrees with @0n on C 0n (so necessarily
@n.C

0
n/ � C 0n�1/. In this case, we can form a complex ..Cn=C 0n/; .N@n// where

N@n W Cn=C 0n ! Cn�1=C 0n�1 is the induced map given by N@n.xCC 0n/ D @n.x/CC 0n�1.
This complex is called the quotient complex and is denoted by C=C0.

Definition 1.5.6. If f W C0 ! C, g W C ! C00 are chain maps, then we say that

C0 f! C
g! C00 is an exact sequence if C 0n

fn! Cn
gn! C 00n is exact for each n 2 Z.

Now let C D � � � ! CnC1
@nC1! Cn

@n! Cn�1 ! � � � be a chain complex. Then

Z.C/ D � � � ! Ker @nC1
0! Ker @n

0! Ker @n�1 ! � � � is a subcomplex of C.

Similarly, we have a complex B.C/ D � � � ! Im @nC1
0! Im @n

0! Im @n�1 ! � � � .
So if 0! C0 ! C! C00 ! 0 is an exact sequence of complexes, then we have a

commutative diagram

0 �� C 0nC1
@nC1

0

��

�� CnC1

@nC1

��

�� C 00nC1 ��

@nC1
00

��

0

0 �� C 0n �� Cn �� C 00n �� 0

with exact rows which by the Snake Lemma (Proposition 1.2.16) gives an exact se-
quence 0! ZnC1.C0/! ZnC1.C/! ZnC1.C00/! C 0n=B 0n.C/! Cn=Bn.C/!
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C 00n =Bn.C00/! 0 for each n 2 Z. So we have a commutative diagram

0 �� C 0nC1 ��

��

CnC1 ��

��

C 00nC1

��

�� 0

0 �� Zn.C0/ �� Zn.C/ �� Zn.C00/

with exact rows and an induced commutative diagram

C 0nC1=BnC1.C0/ ��

@0
nC1

��

CnC1=BnC1.C/

@nC1

��

�� C 00nC1=BnC1.C00/

@00
nC1

��

�� 0

0 �� Zn.C0/ �� Zn.C/ �� Zn.C00/

with exact rows. We now apply the Snake Lemma again to get an exact sequence

� � � ! ZnC1.C0/=BnC1.C0/! ZnC1.C/=BnC1.C/! ZnC1.C00/=BnC1.C00/
! Zn.C0/=Bn.C0/! Zn.C/=Bn.C/! Zn.C00/=Bn.C00/! � � � :

So we have proved the following result.

Theorem 1.5.7. If 0! C0 ! C! C00 ! 0 is an exact sequence of complexes, then
there is an exact sequence

� � � ! HnC1.C0/! HnC1.C/! HnC1.C00/! Hn.C0/! Hn.C/! � � �
for each n 2 Z.

Definition 1.5.8. The homomorphismHnC1.C00/! Hn.C0/ is called the connecting
homomorphism associated with the exact sequence 0! C0 ! C! C00 ! 0 and the
sequence � � � ! HnC1.C0/ ! HnC1.C/ ! HnC1.C00/ ! Hn.C0/ ! Hn.C/ !
Hn.C00/! � � � is called the long exact sequence. Clearly, a map of the exact sequence
0! C0 ! C! C00 ! 0 into an exact sequence 0! NC0 ! NC! NC00 ! 0 gives rise
to a map of the long exact sequence associated with the first into that associated with
the second.

Definition 1.5.9. Let C D ..Cn/; .@n// and C0 D ..Cn/; .@
0
n// be chain complexes

of R-modules and f D .fn/, g D .gn/ be maps from C to C0. Then f is said to be
homotopic to g, denoted f 	 g, if there are maps sn W Cn ! C 0nC1 such that for every
n 2 Z,

fn � gn D @0nC1sn C sn�1@n:
s D .sn/n2Z is called a chain homotopy between f and g.
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We note that f 	 f (let sn D 0) and if f 	 g then g 	 f (use �sn’s). Now suppose
f 	 g and g 	 h with homotopies s D .sn/ and t D .tn/ respectively. Then f 	 h
by adding fn � gn D @0nC1sn C sn�1@n to gn � hn D @0nC1tn C tn�1@n and using
sn C tn. Thus 	 is an equivalence relation and we let Œf	 denote the equivalence class
of f. Œf	 is called a homotopy class of f.

Proposition 1.5.10. Let C;C0;C00 be complexes and f, g W C! C0 and h W C0 ! C00
be chain maps. If f 	 g, then hf 	 hg.

Proof. Let s be a chain homotopy between f and g. Then with obvious notation,
fn � gn D @0nC1sn C sn�1@n and so

hnfn � hngn D hn.fn � gn/
D hn@0nC1sn C hnsn�1@n
D @00nC1hnC1sn C hnsn�1@n:

Thus tn W Cn ! C 00nC1 given by tn D hnC1sn gives a chain homotopy between hf and
hg.

Similarly, we have the following result.

Proposition 1.5.11. Let C;C0;C00 be complexes and f W C! C0 and h; k W C0 ! C00
be maps. If h 	 k, then hf 	 kf.

Corollary 1.5.12. If f 	 g and h 	 k, then fh 	 gk.

Hence if f W C ! C0 and g W C0 ! C00 are maps of complexes, then we can
define Œg	Œf	 D Œgf	. By the above, this is well-defined. So we get the category of
chain complexes of R-modules with objects the chain complexes as usual but such
that morphisms are homotopy classes Œf	 where f is a map of complexes.

Proposition 1.5.13. If f; g W C! C0 are homotopic, thenHn.f/ D Hn.g/ for each n.

Proof. Let s D .sn/ be the homotopy connecting f and g so that fn�gn D @0nC1snC
sn�1@n and let x 2 Ker @n. Then fn.x/ � gn.x/ D @0nC1.sn.x//C sn�1.@n.x// D
@0nC1.sn.x// 2 Im @0nC1. That is, fn.x/ C Im @0nC1 D gn.x/ C Im @0nC1. Hence
Hn.f/ D Hn.g/.

A basic tool will be the following elementary result about complexes (essentially
involving the mapping cone of a morphism of complexes, that is, the complex ob-
tained in the following proposition).
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Proposition 1.5.14. Let

� � � �� D2

�2

��

d2 �� D1

�1

��

d1 �� D0

�0

��

d0 �� D�1
��1

��

�� D�2
��2

��

�� � � �

� � � �� C2
d2 �� C1

d1 �� C0
d0 �� C�1 �� C�2 �� � � �

be a commutative diagram where the rows are complexes. Form the complex � � � !
C2˚D1 ! C1˚D0 ! C0˚D�1 ! � � � where the map CnC1˚Dn ! Cn˚Dn�1
is the map .x; y/ 7! .dx C .�1/n
n.y/; dy/ (it is immediate that this is a complex).
Then this complex is exact at Cn ˚Dn�1 if the complex � � � ! C1 ! C0 ! C�1 !
� � � is exact at Cn and � � � ! D1 ! D0 ! D�1 ! � � � is exact at Dn�1.

Proof. By diagram chasing.

Remark 1.5.15. We see that the construction of the single complex from the diagram
above is compatible with the application of any covariant additive functor. We will
also apply this result to diagrams involving complexes of finite length where we sub-
stitute 0 for all missing terms. This result implies that if both rows of the diagram are
exact then so is the associated single complex.

We will also use the fact that if C is an exact complex and S � C is a subcom-
plex, then the quotient complex C=S is exact if and only if S is exact. This follows
from applying Theorem 1.5.7 to the exact sequence 0 ! S ! C ! C=S ! 0 of
complexes.

Proposition 1.5.16. Given a commutative diagram

:::
:::

:::

C 0;1





�� C 1;1





�� C 2;1





�� � � �

C 0;0





�� C 1;0





�� C 2;0





�� � � �
of R-modules, suppose that each row and each column is exact. For each n � 0, let
Dn D Ker.C 0;n ! C 1;n/ and let En D Ker.C n;0 ! C n;1/. Then noting that for
each n we get induced maps Dn ! DnC1 and En ! EnC1 such that

D D � � � ! 0! 0! D0 ! D1 ! D2 ! � � �
and

E D � � � ! 0! 0! E0 ! E1 ! E2 ! � � �
are complexes, we have that Hn.D/ Š Hn.E/ for all n.
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Proof. This is an exercise in diagram chasing. One starts by using the diagram to
define a (well-defined) homomorphismHn.D/! Hn.E/. Then it is simple to check
that the corresponding homomorphism Hn.E/! Hn.D/ is its inverse.

We note that in this statement we used upper indices in order to avoid using negative
indices.

Exercises

1. Show that a chain homotopy is an equivalence relation.

2. (a) Let M be an R-module and NM denote the complex

� � � ! 0! 0!M
id!M ! 0! 0! � � �

with M in the 0-th place. For any complex C D ..Cn/; .@n// of R-modules
argue that the set of chain maps NM ! C is in bijective correspondence with
the set HomR.M;C0/.

(b) Argue that every chain map NM! C is homotopic to the zero chain map.

3. Let C be a complex of R-modules and F be an exact additive functor of R-mod-
ules. Prove that Hn.F.C// Š F.Hn.C// for each n 2 Z.

4. Argue that Comp admits sums and products.

5. (a) Let C be a complex of R-modules and let x 2 Z0.C/. Show that we can
define a complex

C0 D � � � ! C2 ! C1 ˚R! C0 ! C�1 ! � � �

in such a way that C is a subcomplex of C0 and so that x 2 B0.C0/.
(b) Generalize (a) and argue that for any C, C is a subcomplex of a complex C0

such that Zn.C/ � Bn.C0/ for all n.

(c) Use (b) to argue that every complex C is a subcomplex of an exact complex.

6. Prove Proposition 1.5.14.

7. Complete the proof of Proposition 1.5.16.

1.6 Direct and Inverse Limits

Definition 1.6.1. Let I be a directed set, that is, I is a partially ordered set such that
for any i , j 2 I there is a k 2 I with i , j � k. Let ¹Miºi2I be a family of R-mod-
ules and suppose for each pairs i , j 2 I with i � j there is an R-homomorphism
fj i WMi !Mj such that
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(1) fi i D idMi
for each i 2 I

(2) if i � j � k, then fkj ı fj i D fki .
Then we say that the R-modules Mi together with the homomorphisms fj i form a
direct (or inductive) system which is denoted ..Mi /; .fj i //.

Definition 1.6.2. The direct (inductive) limit of a direct system ..Mi /; .fj i // of R-
modules is an R-module M with R-homomorphisms gi W Mi ! M for i 2 I with
gi D gj ı fj i whenever i � j and such that if .N; ¹hiº/ is another such family, then
there is a unique R-homomorphism f WM ! N such that f ı gi D hi for all i 2 I .
It is easy to check that the direct limit defined above is unique up to isomorphism.
The direct limit .M; ¹giº/ is denoted by lim�!Mi .

Theorem 1.6.3. The inductive limit of an inductive system of R-modules always ex-
ists.

Proof. Let ..Mi /; .fj i // be an inductive system of R-modules and U be the disjoint
union of the Mi . Define a relation on U by xi 	 xj if there exists k � i , j such that
fki .xi / D fkj .xj / where xi 2 Mi , xj 2 Mj . Then 	 is an equivalence relation.
Now let M be the set of equivalence classes under this relation and let Œx	 denote
the equivalence class of x. Define operations on M by rŒxi 	 D Œrxi 	 if r 2 R and
Œxi 	C Œxj 	 D Œyk C y0k	 where k � i , j and yk D fki .xi /, y0k D fkj .xj /. Then M
is an R-module. Now define maps gi WMi !M by gi .xi / D Œxi 	. Then it is easy to
see that .M; ¹giº/ is the direct limit.

Remark 1.6.4.

1. Let S be the submodule of
L

I Mi generated by ej ı fj i .xi / � ei .xi / where
xi 2 Mi and ei W Mi ! L

I Mi is the i th embedding. Then the map � W
lim�!Mi !L

I Mi=S defined by �.Œxi 	/ D ei .xi /C S is an isomorphism.

2. Let F D ..Mi /; .fj i // and F 0 D ..M 0
i /; .f

0
j i // be inductive systems over the

same set I . Then a map T W F ! F 0 is a family of R-homomorphisms
�i W Mi ! M 0

i such that f 0j i ı �i D �j ı fj i whenever i < j . So T induces
an R-homomorphism � W lim�!Mi ! lim�!M 0

i defined by �.Œxi 	/ D Œ�i .xi /	. � is
denoted lim�! �i .

3. If J � I is a subset such that for every i 2 I there is a j 2 J such that i � j ,
then we say J is a cofinal subset of I . If this is the case then we have an induced
inductive system over J . From the proof of Theorem 1.6.3 we easily see that
the inductive limit of the induced system over J is isomorphic to the limit of the
original system over I .
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Example 1.6.5.

1. LetM be an R-module. For any directed set I , setMi DM for each i 2 I and
fj i D idM for all i � j . Then ..M/; .idM // is an inductive system called the
constant inductive system. In this case, lim�!Mi DM .

2. Let I be a directed set and M be an R-module and ¹Miºi2I be a family of
submodules of M such that for each pair i , j 2 I , there is a k 2 I with Mi C
Mj 
 Mk . Set i � j if Mi 
 Mj and let fj i W Mi ! Mj be the inclusion.
Then ..Mi /; .fj i // is an inductive system and lim�!Mi D S

I Mi . If the Mi

are all the finitely generated submodules of M , the condition is satisfied and
S

Mi D M . Hence every R-module is the direct limit of its finitely generated
submodules.

Theorem 1.6.6. Let F 0 D ..M 0
i /; .f

0
j i //, F D ..Mi /; .fj i //, F 00 D ..M 00

i /; .f
00
j i //

be inductive systems over I and suppose there are maps F 0 ¹�i º! F
¹�i º! F 00 such that

M 0
i

�i! Mi
�i! M 00

i is exact for each i 2 I , that is, F 0 ¹�i º! F
¹�i º! F 00 is exact, then

lim�!M 0
i

lim�!�i

! lim�!Mi

lim�! �i

! lim�!M 00
i is exact.

Proof. Let Œx	 2 lim�!Mi where x 2 Mi is such that .lim�! �i /.Œx	/ D 0. So there is a
j � i such that f 00j i ı�i .x/ D 0. But f 00j i ı�i D �j ıfj i . Therefore there is an x0 2M 0

j

such that fj i .x/ D �j .x
0/. But x 	 fj i .x/. So Œx	 D Œ�j .x

0/	 D .lim�! �i /.Œx
0	/ and

thus Œx	 2 Im.lim�! �i /. It is now easy to see that lim�! �i ı lim�! �i D 0 and hence we are
done.

Theorem 1.6.7. Let N be a left R-module and F D ..Mi /; .fj i // be an inductive
system of right R-modules. Then

lim�!.Mi ˝ RN/ Š .lim�!Mi /˝ RN

Proof. We note that ..Mi ˝N/; .fj i ˝ idN // is an inductive system. So we have for
each i a homomorphism gi ˝ idN WMi ˝N ! lim�!Mi ˝N where .lim�!Mi ; ¹giº/ is
the inductive limit. This induces a homomorphism g W lim�!.Mi˝N/! .lim�!Mi /˝N
given by g.Œxi ˝ y	/ D gi .xi /˝ y D Œxi 	˝ y. We claim that g is an isomorphism.
For given y 2 N , we have a map hi;y W Mi ! lim�!.Mi ˝ N/ defined by hi;y.xi / D
Œxi ˝ y	. This induces a map hy W lim�!Mi ! lim�!.Mi ˝ N/ given by hy.Œxi 	/ D
Œxi ˝y	. But then hy is balanced on .lim�!Mi /�N . So we have a map h W .lim�!Mi /˝
N ! lim�!.Mi ˝ N/ given by h.Œxi 	 ˝ y/ D hy.Œxi 	/ D Œxi ˝ y	. One then easily
checks that h is the inverse of g.

Definition 1.6.8. Let I be a directed set and ¹Miºi2I a family of R-modules. Sup-
pose for each i , j 2 I with i � j , there is an R-homomorphism fij W Mj ! Mi

such that
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(1) fi i D idMi
for each i 2 I

(2) if i � j � k, then fij ı fjk D fik ,

then ..Mi /; .fij // is called an inverse system of the R-modules Mi indexed by I .

Definition 1.6.9. The inverse (or projective) limit of an inverse system ..Mi /; .fij //

is an R-module M with R-homomorphisms gi W M ! Mi for i 2 I with gi D
fij ı gj whenever i � j and such that if .N; ¹hiº/ is also such a family, then there is
a unique R-homomorphism f W N ! M such that hi D gi ı f for all i 2 I . The
inverse limit .M; ¹giº/ is denoted lim �Mi and is unique up to isomorphism.

Theorem 1.6.10. The projective limit of an inverse system always exists.

Proof. Let ..Mi /; .fij // be an inverse system. Then for each i 2 I , let �i WQMi !
Mi be the i th projection map. We set M D ¹.xi /I 2

Q

Mi W xi D fij .xj / whenever
i � j º and define gi W M ! Mi by gi D �i jM . Then .M; ¹giº/ is an inverse
limit.

Remark 1.6.11. Let F D ..Mi /; .fij // and F 00 D ..M 00
i /; .f

00
ij // be inverse systems

over I . Then a map T W F ! F 00 is a family of R-homomorphisms �i W Mi ! M 00
i

such that �i ı fij D f 00ij ı �j whenever i < j . Thus T induces an R-homomorphism
� W lim �Mi ! lim �M

00
i defined by �..xi /I / D .�i .xi //I where xi D fij .xj / and

�i .xi / D �i ı fij .xj / D f 00ij ı �j .xj / D f 00ij .�j .xj // whenever i � j . � is denoted by
lim � �i .
Example 1.6.12.

1. If ..M/; .idM // is the constant inverse system, then lim �Mi DM .

2. Let ¹Miºi2I be a family of submodules of an R-module M that is ordered by
reverse inclusion, that is, i � j impliesMi �Mj . Then ¹Miºi2I together with
the reverse inclusions form an inverse system and lim �Mi ŠT

I Mi .

Theorem 1.6.13. Let F 0 D ..M 0
i /; .f

0
ij //, F D ..Mi /; .fij //, F 00 D ..M 00

i /; .f
00
ij //,

be inverse systems over the same directed set and suppose there are maps F 0 ¹�i º!
F

¹�i º! F 00 such that 0 ! M 0
i

�i! Mi
�i! M 00

i is exact for each i , then the induced
sequence

0! lim �M
0
i

lim ��i

! lim �Mi

lim � �i

! lim �M
00
i

is exact. If furthermore the set of indices is N and if the maps f 0ij are surjective, then
when 0!M 0

i !Mi !M 00
i ! 0 are exact for each i , the induced sequence

0! lim �M
0
i ! lim �Mi ! lim �M

00
i ! 0

is exact.
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Proof. We use the description of the inverse limit given in Theorem 1.6.10. Then
since �i ı �i D 0 for each i we see that lim � �i ı lim � �i D 0. If .xi / 2 Ker.lim � �i /,
then �i .xi / D 0 for each i . By the exactness of 0 ! M 0

i

�i! Mi
�i! M 00

i there is a
x0i 2 M 0

i such that �i .x0i / D xi . If i � j then fij .xj / D xi and so fij .�j .x0j // D
�i .x

0
i /. But fij .�j .x0j // D �i .f 0ij .x0j //. Since �i is an injection, f 0ij .x0j / D xi . Thus

.x0i / 2 lim �M
0
i and then clearly lim � �i .x

0
i / D .xi /. So .xi / 2 Im.lim � �i /. Hence the

sequence is exact at lim �Mi . It is easy to see that lim � �i is one-to-one.
We now let the index set be N and consider the module M D Q

Mi and the map
 F WM !M defined by F ..xi // D .xi�fi;iC1.xiC1//. Then Ker F D lim �Mi .
We can similarly consider modules M 0 D Q

M 0
i and M 00 D Q

M 00
i and define maps

 F 0 and  F 00 respectively. So we have the following commutative diagram

0 �� M 0 ��

 F 0

��

M

 F

��

�� M 00

 F 00

��

�� 0

0 �� M 0 �� M �� M 00 �� 0

with exact rows. Then we have an exact sequence 0 ! Ker F 0 ! Ker F !
Ker F 00 ! Coker F 0 ! Coker F ! Coker F 00 ! 0 by Proposition 1.2.16.
But if f 0ij are surjective, then  F 0 is surjective and so Coker F 0 D 0. Thus we are
done.

We now state the following result.

Theorem 1.6.14. If N is an R-module, then

(1) Hom.N; lim �Mi / Š lim �Hom.N;Mi /

(2) Hom.lim�!Mi ; N / Š lim �Hom.Mi ; N /.

Proof. This is left to the reader.

Exercises

1. If A is an Abelian group, A is said to be torsion if every element of A has finite
order and torsion free if every element but 0 has infinite order. Given an inductive
system ..Ai /; .fj i // of Abelian groups, argue that lim�!Ai is torsion (torsion free)
if every Ai is torsion (torsion free).

2. Find an inductive system ..Ai /; .fj i // of Abelian groups with Ai Š Z for all i
and such that lim�!Ai Š Q.

3. (a) Let ..Mi /; .fj i // be an inductive system of R-modules and let X be a set.

Define an inductive system ..M
.X/
i /; .f

.X/
j i // and argue that

lim�!M
.X/
i Š .lim�!Mi /

.X/:
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(b) If we consider the inductive system ..MX
i /; .f

X
ij //, show that

lim�!MX
i 6Š .lim�!Mi /

X

can occur.
Hint: Let p be a prime and let Z.p1/ be the subgroup of Q=Z consisting of
all m

pn C Z, m 2 Z, n � 0. Consider the inductive system described by the
diagram

Z.p1/ p! Z.p1/ p! Z.p1/! � � � :
Argue that the inductive limit of this system is 0 but that the limit of the system
Z.p1/N ! Z.p1/N ! Z.p1/N ! � � � is not 0.

(c) Argue that the limit of the latter system in (b) is torsion free.

4. Prove part 1 of Remark 1.6.4.

5. Let ¹Ci W i 2 I º be a family of complexes. Prove that if I is a directed set, then
Hn.lim�!Ci / Š lim�!Hn.Ci / for all n 2 Z.

6. (a) Let p be a prime. Consider the inverse system

� � � ! Z=.p3/! Z=.p2/! Z=.p1/! Z=.p0/

with all maps canonical surjections. The inverse limit is denoted OZp . Argue
that OZp is uncountable.

(b) Consider the inverse system � � � ! Z
id! Z

id! Z. Use this system and the
system of (a) to argue that the conclusions of Theorem 1.6.13 can fail to be
true if we drop the hypothesis that the maps fij are surjective.

7. Prove Theorem 1.6.14.

1.7 I-adic Topology and Completions

Throughout this section, R will be a commutative ring.

Definition 1.7.1. Let I be an ideal of R and M be an R-module. Then M � IM �
I 2M � I 3M � � � � and so we have R-homomorphisms fij W M=I jM ! M=I iM

defined by fij .x C I jM/ D x C I iM whenever i � j . Thus ..M=I iM/; .fij // is
an inverse system over ZC and so has the projective limit lim �M=I

iM . We note that

lim �M=I
iM D ¹.x1 C IM; : : : / W xi C I iM D fi;iC1.xiC1 C I iC1M/º
D ¹.x1 C IM; x2 C I 2M; : : : / W xi � xiC1 mod I iM º

It is easy to see that ¹xCI iM ºi�0 is a basis for a topology onM . For clearly it covers
M and if z 2 .xC I iM/\ .yC I jM/, then zC I kM D .xC I iM/\ .yC I jM/
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where k D max.i; j /. The topology generated by ¹x C I iM º is called the I -adic
topology ofM . It is easy to see that in this topology, addition and scalar multiplication
are continuous, and if M D R, then multiplication is also continuous so that R is a
topological ring.

We note that if N is a submodule ofM , then the decreasing sequences .I iM \N/
and ..I iMCN/=N/ determine the subspace topology ofN and the quotient topology
of M=N induced by the I -adic topology of M , respectively.

Proposition 1.7.2. M is Hausdorff if and only if
T

I iM D 0
Proof. Suppose M is Hausdorff. Let x 2 T

I iM , x ¤ 0. Then there exist i , j such
that .xCI iM/\I jM D ;. But then x … I jM , a contradiction. Conversely, suppose
T

I iM D 0 and x ¤ y. Then there is a k such that x C I kM ¤ y C I kM for
otherwise x�y 2 I iM for each i and so x D y. So .xCI kM/\.yCI kM/ D ;.

Remark 1.7.3. If N is a submodule of M , then the closure of N in M with respect
to the I -adic topology ofM is defined by NN DT

.I iM CN/. SoM=N is Hausdorff
with respect to the quotient topology if and only if

T

.I iM C N/ D N and thus if
and only if N is closed in M with respect to the I -adic topology.

Definition 1.7.4. A sequence ¹xnº of elements of an R-module M is said to be a
Cauchy sequence in the I -adic topology if given any nonnegative integer k there
exists a nonnegative integer n0 such that xiC1 � xi 2 I kM whenever i � n0. ¹xnº
is said to be convergent if there is an x 2 M such that given any k there is an n0
such that xn � x 2 I kM whenever n � n0. x is called a limit of the sequence ¹xnº.
We note that the limit is unique if M is Hausdorff (that is, if

T

I iM D 0 by the
proposition above) and that every convergent sequence is a Cauchy sequence.

An R-module M is said to be complete in its I -adic topology if every Cauchy
sequence in M converges. Now let C be the set of all Cauchy sequences in M in the
I -adic topology. Define addition and scalar multiplication on C by ¹xnº C ¹ynº D
¹xnC ynº and r¹xnº D ¹rxnº where r 2 R. Then C is an R-module. Now let C0 be
the subset of C consisting of those Cauchy sequences that converge to zero. Then C0
is a submodule of C . The quotient R-module C=C0 is called the I -adic completion
of M and is denoted by OM . So we have the following result.

Proposition 1.7.5. Let ' WM ! OM be defined by '.x/ D ¹xº C C0. Then

(1) ' is an R-homomorphism and Ker' DT

I iM .

(2) '.x/ D ¹xnº C C0 if and only if x is a limit of ¹xnº.
(3) ' is a monomorphism if and only if M is Hausdorff.

(4) ' is an epimorphism if and only if M is complete.
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Proof. (1) ' is clearly a homomorphism. Now let '.x/ D 0. Then ¹xº is in C0 and
so x 2 T

I iM . On the other hand, if x 2 T

I iM , then x 2 I iM for each i and so
¹xº converges to zero. That is, ¹xº is in C0 and so '.x/ D C0. Thus we are done.

(2) We simply note that '.x/ D ¹xnºCC0 if and only if ¹xº � ¹xnº is in C0 if and
only if ¹x � xnº converges to zero and if and only if ¹xnº converges to x.

(3) follows from Proposition 1.7.2 and part (1) above.
(4) ' is an epimorphism if and only if for each ¹xnº in C , there is an x 2 M such

that '.x/ D ¹xnº C C0 if and only if each ¹xnº converges by part (2) above.

Remark 1.7.6. We see that if ' W M ! OM is an epimorphism, then M is com-
plete and M=

T

I iM Š OM . Furthermore, ' is an isomorphism if and only if M is
Hausdorff and complete. In this case M Š OM .

Theorem 1.7.7. OM Š lim �M=I
iM .

Proof. Let .x1 C IM; x2 C I 2M; : : : / 2 lim �M=I
iM . Then xiC1 � xi 2 I iM for

each i � 1 and so ¹xnº is a Cauchy sequence. Now define a map � W lim �M=I
iM !

OM by �..x1 C IM; x2 C I 2M; : : : // D ¹xnº C C0. Then � is well-defined for if
xn C InM D yn C InM , then xn � yn 2 InM for each n and thus ¹xn � ynº
converges to zero. So ¹xn � ynº 2 C0 and hence ¹xnº C C0 D ¹ynº C C0. Clearly,
� is a homomorphism.

Now let ¹xnº 2 C . Then for each n there is an integer s.n/ such that xiC1 � xi 2
InM whenever i � s.n/. So xi C InM D xj C InM for i; j � s.n/. Thus we
have a well-defined map � 0 W C ! lim �M=I

iM given by � 0.¹xnº/ D .xi C InM/

where i � s.n/. � 0 is an R-homomorphism. But if ¹xnº is in C0, then xi 2 I iM
for all sufficiently large i . So � 0.¹xiº/ D .xi C InM/ where xi 2 I iM � InM

for sufficiently large i . Thus � 0.¹xnº/ D .0/ and so � 0 induces a homomorphism
� W OM ! lim �M=I

iM defined by �.¹xnº C C0/ D .xi C InM/ where i � s.n/. It

is now standard to argue that � D ��1.

In view of Theorem 1.7.7, we will refer to lim �M=I
iM as the I -adic completion of

M and simply write OM D lim �M=I
iM .

Example 1.7.8.

1. Let M D R D Z and I D .p/, p a prime. In this case Z=.piC1/! Z=.pi / is
the natural map r C .piC1/ 7! r C .pi / and OZp D lim �Z=.pi / D ¹.r1 C .p/;
r2C.p2/; : : : / W ri Š riC1 mod piº. We note that .r1C.p/; r2C.p2/; : : : / has
a unique representation .a0C.p/; a0Ca1pC.p2/; a0Ca1pCa2p2C.p3/; : : : /
with 0 � ai < p. Hence to each element in OZp, we can associate a unique
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p-adic number
P1
iD0 aipi where 0 � ai < p. OZp is called the ring of p-adic

integers.

2. Let R D SŒx1; : : : ; xn	 with S any ring and I D hx1; : : : ; xni. Then OR D
SŒŒx1; : : : ; xn		.

Exercises

1. Prove Remark 1.7.3.

2. If I � R is a finitely generated ideal of the commutative ring R, prove that

(a) In is finitely generated for each n � 1.

(b) If .Ms/s2S is a family of R-modules, then I
Q

s2S Ms DQ

s2S .IMs/.

(c) Let M D Q

s2S Ms and OM be the I -adic completion of M and OMs that of
Ms for each s. Show that OM ŠQ

s2S OMs .

3. Using the hypotheses and notation of (2), let N D L

s2S Ms and argue that
ON 6ŠL

s2S OMs can happen.
Hint: Let R D Z, S D N, Mn D Z=.pn/, and I D .p/. Argue that ON is not
countable.

4. Let n D p1p2 : : : ps where p1; p2 � � � ; ps are distinct primes of Z. Use the fact
that Z=.nk/ Š Z=.pk1 / ˚ � � � ˚ Z=.pks / for k � 1 to argue that if OZ is the
completion of Z with the .n/-adic topology, then OZ D OZp1

� OZp2
� � � � � OZps

.

5. Let I � R be an ideal of the ring R. Suppose that R is complete with respect to
the I -adic topology. Prove that for every r 2 I , 1C r is a unit of R.

6. Let J � I � R be ideals of R such that R is complete with respect to the I -adic
topology.

(a) Argue that R is complete with respect to the J -adic topology.

(b) If the R-module R=J is Hausdorff with respect to the I -adic topology, argue
that R=J is complete with respect to the I=J -topology.

7. Prove Example 1.7.8(2).
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Flat Modules, Chain Conditions and Prime Ideals

2.1 Flat Modules

We start with the following

Definition 2.1.1. An R-module P is said to be projective if given an exact sequence

A
 ! B ! 0 of R-modules and an R-homomorphism f W P ! B , there exists an

R-homomorphism g W P ! A such that f D  ı g, that is, such that

P

g��	
	
	
	

f
��

A
 

�� B �� 0

is a commutative diagram. Thus every free module is projective. So every R-module
M has a projective resolution, that is, an exact sequence � � � ! P1 ! P0 !M ! 0

with each Pi projective by Remark 1.2.14.

Theorem 2.1.2. The following are equivalent for an R-module P :

(1) P is projective.

(2) Hom.P;�/ is right exact.

(3) Every exact sequence 0! A! B ! P ! 0 is split exact.

(4) P is a direct summand of a free R-module.

Proof. .1/) .2/ is clear.

.2/ ) .3/ follows from Proposition 1.2.18 since if B
�! P ! 0 is exact then

Hom.P;B/! Hom.P; P /! 0 is exact and so B ! P ! 0 splits.
.3/) .4/ follows from Proposition 1.2.6 easily.
.4/ ) .1/. Let P be a direct summand of a free R-module F . Then there is a

map s W F ! P such that s ı i D idP where i W P ! F is the inclusion. Now let

A
 ! B ! 0 be exact and f W P ! B be an R-homomorphism. Then there is a map

g W F ! A such that  ı g D f ı s. But then  ı g ı i D f ı s ı i D f . Thus P is
projective.
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Definition 2.1.3. An R-module F is said to be flat if given any exact sequence 0 !
A ! B of right R-modules, the tensored sequence 0 ! A ˝ RF ! B ˝ RF is
exact.

Proposition 2.1.4. The direct sum
L

i2I Fi is flat if and only if each Fi is flat.

Proof. This easily follows by Proposition 1.3.7.

Corollary 2.1.5. Every projective module is flat.

Proof. Let P be projective. Then P is a summand of a free by Theorem 2.1.2. But R
is a flatR-module and so every freeR-module is flat by Proposition 2.1.4 above. Thus
P is a direct summand of a flat module and hence is flat again by Proposition 2.1.4.

Definition 2.1.6. It follows from the above that every R-module has a flat resolution,
that is, an exact sequence � � � ! F1 ! F0 !M ! 0 with each Fi flat.

Proposition 2.1.7. If F is a flat R-module and I is a right ideal of R, then I ˝ F Š
IF .

Proof. We consider the exact sequence 0 ! I ! R. Then 0 ! I ˝ F ! F is
exact. But the image of I ˝F in F under this embedding is IF . So we are done.

Let � � � ! P1 ! P0 ! M ! 0 be a projective resolution of a right R-module
M and N be a left R-module. Then the i th homology module of the complex � � � !
P1˝N ! P0˝N ! 0 is denoted TorRi .M;N /. Note that TorR0 .M;N / DM ˝N
since P1 ˝N ! P0 ˝N ! M ˝N ! 0 is exact, and Tori .M;F / D 0 for all flat
left R-modules F . TorRi .M;N / can also be computed using a projective resolution
of N and is independent of the projective resolutions used, and moreover given an
exact sequence 0 ! M 0 ! M ! M 00 ! 0 of right R-modules there exists a long
exact sequence � � � ! Tor1.M 00; N /! M 0 ˝ N ! M ˝ N ! M 00 ˝ N ! 0 (see
Chapter 8 for details). Using such a long exact sequence and Theorem 1.6.7, one can
easily show by induction that Tor commutes with direct limits (see Exercise 4).

Theorem 2.1.8. The following are equivalent for an R-module F :

(1) F is flat.

(2) �˝ RF is left exact.

(3) TorRi .M;F / D 0 for all right R-modules M and for all i � 1.

(4) TorR1 .M;F / D 0 for all right R-modules M .

(5) TorR1 .M;F / D 0 for all finitely generated right R-modules M .
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Proof. .1/) .2/) .3/ is clear from the above while .3/) .4/) .5/ is trivial.
.5/) .4/ since Tor commutes with direct limits.
.4/ ) .1/. We consider the exact sequence 0 ! A ! B ! C ! 0 of right

R-modules. Then we have an exact sequence 0 D TorR1 .C; F / ! A ˝ RF !
B ˝ RF ! C ˝ RF ! 0. Thus F is flat.

Remark 2.1.9. Since Tor commutes with direct limits, we also see that any direct
limit of flat R-modules is also flat.

We now recall the following natural identity and leave its proof as an exercise.

Theorem 2.1.10. Let R and S be rings, A a left S -module, B an .R; S/-bimodule,
and C a left R-module. Then the map

' W HomS .A;HomR.B; C //! HomR.B ˝S A;C /

defined by '.f /.b ˝ a/ D .f .a//.b/ where f 2 HomS .A;HomR.B; C //, a 2 A,
b 2 B , is an isomorphism.

Theorem 2.1.11. Let R and S be commutative rings and let R ! S be a ring ho-
momorphism that makes S into a flat left R-module. If M and N are R-modules,
then

TorRi .M;N /˝ RS Š TorSi .M ˝ RS;N ˝ RS/

for all i � 0.

Proof. Let � � � ! P1 ! P0 ! M ! 0 be a projective resolution of M . Then
� � � ! P1 ˝ RS ! P0 ˝ RS ! M ˝ RS ! 0 is exact. But Pi ˝ RS is a
projective S -module for each i . For if A ! B ! 0 is an exact sequence of S -mod-
ules, then HomS .S; A/ ! HomS .S; B/ ! 0 is an exact sequence of R-modules.
But then HomR.Pi ;HomS .S; A// ! HomR.Pi ;HomS .S; B// ! 0 is exact since
Pi is projective. Hence HomS .Pi ˝ RS;A/ ! HomS .Pi ˝ RS;B/ ! 0 is exact
by the theorem above. So � � � ! P1 ˝ RS ! P0 ˝ RS ! M ˝ RS ! 0 is
a projective resolution of the S -module M ˝ RS . Thus if P� denotes the deleted
complex � � � ! P1 ! P0 ! 0 of M , then since � ˝ RS commutes with homology
(see Exercise 2 of Section 1.4) we have that

TorRi .M;N /˝ RS Š Hi .P� ˝ RN/˝ RS

Š Hi ..P� ˝ RN/˝ RS/

Š Hi ..P� ˝ RS/˝S .N ˝ RS//

Š TorSi .M ˝ RS;N ˝ RS/:
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Definition 2.1.12. An R-module F is said to be faithfully flat if 0 ! AR ! BR is
an exact sequence of R-modules if and only if 0! A˝ RF ! B ˝ RF is exact. It
is easy to see that every free R-module is faithfully flat.

Lemma 2.1.13. The following are equivalent for a left R-module F :

(1) F is faithfully flat.

(2) F is flat and for any right R-module N , N ˝ F D 0 implies N D 0
(3) F is flat and mF ¤ F for every maximal right ideal m of R.

Proof. .1/ ) .2/. We consider the sequence 0 ! N ! 0. 0 ! N ˝ F ! 0 is
exact by assumption and so 0! N ! 0 is exact by (1).
.2/) .3/. This follows from the fact that F=mF Š .R=m/˝ RF .
.3/) .2/. SupposeN ¤ 0 and let x 2 N , x ¤ 0. Then xR D R=I for some right

ideal I of R. Let m be a maximal right ideal containing I . Then F ¤ mF � IF by
assumption. So xR˝F D F=IF ¤ 0. But F is flat and so 0! xR˝F ! N ˝F
is exact. Hence N ˝ F ¤ 0.

.2/) .1/. Suppose 0! A
f! B is a sequence of R-modules. If 0! A˝ F !

B ˝ F is exact, then .Ker f /˝ F D 0 since F is flat. So Kerf D 0 by assumption
and hence 0! A! B is exact.

Exercises

1. Give an example of a projective module that is not free.

Hint: Consider R D Z=6Z D Z=2Z˚ Z=3Z.

2. Prove that if f W M ! P is an epimorphism with P projective, then M Š
Ker f ˚ P .

3. Prove Proposition 2.1.4.

4. Let ..Mi /; .fj i // be inductive system of rightR-modules andN be a leftR-mod-
ule. Prove that lim�!TorRn .Mi ; N / Š TorRn .lim�!Mi ; N /. Hint: Use a dimension
shifting argument, that is, an induction argument on n involving the long exact
sequence corresponding to a short exact sequence 0! K ! P ! N ! 0 with
P projective.

5. Prove that if every finitely generated submodule of M is flat, then M is flat.

6. Prove that if R is an integral domain, then every flat R-module is torsion free
(that is, rx D 0 for r 2 R, x 2 M implies r D 0 or x D 0). Conclude that
Z=nZ is not a flat Z-module for n � 2.

7. Prove that the quotient field of an integral domain R is a flat R-module.



46 Chapter 2 Flat Modules, Chain Conditions and Prime Ideals

8. Consider the exact sequence 0 ! M 0 ! M ! M 00 ! 0 of R-modules. Prove
that ifM 00 is flat, thenM 0 is flat if and only ifM is flat. Give an example to show
that M 0 and M can be flat without M 00 being flat.

9. LetM be an (R-S)-bimodule and N be a left S -module. Prove that ifM is a flat
R-module and N is a flat S-module, then M ˝S N is a flat R-module.

10. (Schanuel’s Lemma) If 0 ! K1 ! P1 ! M ! 0 and 0 ! K2 ! P2 !
M ! 0 are exact with P1; P2 projective, then K1 ˚ P2 Š K2 ˚ P1.

11. Prove Theorem 2.1.10.

12. Show that the Z-module Q is flat but not faithfully flat.

13. Prove that if R0 is a subring of R, then R=R0 is a flat R0-module if and only if R
is a faithfully flat R0-module.

2.2 Localization

In this section, R will denote a commutative ring.

Definition 2.2.1. Let S be a multiplicative subset of R, that is, 1 2 S and S is closed
under multiplication. Then the localization of R with respect to S , denoted by S�1R,
is the set of all equivalence classes .a; s/ with a 2 R, s 2 S under the equivalence
relation .a; s/ 	 .b; t/ if there is an s0 2 S such that .at � bs/s0 D 0. It is easy to
check that this relation is indeed an equivalence relation. The equivalence class .a; s/
is denoted by a=s.

We now define addition and multiplication on S�1R by

a=s C b=t D .at C bs/=st
.a=s/.b=t/ D ab=st:

These operations are well-defined and S�1R is then a commutative ring with identity.

Remark 2.2.2. We note that S�1R D 0 if and only if 0 2 S . The map ' W R !
S�1R defined by '.a/ D a=1 is a homomorphism with Ker' D ¹a 2 R W as0 D 0

for some s0 2 Sº. As a consequence, if S has no zero divisors, then ' is monic.
Moreover, if R is a domain, then S�1R is the quotient field of R when S is the set of
all nonzero elements of R.

Definition 2.2.3. Let S � R be a multiplicative set andM be anR-module. Then the
localization ofM with respect to S , denoted S�1M is defined as for S�1R. S�1M is
an Abelian group under addition and is an S�1R-module via .a=s/ � .x=t/ D ax=st .
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Proposition 2.2.4. Let S � R be a multiplicative set. Then

(1) If f WM ! N is anR-module homomorphism, then S�1f W S�1M ! S�1N
defined by .S�1f /.x=s/ D f .x/=s is an S�1R-module homomorphism.

(2) IfM 0 !M !M 00 is exact atM , then S�1M 0 ! S�1M ! S�1M 00 is exact
at S�1M .

(3) If N �M are R-modules, then S�1.M=N/ Š S�1M=S�1N .

(4) If M is an R-module, then S�1R˝ RM Š S�1M .

(5) S�1R is a flat R-module.

Proof. The proof of (1) and (2) are left to the reader.
(3) follows from (2) by considering the exact sequence 0!N!M!M=N! 0.
(4) Define a map ' W S�1R˝ RM ! S�1M by '..a=s/˝x/ D .ax/=s. Then ' is

a well-defined S�1R-homomorphism. ' is clearly onto. Now suppose .ax/=s D 0.
Then there is an s0 2 S such that as0x D 0. So .a=s/ ˝ x D .as0=ss0/ ˝ x D
.1=ss0/˝ as0x D 0. Thus ' is one-to-one.

(5) follows from parts (3) and (4).

Remark 2.2.5. It is now easy to see that if M is a free (projective) R-module, then
S�1M is a free (projective) S�1R-module, and that if M is a finitely generated R-
module, then S�1M is also such as an S�1R-module. Moreover since S�1M Š
S�1R ˝ M , if M is a flat R-module, then it is easy to check that S�1M is a flat
S�1R-module.

Lemma 2.2.6. Let S � R be a multiplicative set. If J is an ideal of S�1R, then
J D IS�1R D S�1I for some ideal I of R.

Proof. Let I D J \ R (or, more precisely, I is the inverse image of J under R !
S�1R/. Then I is an ideal of R. Clearly IS�1R � J . Now let a D r=s 2 J .
Then a D .r=1/.1=s/. So it suffices to show that r 2 I . For then a 2 IS�1R. But
r=1 D .a=1/.s=1/ 2 J and so r 2 J \ R D I . Thus J D IS�1R. But IS�1R Š
S�1R˝ I by Proposition 2.1.7 since S�1R is a flat R-module by Proposition 2.2.4.
So IS�1R Š S�1I again by Proposition 2.2.4.

Proposition 2.2.7. Let S � R be a multiplicative set. Then there is a one-to-one
order preserving correspondence between the prime ideals of S�1R and the prime
ideals of R disjoint from S given by S�1p$ p.

Proof. Let J be a prime ideal of S�1R, and let p D J \ R. Then p is a prime
ideal of R. But then J D pS�1R D S�1p by Lemma 2.2.6. If p \ S ¤ ;, then
1 2 S�1p D J , a contradiction. Hence p \ S D ;.

Now suppose p is a prime ideal of R disjoint from S . We claim that S�1p is a
prime ideal. But 1 … S�1p since p\ S D ;. Moreover, if .a=s/ � .b=t/ 2 S�1p with
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s, t 2 S , then .a=s/ � .b=t/ D c=r for some c 2 p, r 2 S . So there is an s0 2 S such
that .abr � stc/s0 D 0. But stcs0 2 p. So abrs0 2 p where rs0 2 S . But then ab 2 p

and so a 2 p or b 2 p. That is, a=s 2 S�1p or b=s 2 S�1p. Hence S�1p is a prime
ideal of S�1R.

Definition 2.2.8. Let p be a prime ideal of R. Then S D R � p is a multiplicative
subset of R. In this case S�1R, S�1M , and S�1f are denoted by Rp, Mp, and fp

respectively where M is an R-module. We say that Mp is the localization of M at p.

As a consequence of Proposition 2.2.7, we have the following result.

Theorem 2.2.9. Let p be a prime ideal ofR. Then there is a one-one order preserving
correspondence between the prime ideals of Rp and the prime ideals of R contained
in p.

Remark 2.2.10. Let p be a prime ideal of R. Then pRp is a prime ideal of Rp from
the above. But if J is an ideal of Rp, then J D IRp where I is an ideal of R such
that I \ .R � p/ D ;. So I � p and hence J D IRp � pRp. Thus pRp is the
maximal ideal of Rp.

We recall that a ring R is said to be local if it has only one maximal ideal. So the
localization of R at a prime ideal p is a local ring with maximal ideal pRp. The field
Rp=pRp is called the residue field of Rp and is denoted by k.p/.

Exercises

1. Prove that the relation in Definition 2.2.1 is indeed an equivalence relation.

2. Prove that the operations in Definition 2.2.1 are well-defined.

3. Prove parts (1), (2), (5) of Proposition 2.2.4.

4. Prove Remark 2.2.5.

5. Let M1;M2 be submodules of M . Prove that

(a) S�1.M1 CM2/ D S�1M1 C S�1M2

(b) S�1.M1 \M2/ D S�1M1 \ S�1M2

6. Let ..Mi /; .fj i // be a direct system of R-modules. Prove that

lim�!S�1Mi Š S�1 lim�!Mi :

7. Let M and N be R-modules. Prove that

(a) M D 0 if and only if Mm D 0 for all maximal ideals m of R.

(b) AnR-homomorphism f WM ! N is monic(epic) if and only if fm WMm !
Nm is monic(epic) for all maximal ideals m of R.

(c) M is a flat R-module if and only if Mm is flat for all maximal ideals m of R.
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2.3 Chain Conditions

In this section, we introduce some of the basic concepts concerning Artinian and
Noetherian rings and modules.

Definition 2.3.1. An R-module M is said to be Noetherian (Artinian) if every as-
cending (descending) chain of submodules of M terminates.

Remark 2.3.2. It is easy to see that an R-module M is Noetherian (Artinian) if and
only if every nonempty set of submodules of M has a maximal (minimal) element.
For suppose there is a nonempty set of submodules ofM that has no maximal element.
Let M1 be an element of this set. Then M1 is not maximal. So there is an element
M2 in the set such that M1 ¨ M2. Repeat the argument to get a chain of submodules
M1 ¨ M2 ¨ M3 � � � of M that never terminates. The converse is easy to see.

The proof for Artinian modules is similar.

Proposition 2.3.3. An R-module M is Noetherian if and only if every submodule of
M is finitely generated.

Proof. Suppose there is a submodule S of M that is not finitely generated. Let x1 2
S . Then S ¤ hx1i. So let x2 2 S � hx1i. Then hx1i ¨ hx1; x2i ¨ S . Repeat the
process to get a strictly increasing chain of R-modules that never terminates.

Now suppose M1 � M2 � � � � is an ascending chain of submodules of M . Then
S D S1

iD1Mi is a submodule of M and so is finitely generated by assumption.
Let S D hx1; x2; : : : ; xni for some x1; : : : ; xn 2 M . Then each xi 2 Mmi

for
some mi . So let m D max.m1; m2; : : : ; mn/. Then x1; : : : ; xn 2 Mm and so S D
hx1; : : : ; xni �Mm � S . Thus Mm D S and hence the chain terminates.

Definition 2.3.4. A ring R is said to be left (right) Noetherian (Artinian) if it is
Noetherian (Artinian) as a left (right) module over itself. Noetherian (Artinian) will
always mean left Noetherian (left Artinian).

We now have the following

Corollary 2.3.5. A ring R is Noetherian if and only if every left ideal of R is finitely
generated.

Lemma 2.3.6. Let 0 ! M 0 ! M ! M 00 ! 0 be exact with M 0 � M , M 00 D
M=M 0 with obvious maps. Suppose S1; S2 are submodules of M such that S1 � S2
and S1 \M 0 D S2 \M 0. If .M 0 C S1/=M 0 D .M 0 C S2/=M 0, then S1 D S2.

Proof. This is left to the reader.
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Proposition 2.3.7. Let 0 ! M 0 ! M ! M 00 ! 0 be an exact sequence of R-
modules. Then M is Noetherian (Artinian) if and only if M 0 and M 00 are Noetherian
(Artinian).

Proof. We can suppose the sequence is as above. If M is Noetherian (Artinian), then
clearly so areM 0 andM 00. Now suppose ¹Miº form an ascending (descending) chain
of submodules of M . Then ¹Mi \ M 0º and ¹.M 0 C Mi /=M

0º form an ascending
(descending) chain of submodules of M 0;M 00 respectively. If these chains terminate,
then so does the chain for ¹Miº by Lemma 2.3.6 above. Thus the result follows.

Remark 2.3.8. It now easily follows that if R is Noetherian (Artinian), then every
quotientR=I is Noetherian (Artinian) and ifR is furthermore commutative then every
localization S�1R is also Noetherian (Artinian).

Corollary 2.3.9. A finite direct sum of Noetherian (Artinian) R-modules is also
Noetherian (Artinian).

Proof. Let ¹MiºniD1 be a family of Noetherian R-modules. Then we consider the
exact sequence 0 ! Mn ! Ln

iD1Mi ! Ln�1
iD1Mi ! 0. Then

Ln
iD1Mi is

Noetherian by induction on n. Similarly for Artinian.

Corollary 2.3.10. A finitely generated module over a Noetherian (Artinian) ring is
Noetherian (Artinian). In particular, if R is Noetherian, then an R-module M is
Noetherian if and only if M is finitely generated.

Proof. A finitely generated R-module M is a quotient of Rn for some n. But Rn

is Noetherian (Artinian) by the corollary above. So M is Noetherian (Artinian) by
Proposition 2.3.7. The second part now follows by Proposition 2.3.3.

Corollary 2.3.11. A ring R is Noetherian if and only if every submodule of a finitely
generated R-module is finitely generated.

Proof. Let S be a submodule of a finitely generated R-module M . Then S is finitely
generated by Proposition 2.3.3 since M is Noetherian by the corollary above. The
converse is clear from Corollary 2.3.5.

Remark 2.3.12. It is now easy to see that if R is Noetherian, then every finitely
generated R-moduleM has a free resolution � � � ! F1 ! F0 !M ! 0 where each
Fi is finitely generated.

Theorem 2.3.13 (Hilbert Basis Theorem). If R is Noetherian, then so is RŒx	.
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Proof. Suppose RŒx	 is not Noetherian. Then let I be a left ideal of RŒx	 that is not
finitely generated. Let f1 be a nonzero polynomial in I of minimal degree. Then
hf1i ¨ I and so let f2 be a nonzero polynomial in I � hf1i with minimal degree.
Then hf1i ¨ hf1; f2i and deg f1 � degf2. Repeat this procedure to get ideals
hf1i ¨ hf1; f2i ¨ hf1; f2; f3i ¨ � � � in I such that deg fi � degfiC1.

Now let ai be the leading coefficient of fi . Then hai � ha1; a2i � � � � is an
ascending chain of ideals of R. It now suffices to show that ha1; : : : ; aki ¨ ha1; a2;
: : : ; akC1i. Suppose not. Then akC1 D

Pk
iD1 riai for some ri 2 R. One then

considers the polynomial h D fkC1 �
Pk
iD1 rixnkC1�nifi where ni D deg fi .

Note that h … hf1; : : : ; fki for otherwise fkC1 2 hf1; : : : ; fki, a contradiction.
But rixnkC1�nifi D rix

nkC1�ni .aix
ni C � � � / D riaix

nkC1C lower terms. So
h D fkC1 �

P

i riaix
nkC1� lower terms D fkC1 � akC1xnkC1� lower terms. So

h 2 I � hf1; f2; : : : ; fki and deg h < nkC1, a contradiction. Hence ha1; : : : ; aki ¨
ha1; : : : ; akC1i and so R is not Noetherian.

Corollary 2.3.14. If R is Noetherian, then so is RŒx1; : : : ; xn	.

Proof. By induction on n.

Remark 2.3.15. Likewise, RŒŒx1; : : : ; xn		 is Noetherian whenever R is.

Definition 2.3.16. A chain of R-submodules M D M0 � M1 � � � � � Mn D 0 is
said to be a composition series of M if Mi=MiC1 is a simple R-module for each i ,
that is, Mi=MiC1 Š R=mi for some maximal left ideal mi of R.

The length of a composition series ofM does not depend on the choice of the series
(in the sense of Jordan–Hölder theorem), and every chain of submodules ofM can be
refined to a composition series. The common length of the composition series of M
is denoted lengthRM or simply lengthM .

Theorem 2.3.17. An R-module M has finite length if and only if M is Artinian and
Noetherian.

Proof. If M has finite length, then any composition series is finite and so all the
chains are stationary. Conversely suppose M is Artinian and Noetherian. Since M is
Noetherian, it has a maximal proper submodule M1. We note that M=M1 is simple.
But M1 is Noetherian since M is. So let M2 be a maximal proper submodule of M1.
Repeat this procedure to get a strictly descending chainM DM0 �M1 �M2 � � � �
of submodules of M such that Mi=MiC1 is simple. But M is Artinian and so the
chain stops. Hence lengthM <1.

Definition 2.3.18. An R-module M is said to be semisimple if it is a direct sum of
simple modules. A module M is semisimple if and only if every submodule of M is
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a direct summand (see Exercise 6). Thus every submodule and homomorphic image
of a semisimple is also semisimple. It easily follows from the definition that the direct
sum of semisimple modules is also semisimple. A ring R is said to be semisimple if
it semisimple as an R-module.

Lemma 2.3.19. The following are equivalent for a semisimple R-module M :

(1) M is Artinian.

(2) M is Noetherian.

(3) M is a direct sum of finitely many simple modules.

(4) M is a finitely generated R-module.

In particular, a semisimple ring R is a direct sum of finitely many simple modules.

Proof. .1/; .2/) .3/. If M is a direct sum of infinitely many simple modules, then
M has ascending and descending chains of submodules of M that are not stationary.
.3/) .1/; .2/. We simply note that a simple module is of finite length.
.3/) .4/ is trivial since simple modules are cyclic.
.4/) .3/. Let x1; x2; : : : ; xn be generators of M and M DL

I Si where Si are
simple submodules of M . But then there are finitely many simple submodules, say
Si1 ; : : : ; Sim such that each xk 2 Si1 C � � � C Sim . So M 
 Lm

jD1 Sij and we are
done.

Proposition 2.3.20. Suppose R is a ring such that R= rad.R/ is semisimple and
rad.R/ is nilpotent. Then an R-module M is Noetherian if and only if M is Artinian.

Proof. Let J D rad.R/. Then J n D 0 for some n. We then consider the descending
chain M � JM � J 2M � � � � � J n�1M � J nM D 0. The quotient mod-
ules J iM=J iC1M , 0 � i � n � 1, can be viewed as R=J -modules. But R=J is a
semisimple ring by assumption. So each J iM=J iC1M is a semisimple R=J -mod-
ule since it is a homomorphic image of a free R=J -module. Thus if M is Artin-
ian or Noetherian, then each J iM=J iC1M is of finite length as an R=J -module by
Lemma 2.3.19, and thus as an R-module. But then M is of finite length by Proposi-
tion 2.3.7.

Lemma 2.3.21. A ring R is semisimple if and only if R is Artinian and rad.R/ D 0.
In particular, if R is Artinian, then R= rad.R/ is semisimple.

Proof. IfR is semisimple, thenR is a direct sum of finitely many simple modules and
so R is Artinian and rad.R/ D 0. Conversely suppose R is Artinian and rad.R/ D 0.
Consider the set S of all finite intersections of maximal ideals of R. Then S has a
minimal element, say I , by Remark 2.3.2. So if m is a maximal ideal of R, then
m\ I D I by the minimality of I and so I � m. Thus I � rad.R/. But then I D 0
since rad.R/ D 0. Hence there are finitely many maximal ideals, say m1; : : : ;mn
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such that
Tn
iD1mi D I D 0. But the map ' W R ! Qn

iD1R=mi defined by
'.r/ D .r C mi / has Ker' D Tn

iD1mi D 0. So ' embeds R into a semisimple
module. Thus R is semisimple.

Since rad.R= rad.R// D 0, we see that the second part follows by applying the
lemma to R= rad.R/.

Proposition 2.3.22. If R is Artinian, then R= rad.R/ is semisimple and rad.R/ is
nilpotent.

Proof. The first part follows from the lemma above.
Now let J D rad.R/ and consider the descending chain J � J 2 � J 3 � � � � .

Then J n D J nC1 for some n since R is Artinian. Suppose J n ¤ 0. Then let I be
the minimal left ideal such that J nI ¤ 0. Then J n.JI / D J nC1I D J nI ¤ 0. But
JI � J and I is a minimal left ideal such that J nI ¤ 0. So JI D I . But I is a
principal ideal. So I D 0 by Nakayama Lemma, a contradiction. Hence J n D 0.

Corollary 2.3.23. An Artinian local ring is complete.

Proof. Let m be the maximal ideal of R. Then m is nilpotent by the proposition
above. So OR D lim �R=m

i D R.

Corollary 2.3.24. If R is Artinian, then an R-module M is Noetherian if and only if
M is Artinian.

Proof. This follows from Propositions 2.3.20 and 2.3.22.

Corollary 2.3.25. A ring R is Artinian if and only if length RR <1.

As another consequence of Propositions 2.3.20 and 2.3.22, we get the following
characterization of Artinian rings.

Theorem 2.3.26. A ring R is Artinian if and only if R= rad.R/ is semisimple, rad.R/
is nilpotent, and R is Noetherian.

Exercises

1. Prove Remark 2.3.2 for Artinian modules.

2. Prove Lemma 2.3.6.

3. Prove that ifR is a commutative Noetherian ring, then so is its localization S�1R.

4. Prove Remark 2.3.15.

5. Let M be a Noetherian R-module and ' W M ! M be a homomorphism. Prove
that if ' is surjective, then ' is an automorphism.
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6. Prove that a module M is semisimple if and only if every submodule of M is a
direct summand (Rotman [163, page 15]).

7. Suppose an R-module M has length n. Prove that every composition series of
M has length n and every chain of R-submodules of M can be refined to a
composition series.

8. Prove that if 0 ! M 0 ! M ! M 00 ! 0 is an exact sequence of R-modules,
then lengthM D lengthM 0 C lengthM 00.

2.4 Prime Ideals and Primary Decomposition

Throughout this section, R will denote a commutative ring.

Definition 2.4.1. IfM is an R-module, then the annihilator ofM , denoted Ann.M/,
is defined by Ann.M/ D ¹r 2 R W rx D 0 for all x 2 M º. The annihilator of an
element x 2 M is defined by Ann.x/ D ¹r 2 R W rx D 0º. Ann.M/ is an ideal of
R. Moreover, if I is an ideal of R such that I � Ann.M/, thenM is an R=I -module
via scalar multiplication .r C I /x D rx. This is well-defined for if r C I D s C I ,
then r � s 2 I � Ann.M/ and so .r � s/x D 0. In particular, we have that M is
always an R=Ann.M/-module.

Definition 2.4.2. Let M be an R-module. A prime ideal p is said to be an associated
prime ideal of M if p D Ann.x/ for some x 2 M . It is easy to see that this is equiv-
alent to M containing a cyclic submodule isomorphic to R=p. The set of associated
prime ideals of M is denoted by Ass.M/.

Proposition 2.4.3. If R is Noetherian and M is an R-module, then M D 0 if and
only if Ass.M/ D ;.

Proof. If M D 0 then Ass.M/ D ;. Let M ¤ 0 and x 2 M , x ¤ 0. If Ann.x/ is a
prime ideal we are through. If not let rs 2 Ann.x/ with r; s … Ann.x/. Then rx ¤ 0
and s 2 Ann.rx/. So Ann.x/ ¨ Ann.rx/. If Ann.rx/ is not a prime ideal then we
can repeat the procedure. If the procedure did not stop we would contradict the fact
that R is Noetherian. Hence the procedure stops and we see that Ass.M/ ¤ ;.

Remark 2.4.4. >From the proof we see that for x 2 M , x ¤ 0, Ann.x/ � p for
some p 2 Ass.M/. Hence

S

p2Ass.M/ p is the set of all zero divisors on M , that is,
all r 2 R with rx D 0 for an x 2M , x ¤ 0.

Proposition 2.4.5. Let R be Noetherian, M an R-module, and p a prime ideal of R.
Then p 2 Ass.M/ if and only if pRp 2 AssRp

.Mp/.
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Proof. If p 2 Ass.M/, then R=p Š Rx for some x 2 M , x ¤ 0. So R=p is
isomorphic to a submodule of M . Thus Rp=pRp is isomorphic to a submodule of
Mp. Hence pRp 2 AssRp

.Mp/. Conversely, if pRp 2 AssRp
.Mp/, then pRp D

AnnRp
.x
t
/ where x

t
2 Mp for some x 2 M and t 2 R � p. Since p is finitely

generated, let p D ha1; a2; : : : ; ani. Then ai

1
� x
t
D 0 for each i . So there is an

ri 2 R � p such that riaix D 0 for each i . Now set r D r1 � r2 � � � rn. Then rax D 0
for all a 2 p. Thus p � AnnR.rx/. If a 2 AnnR.rx/, then arx D 0 and so
a
1
� x
t
D 0. But then a

1
2 pRp. Consequently a 2 p. Thus AnnR.rx/ � p. Hence

p D AnnR.rx/ and so p 2 AssR.M/.

Definition 2.4.6. The spectrum of R, denoted SpecR, is the set of all prime ideals of
R. The set of maximal ideals is called a maximal spectrum of R and is denoted by
mSpecR.

Lemma 2.4.7. Let R be a Noetherian ring. If M ¤ 0 is a finitely generated R-
module, then there exists a chain 0 D M0 � M1 � � � � � Mn�1 � Mn D M

of submodules of M such that for each 1 � i � n, Mi=Mi�1 Š R=pi for some
pi 2 SpecR.

Proof. Let p1 2 Ass.M/. Then R=p1 is isomorphic to a submodule of M . That
is, there is a submodule M1 of M such that M1 Š R=p1. If M1 D M , then we
are done. Otherwise let p2 2 Ass.M=M1/. Then there is a submodule M2 of M
containingM1 such thatM2=M1 Š R=p2. One then repeats this procedure to get the
required submodules noting that the process stops since M is Noetherian.

Lemma 2.4.8. Let 0! M 0 ! M ! M 00 ! 0 be an exact sequence of R-modules,
then

Ass.M/ � Ass.M 0/ [ Ass.M 00/:

Proof. Let p 2 Ass.M/. Then R=p is isomorphic to a submodule Rx ofM for some
x 2 M , x ¤ 0. If Rx \M 0 ¤ 0, let y 2 Rx \M 0, y ¤ 0. Then p D Ann.x/ is
equal to Ann.y/ since p is a prime ideal. Thus p 2 Ass.M 0/. If Rx \M 0 D 0, then
the image of Rx in M 00 is .Rx CM 0/=M 0 Š Rx Š R=p. Thus p 2 Ass.M 00/.

Theorem 2.4.9. If R is Noetherian and M is a finitely generated R-module, then
Ass.M/ is finite.

Proof. We consider the chain 0 D M0 � M1 � � � � � Mn�1 � Mn D M

of Lemma 2.4.7. Then we have short exact sequences 0 ! Mi�1 ! Mi !
Mi=Mi�1 ! 0 for i D 1; 2; : : : ; n. So Ass.Mi / � Ass.Mi�1/[Ass.Mi=Mi�1/ by
Lemma 2.4.8 above. Thus inductively,

Ass.M/ � Ass.Mn=Mn�1/[Ass.Mn�1=Mn�2/[ � � � [Ass.M2=M1/[Ass.M1/:



56 Chapter 2 Flat Modules, Chain Conditions and Prime Ideals

But each Mi=Mi�1 Š R=pi for some pi 2 SpecR by Lemma 2.4.7. So Ass.M/ �
¹p1; p2; : : : ; pnº since Ass.R=p/ D ¹pº for each p 2 SpecR. Hence we are done.

Definition 2.4.10. The support of anR-moduleM , denoted Supp.M/, is the set of all
prime ideals p of R such that Mp ¤ 0. If M ¤ 0 we see that Supp.M/ ¤ ;. For let
x 2M , x ¤ 0, then Ann.x/ � p for p a maximal ideal of R. Then p is a prime ideal
of R. But x

1
¤ 0 in Mp and so p 2 Supp.M/. Furthermore, if 0 ! M 0 ! M !

M 00 ! 0 is an exact sequenceR-modules, then Supp.M/ D Supp.M 0/[Supp.M 00/.

Remark 2.4.11. If R is Noetherian and p 2 Ass.M/, then pRp 2 Ass.Mp/ by
Proposition 2.4.5. So Rp=pRp is isomorphic to a submodule of Mp. Hence Mp ¤ 0
and so p 2 Supp.M/. Thus Ass.M/ � Supp.M/.

Theorem 2.4.12. Let R be Noetherian and M be an R-module. If p is a minimal
element in Supp.M/, then p 2 Ass.M/.

Proof. Let p be a minimal element in Supp.M/. By Proposition 2.4.5, it suffices to
prove the result for a local ring R with maximal ideal p and a nonzero R-module M .
Since p is minimal, we further assume that Mq D 0 for all prime ideals q contained
in p. So Supp.M/ D ¹pº. But Ass.M/ � Supp.M/ by the remark above. So
p 2 Ass.M/ since Ass.M/ ¤ ;.

Definition 2.4.13. The height (ht) of a prime ideal p is the supremum of the lengths
s of strictly decreasing chains p D p0 � p1 � � � � � ps�1 � ps of prime ideals of R.

The Krull dimension of R, denoted dimR, is defined by

dimR D sup¹ht p W p 2 SpecRº
It follows from the definitions above that ht pCdimR=p � dimR and ht p D dimRp.

If dimR D 0, then every prime ideal of R is minimal, and if R is a principal ideal
domain which not a field, then dimR D 1.

Definition 2.4.14. Now let V be a subset of SpecR. Then the Krull dimension of
V , denoted dimV , is defined to be the supremum of the lengths of strictly decreasing
chains p0 � p1 � � � � � ps�1 � ps of prime ideals of V . In particular, the Krull
dimension of R is dim SpecR. The dimension of an R-module M , denoted dimM ,
is defined by dimM D dim Supp.M/. So dimM � dimR.

Remark 2.4.15. If M is finitely generated, then Supp.M/ D ¹p 2 SpecR W
Ann.M/ � pº. For ifM D m1RCm2RC� � �CmnR for somem1; m2; : : : ; mn 2M ,
then p 2 Supp.M/ if and only if there is an i such that mi

1
¤ 0 in Mp. But

this means that there is an i such that Ann.mi / � p. But this holds if and only if
Ann.M/ D Tn

iD1 Ann.mi / � p. Hence if M is finitely generated, then dimM D
dimR=Ann.M/.
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We now recall the following.

Definition 2.4.16. The radical of an ideal I of R, denoted
p
I , is defined by

p
I D

¹r 2 R W rn 2 I for some n > 0º. We note that I � pI . If I D 0, then
p
I is called

the nilradical. It is easy to see that the nilradical is the set of all nilpotent elements
of R.

Proposition 2.4.17.
p
I is the intersection of all prime ideals containing I .

Proof. Let p be a prime ideal containing I . If r 2 pI , then rn 2 I � p and so
r 2 p. Hence

p
I � T

p�I p. Now let x … pI . Then xn … I for each n � 0. So
S D ¹1; x; x2; : : : º is a multiplicative set disjoint from I . Then the set of ideals J
such that J � I and J \ S D ; has a maximal element q by Zorn’s Lemma. We
claim that q is a prime ideal. We first note that if x … q, then .q C Rx/ \ S ¤ ;
for otherwise q C Rx would contradict the maximality of q. So x 2 q if and only
if .q C Rx/ \ S D ;. Thus x1 … q, x2 … q implies that .q C Rxi / \ S ¤ ;. So
..q C Rx1/.q C Rx2// \ S ¤ ;. But .q C Rx1/.q C Rx2/ � .q C Rx1x2/. So
.qCRx1x2/\S ¤ ; and thus x1x2 … q. So q is a prime ideal. Hence x …T

p�I p.

Thus
p
I DT

p�I p.

Corollary 2.4.18. The nilradical of R is the intersection of all prime ideals of R.

Definition 2.4.19. An ideal I of R is said to be primary if ab 2 I and a … I implies
that bn 2 I for some integer n � 1. It is easy to see that I is primary if and only if
every zero divisor of R=I is nilpotent.

Remark 2.4.20. If I is a primary ideal, then
p
I is a prime ideal. For if ab 2 pI ,

then anbn 2 I for some n > 0. If a … pI , then an … I . But I is primary.
So .bn/m 2 I for some m > 0. Hence b 2 pI and we are done. It follows
from Proposition 2.4.17 that if I is primary, then

p
I is the smallest prime ideal

containing I .

Definition 2.4.21. If I is a primary ideal and p D pI , then I is said to be p-primary.

Lemma 2.4.22. If
p
I is a maximal ideal, then I is primary. In particular, if m is a

maximal ideal, then mn is m-primary for each n > 0.

Proof. Let m D pI . Then since
p
I is the intersection of prime ideals p of R

containing I , we have that I � m � p. But m is maximal. So Spec.R=I / D ¹m=I º.
But then Nx 2 m=I implies Nx is nilpotent and Nx … m=I implies that it is a unit. So if
x C I is a zero divisor of R=I , then x 2 m and so x C I is nilpotent. Hence zero
divisors of R=I are nilpotent. That is, I is primary. The second part is now clear
since

p
mn D m.
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Lemma 2.4.23. If R is Noetherian and I is an ideal of R, then .
p
I /n � I for some

n > 0.

Proof. Since R is Noetherian, let
p
I D hr1; : : : ; rsi. Then rni

i 2 I for some ni > 0.
Let n D .n1 � 1/ C .n2 � 1/ C � � � C .ns � 1/ C 1. Then .

p
I /n is generated by

monomials rm1

1 r
m2

2 � � � rms
s where n D Ps

iD1mi and mi � ni for some i . Thus
r
m1

1 r
m2

2 � � � rms
s 2 I and so .

p
I /n � I .

Proposition 2.4.24. If R is Noetherian, then the nilradical is nilpotent.

Proof. We simply let I D 0 in Lemma 2.4.23 above.

Proposition 2.4.25. Let R be Noetherian, m a maximal ideal of R, and I an ideal of
R. Then I is m-primary if and only if mn � I � m for some n > 0.

Proof. If I is m-primary, then
p
I D m and so I � m since I � pI . Thus the

conclusion follows from Lemma 2.4.23. Conversely,
p

mn D m and so mn � I � m

implies that m D pmn � pI � pm D m.

Remark 2.4.26. Let R be Noetherian and M be a finitely generated R-module. The
number of minimal elements of Supp.M/ is finite since the sets of minimal elements
of Supp.M/ and Ass.M/ are the same by Theorem 2.4.12 and Ass.M/ is finite by
Theorem 2.4.9. Such elements are called isolated associated primes of M while the
remaining primes in Ass.M/ are said to be embedded. So by Remark 2.4.15, the
isolated associated primes of M are precisely the minimal prime ideals that contain
Ann.M/. So

p

Ann.M/ D T

p�Ann.M/ p D Ts
iD1 p0i where p01; : : : ; p0s are isolated

associated primes of M . Elements of Ass.R=I / are sometimes called prime divisors
of I and so isolated associated primes of R=I are referred to as minimal prime divi-
sors of I . Hence minimal prime divisors of I are precisely the minimal prime ideals
that contain I .

Theorem 2.4.27. A ring R is Artinian if and only if R is Noetherian and dimR D 0.

Proof. If R is Artinian, then R is Noetherian by Theorem 2.3.26. Now let p be a
prime ideal of R and Nr 2 R=p, Nr ¤ 0. Then hNrin D hNrinC1 for some n since R=p is
Artinian. So Nrn D NrnC1 � Ns for some Ns 2 R=p. But then 1 D Nr � Ns since R=p is an
integral domain. That is, R=p is a field and so p is maximal. Hence every prime ideal
is maximal and so dimR D 0.

Conversely, if dimR D 0, then each p 2 SpecR is both minimal and maximal. But
R is Noetherian. So by Remark 2.4.26, there are only finitely many minimal divisors
of the zero ideal, say p1; p2; : : : ; pr . Hence p1; p2; : : : ; pr are the maximal ideals of
R. Thus rad.R/ DTr

iD1 pi D
p
0. So rad.R/ is nilpotent by Proposition 2.4.24. But

R= rad.R/ D R=
Tr
iD1 pi is isomorphic to the semisimple R-module

Qr
iD1R=pi .

Hence R is Artinian by Theorem 2.3.26.
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As an application, we have the following result.

Theorem 2.4.28 (Principal Ideal Theorem). Let R be Noetherian and p be a minimal
prime ideal containing a principal ideal I ¤ R. Then ht p � 1.

Proof. We first note that ht p D dimRp by Definition 2.4.13 and pRp is a minimal
prime ideal of the principal ideal IRp. Thus we may assume that R is a local ring
with maximal ideal m such that m is minimal over a principal ideal I of Rp.

Now let q be a prime ideal such that q ¨ m. We then consider the ideals qiRq of
Rq and set q.i/ to be the preimage of qiRq under the natural map R ! Rq. Then
I C q.iC1/ � I C q.i/ for each i > 0 and so we get a descending chain of ideals
of R. But m=I is the only prime ideal of R=I since m is minimal over I . Hence
dimR=I D 0 and so R=I is Artinian by the theorem above. Therefore there is an
n > 0 such that I C q.nC1/ D I C q.n/.

We now claim that if I D hai, then q.n/ D aq.n/ C q.nC1/. Clearly aq.n/ C
q.nC1/ 
 q.n/. Now let x 2 q.n/. Then since I C q.nC1/ D I C q.n/ we have that
x D ra C x0 with x0 2 q.nC1/, r 2 R, and ra 2 q.n/. But m is minimal over I and
q ¨ m. So a … q. But qnRq is qRq-primary by Lemma 2.4.22 and hence easily its
preimage q.n/ is q-primary. So ai … q.n/ for any i > 0 and hence r 2 q.n/. Thus
ra 2 aq.n/ and hence q.n/ D aq.n/ C q.nC1/.

But a 2 m and so q.n/ D q.nC1/ by Corollary 1.3.14 and so qnRq D qnC1Rq

over Rq. Hence qnRq D 0 by Nakayama Lemma (Proposition 1.3.13). Thus qRq

is nilpotent and so Rq is Artinian by Proposition 2.3.20. But then dimRq D 0 by
Theorem 2.4.27 above. Hence ht q D 0 for all primes q ¨ m. That is, ht m � 1.

Remark 2.4.29. Since minimal prime ideals of R consist of only zero divisors of R
by Remarks 2.4.4 and 2.4.26, we see that if a is not a zero divisor of R, then any
minimal prime ideal p containing I D hai is not a minimal prime ideal of R. Hence
ht p � 1. But then ht p D 1 by the theorem above.

Theorem 2.4.30 (Generalized Krull Principal Ideal Theorem). Let R be Noetherian
and p be a minimal prime ideal containing an ideal I generated by n elements. Then
ht p � n.

Proof. By induction on n. The case n D 1 is Theorem 2.4.28 above. We may again
assume R is local with maximal ideal m which is minimal over an ideal I generated
by n elements, say a1; a2; : : : ; an. Suppose ht m > n. Then there is a descending
chain of prime ideals m D p0 � p1 � p2 � � � � pn. We may assume that there is no
prime ideal p0 such that p1 ¨ p0 ¨ m. So I is not contained in p1 because of the
minimality of m. Thus some ai , say a1, is not an element of p1. We note that m is
minimal over p1 C ha1i and so

p

p1 C ha1i D m by Remark 2.4.20. Hence there is
an t > 0 such that mt � p1 C ha1i. So for each i D 2; 3; � � � ; n, ati D bi C ria1
where bi 2 p1, ri 2 R. Now set J D hb2; : : : ; bni. Then J � p1. But ht p1 � n. So
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by the induction hypothesis, p1 is not minimal over J since J is generated by n � 1
elements. Hence there is a prime ideal q such that J � q ¨ p1. It is clear from
ati D bi C ria1 above that qC ha1i contains a power of I . But then m is a minimal
prime ideal of qCha1i by minimality of m. So the ideal m=q ofR=q is minimal over
the principal ideal .qC ha1i/=q. Hence ht.m=q/ � 1 by Theorem 2.4.28 above. But
R=q has a chain of prime ideals m=q � p1=q � 0 of length 2, a contradiction.

Corollary 2.4.31. If R is Noetherian, then every prime ideal of R has finite height.
In particular, the Krull dimension of a semilocal ring is finite.

Proof. The first part easily follows from the theorem above. For the second part, we
simply recall that a ring is semilocal if it has finitely many maximal ideals, and so the
Krull dimension of a semilocal ring is the maximum of the heights of finitely many
maximal ideals and hence is finite by the above.

Corollary 2.4.32. A Noetherian ring satisfies the descending chain condition on its
prime ideals.

We now prove a converse of the Generalized Krull Principal Ideal Theorem.

Theorem 2.4.33. Let R be Noetherian and p be a prime ideal of R of height n. Then
there exist elements a1; a2; : : : ; an in p such that p is minimal over I D ha1; : : : ; ani.
Proof. If n D 0, there is nothing to prove. So we assume n � 1. By Theorem 2.4.12,
R has a finite number of minimal prime ideals, say p1; p2; : : : ; pr . But ht p � 1.
So p is not contained in any pi and thus p 6� Sr

iD1 pi . So let a1 2 p � Sr
iD1 pi

and set NR D R=ha1i, Np D p=ha1i. Then dim NR � n � 1 and so by the induction
hypothesis there exist a sequence Na2; : : : ; Nan in Np such that Np is minimal over the ideal
h Na2; : : : ; Nani in NR. But Nai D aiCha1i for some ai 2 p, i D 2; : : : ; n. So p is minimal
over I .

We now generalize the notion of primary ideals to modules.

Definition 2.4.34. A submodule N of an R-module M is said to be a primary sub-
module if N ¤ M and xy 2 N and x … N implies ynM � N for some n > 0. It is
easy to see that N is a primary submodule of M if and only if every zero divisor r of
M=N is nilpotent for M=N , that is, rn.M=N/ D 0 for some n > 0, or equivalently
r 2p

Ann.M=N/.

Remark 2.4.35. We note that ifM is a finitely generatedR-module, then
p

Ann.M/D
T

p over primes p containing Ann.M/ by Proposition 2.4.17. But then
p

Ann.M/ D
T

p over p 2 SuppM by Remark 2.4.15. So if M is finitely generated, then a
submodule N of M is a primary submodule if and only if each zero divisor of M=N
is an element of

T

p2Supp.M=N/ p.
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Proposition 2.4.36. Let R be Noetherian and M be a finitely generated R-module.
Then a submodule N of M is primary if and only if Ass.M=N/ D ¹pº for some
p 2 SpecR. In this case, Ann.M=N/ is a primary ideal ofR and

p

Ann.M=N/ D p.

Proof. If Ass.M=N/ D ¹pº, then p is the only minimal element of Supp.M=N/ by
Theorem 2.4.12. Hence

p

Ann.M=N/ D p. If r is a nonzero divisor of M=N , then
r 2 p by Remark 2.4.4 and so r 2 p

Ann.M=N/. So the conclusion follows from
Definition 2.4.34.

Conversely, suppose N is a primary submodule of M . Then
S

p2Ass.M=N/ p D
p

Ann.M=N/. But minimal elements of Ass.M=N/ and Supp.M=N/ coincide. So
\

p2Ass.M=N/

p D
\

p2Supp.M=N/

p D
p

Ann.M=N/ D
[

p2Ass.M=N/

p:

But then Ass.M=N/ D ¹pº.
We now show that Ann.M=N/ is primary. Let ab 2 Ann.M=N/ and a …

Ann.M=N/. Then ab.M=N/ D 0 and a.M=N/ ¤ 0. Thus b is a zero-divisor
for M=N and so b 2 p

Ann.M=N/. That is, bn 2 Ann.M=N/ for some n > 0. So
Ann.M=N/ is a primary ideal and moreover

p

Ann.M=N/ D p from the above.

Definition 2.4.37. If N is a primary submodule of M and Ass.M=N/ D ¹pº, then
we say that N is a p-primary submodule of M .

Lemma 2.4.38. If R is Noetherian, then the intersection of a finite number of p-
primary submodules of an R-module is also p-primary.

Proof. It suffices to prove the result for two p-primary submodules N1; N2 of an
R-module M . We consider the obvious exact sequence 0 ! M=.N1 \ N2/ !
M=N1˚M=N2. Then Ass.M=.N1\N2// � Ass.M=N1˚M=N2/ � Ass.M=N1/[
Ass.M=N2/ D ¹pº by Lemma 2.4.8 and so we are done.

Definition 2.4.39. A submodule N of M is said to be irreducible if N D N1 \ N2
where N1; N2 are submodules of M implies N D N1 or N D N2. It is easy to see
that N is an irreducible submodule of M if and only if 0 is irreducible in M=N .

Proposition 2.4.40. Let R be Noetherian. Then every irreducible proper submodule
of a finitely generated R-module is primary.

Proof. Let N be an irreducible submodule of a finitely generated R-module M with
N ¤ M . By Proposition 2.4.36, it suffices to show that Ass.M=N/ consists of a
single prime ideal. Suppose to the contrary Ass.M=N/ has two distinct prime ideals
p1 and p2. Then M=N has distinct submodules A and B such that A Š R=p1,
B Š R=p2. But then A \ B Š R=p1 \ R=p2 D 0. So it follows from the definition
above that A D 0 or B D 0, a contradiction. Thus the result follows.
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Proposition 2.4.41. LetM be a NoetherianR-module. Then every proper submodule
N of M is an intersection of finitely many irreducible submodules of M .

Proof. Let C be the set of all proper submodules A of M that are not a finite inter-
section of irreducible submodules of M . We claim that C D ;. For if not, then C

has a maximal element A0. But A0 is not irreducible and so A0 D A \ B for some
submodules A;B of M with A0 ¤ A, A0 ¤ B . So A0 is strictly contained in A and
B . Thus A, B … C . Hence A;B are finite intersections of irreducible submodules
and so is A0, a contradiction.

Definition 2.4.42. A primary decomposition of a submodule N of M is the finite
intersection N D N1 \N2 \ � � � \Nr where each Ni is a primary submodule of M .
A primary decomposition N DTr

iD1Ni is said to be reduced if

(1) Ni is pi -primary for i D 1; 2; : : : ; r implies pi ¤ pj for i; j D 1; : : : ; r
(2) N1 \ � � � \Ni�1 \NiC1 \ � � � \Nr ª Ni for i D 1; : : : ; r .

We note that given any primary decomposition, we can get a reduced one by com-
bining the Ni ’s with the same prime ideal pi using Lemma 2.4.38 and by dropping
redundant pi ’s one by one. So the two propositions above give the following impor-
tant result.

Theorem 2.4.43. LetR be Noetherian andM be a finitely generatedR-module. Then
every proper submodule N of M has a reduced primary decomposition. Further-
more, if N D N1 \ N2 \ � � � \ Nr is a reduced primary decomposition of N with
Ass.M=Ni / D ¹piº, then Ass.M=N/ D ¹p1; : : : ; prº and

p

Ann.M=N/ DTs
iD1 p0i

where p01; p02; : : : ; p0s are the minimal elements in ¹p1; : : : ; prº. The decomposition of
N therefore depends only on N and M .

Proof. The first part follows from Proposition 2.4.40 and 2.4.41 and the remarks
above. We now embed M=N into

Lr
iD1M=Ni . Then

Ass.M=N/ �
r

[

iD1
Ass.M=Ni / D ¹p1; : : : ; prº:

Conversely, let N 0 D N1 \ � � � \ Ni�1 \ NiC1 \ � � � \ Nr . Then N 0=N Š
N 0=.N 0 \ Ni / Š .N 0 C Ni /=Ni � M=Ni . So Ass.N 0=N/ � Ass.M=Ni / D ¹piº.
That is, Ass.N 0=N/ D ¹piº. But N 0=N � M=N . So pi 2 Ass.M=N/. Thus
¹p1; : : : ; prº � Ass.M=N/. Hence Ass.M=N/ D ¹p1; : : : ; prº. The last part fol-
lows from Remark 2.4.26.

Corollary 2.4.44. Let R be Noetherian. Then every proper ideal I of R has a re-
duced primary decomposition I D I1 \ I2 \ � � � \ Ir where each Ii is pi -primary.
Furthermore, Ass.R=I / D ¹p1; : : : ; prº and

p
I D Ts

iD1 p0i where p01; : : : ; p0s are
the minimal elements in Ass.R=I /.
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Exercises

1. Let p be a prime ideal of R. Prove that p 2 Ass.M/ if and only if M contains a
submodule isomorphic to R=p.

2. Let p be a prime ideal of a Noetherian ring R. Prove that AssR.R=p/ D ¹pº.
3. Prove that if 0! M 0 ! M ! M 00 ! 0 is an exact sequence R-modules, then

Supp.M/ D Supp.M 0/ [ Supp.M 00/.
4. Let R be Noetherian and M be a finitely generated R-module. Prove that the set

of minimal elements of AssR.M/ and Supp.M/ coincide.

5. Let R be Noetherian and M be a finitely generated R-module. Prove that the
following are equivalent.

(a) dimM D 0
(b) R=Ann.M/ is an Artinian ring.

(c) M is of finite length.

(d) Every p 2 Ass.M/ is a maximal ideal of R.

(e) Every p 2 Supp.M/ is a maximal ideal of R.

6. Let R be Noetherian and M be an R-module of finite length. Prove that
Ass.M/ D Supp.M/.

7. Prove that an ideal I of R is primary if and only if every zero divisor of R=I is
nilpotent.

8. Prove that if p 2 SpecR, then
p

pn D p.

9. Show that if p 2 SpecR, then a power pn is not necessarily a primary ideal even
though

p
pn is a prime ideal.

Hint: Consider R D kŒx; y; z	=hz2 � xyi where k is a field and let Nx; Ny; Nz be
images of x; y; z in R. Then show that p D h Nx; Nzi 2 SpecR and p2 is not a
primary ideal.

2.5 Artin–Rees Lemma and Zariski Rings

In this section, all rings are commutative.
A ring S is said to be an R-algebra if there is a ring homomorphism ' W R! S . It

is easy to see that S is an R-module via rs D '.r/s. For example, every ring is a Z-
algebra.

Definition 2.5.1. A graded ring is a ringR together with subgroupsRn of the additive
group of R, n � 0, such that R DL

n�0Rn and RmRn � RmCn for all m, n � 0.
In particular R0R0 � R0. So R0 is a subring of R. Thus a graded ring R is an R0-
algebra. It is easy to see that if R is a graded ring, then RC DL

n>0Rn is an ideal
of R and R=RC Š R0.
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Now let R be a graded ring. Then a graded R-module is an R-module M together
with subgroups Mn of M , n � 0, such that M D L

n�0Mn and RmMn � MmCn
for all m, n � 0. Each element x 2Mn is said to be homogeneous of degree n.

We state and prove the next result for completeness.

Proposition 2.5.2. Let R be a graded ring. Then R is Noetherian if and only if R0 is
Noetherian and R D R0Œx1; : : : ; xr 	 for some x1; : : : ; xr 2 R.

Proof. If R is Noetherian, then R0 Š R=RC is also Noetherian. Now since RC is an
ideal of R, RC D hx1; : : : ; xri for some x1; : : : ; xr 2 R. Clearly, R0Œx1; : : : ; xr 	 

R. To show R 
 R0Œx1; : : : xr 	, we argue by induction that for each n � 0,
Rn 
 R0Œx1; : : : ; xr 	. The case n D 0 is trivial. Now suppose n > 0 and Rk 

R0Œx1; : : : ; xr 	 for all k � n � 1. Assume each xi is homogeneous of degree ˛i . If
y 2 Rn, then y 2 RC and so y DPr

iD1 aixi where ai 2 Rn�˛i
taking Rn�˛i

D 0

if ˛i > n. But ˛i > 0. So n � ˛i � n � 1 and thus each ai 2 R0Œx1; : : : ; xr 	 by the
induction hypothesis. Thus y 2 R0Œx1; : : : ; xr 	 and hence R D R0Œx1; : : : ; xr 	.

The converse follows from the Hilbert basis theorem.

Definition 2.5.3. Let M be an R-module. Then a decreasing sequence .Mn/ of sub-
modules ofM is called a filtration ofM . If I is an ideal ofR, then the filtration .Mn/

of M is said to be an I -filtration if IMn � MnC1. An I -filtration of M is said to be
stable, or according to Bourbaki, I -good, if there is an integer n0 such that IMn D
MnC1 for all n > n0. It is clear that the filtration M D I 0M � IM � I 2M � � � �
is a stable I -filtration. We recall that this filtration determines the I -adic topology of
M generated by ¹x C InM º.

Now let x be an indeterminate and I be an ideal of R, then R0 D R C Ix C
I 2x2 C � � � is a graded subring of the polynomial ring RŒx	. Furthermore,

M 0 DM C .IM/x C .I 2M/x2 C � � �
is a subgroup ofM˝ RRŒx	 noting thatM 0 DP

n�0Mn˝Rxn whereMn D InM .
But

.Imxm/.Mn ˝ RRx
n/ � ImMn ˝ RRx

mCn �MmCn ˝RxmCn:
So M 0 is a graded R0-module. With this notation, we have the following result.

Lemma 2.5.4. Let I be an ideal of R and .Mn/ be an I -filtration of an R-module
M such that each Mn is a finitely generated submodule of M . Then the filtration is
stable if and only if M 0 is a finitely generated R0-module.

Proof. From the above, M 0 is a graded R0-module. Suppose M 0 D hy1; y2; : : : ; yri
where yi 2 M 0

ni
D Mni

˝ Rxni . We note that each yi D mi ˝ xni for some
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mi 2 Mni
. Now let n0 D max¹niº, i D 1; : : : ; r . If n � n0 and m 2 Mn, then

m˝ xn DP

i ai .mi ˝ xni / where ai 2 R0. But then we may assume ai D bixn�ni

where bi 2 In�ni . So m ˝ xn D .
P

i bimi / ˝ xn and therefore m D P

i bimi 2
In�n0Mn0

. Hence if n � n0, Mn � In�n0Mn0
. But clearly In�n0Mn0

� Mn.
Hence Mn D In�n0Mn0

. But then Mn D IMn�1 whenever n > n0. That is, .Mn/

is stable.
Now suppose Mn D IMn�1 for n > n0. If n � n0, let Mn D hyn1

; : : : ; ynrn
i.

Then Mn ˝ RRx
n D hyn1

˝ xn; : : : ; ynrn
˝ xni as an R-module for each n � n0.

If n > n0, then Mn ˝ RRx
n D IMn�1 ˝ Rxn D � � � D In�n0Mn0

˝ Rxn. Thus
M 0 is generated by ¹ynj

˝ xnº for 0 � n � n0 and 1 � j � rn as an R0-module.

Lemma 2.5.5. If R is Noetherian, then so is R0.

Proof. SinceR0 D RCIxCI 2x2C� � � , we see thatR0=R0 Š RC D IxCI 2x2C� � �
where R0 D R. But I is finitely generated. So I D ha1; : : : ; ari. But then RC D
ha1x; a2x; � � � arxi. Thus R0 D RŒa1x; : : : ; arx	 as in the proof of Proposition 2.5.2
above. Hence R0 is Noetherian.

Theorem 2.5.6 (Artin–Rees Lemma). Let R be a Noetherian ring, I an ideal of R,
M a finitely generated R-module and N a submodule of M . If .Mn/ is a stable I -
filtration of M , then .Mn \N/ is also a stable I -filtration. In particular, there exists
an integer r such that

.InM/ \N D In�r..I rM/ \N/

for all n � r .

Proof. We have I.Mn \ N/ � IMn \ IN � MnC1 \ N . So .Mn \ N/ is an I -
filtration which defines a graded R0-module N 0 DP

n�0.Mn \N/˝ Rxn which is
an R0-submodule ofM 0. But .Mn/ is stable. SoM 0 is a finitely generated R0-module
by Lemma 2.5.4. Hence N 0 is a finitely generated R0-module since R0 is Noetherian
by Lemma 2.5.5 above. But then .Mn \N/ is stable again by Lemma 2.5.4.

In particular, if we setMn D InM , then ..InM/\N/ is a stable I -filtration since
.InM/ is. So there is an integer r such that I..I rM/ \N/ D .I rC1M/ \N . Thus
if n � r , then

In�r ..I rM/ \N/ D In�r�1..I rC1M/ \N/ D � � � D .InM/ \N:

Theorem 2.5.7 (Krull Intersection Theorem). Let R be Noetherian, I an ideal of R,
M a finitely generated R-module and N DT

n�0 InM . Then N D IN .

Proof. There exists an integer r such that N D .InM/\N D In�r..I rM/\N/ �
IN � N by the Artin–Rees Lemma. Hence IN D N .
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Corollary 2.5.8. Let R be Noetherian, I an ideal of R, and M a finitely generated
R-module. If I � rad.R/, then M is Hausdorff and every submodule of M is closed
with respect to the I -adic topology on M .

Proof. By Proposition 1.7.2, to show M is Hausdorff it suffices to show that
T

n�0 InM D 0. So let N D T

n�0 InM . Then N D IN by the theorem above.
But I � rad.R/. So N D 0 by Nakayama Lemma. Now if N is a submodule of M ,
then M=N is Hausdorff with respect to the quotient topology. Hence N is closed in
M by Remark 1.7.3.

Lemma 2.5.9. Stable I -filtrations of an R-module M determine the same topology
on M , namely the I -adic topology on M .

Proof. Let Mn D InM . Then .Mn/ is a stable I -filtration of M that determines the
I -adic topology on M . Now let .M 0

n/ be a stable I -filtration. Then IM 0
n 
 M 0

nC1
and so Mn D InM 
 M 0

n since M 0
0 D M . Thus MnCr D I rMn � M 0

nCr for
all n � 0. But there is an integer r such that IM 0

n D M 0
nC1 for all n � r . So

M 0
nCr D InM 0

r 
 InM D Mn for all n � 0. Hence .M 0
n/ and .InM/ induce the

same topology on M .

Theorem 2.5.10. LetR be a Noetherian ring, I an ideal ofR,M a finitely generated
R-module, and N a submodule of M . Then the I -adic topology of N coincides with
the subspace topology induced by the I -adic topology of M .

Proof. We simply note that .InN/ is a stable I -filtration of N . But ..InM/ \ N/
is also a stable I -filtration of N by the Artin–Rees Lemma (Theorem 2.5.6). So the
result follows from Lemma 2.5.9 above.

Theorem 2.5.11. Let R be Noetherian, I an ideal of R, and 0 ! M 0 '! M
 !

M 00 ! 0 be an exact sequence of finitely generated R-modules. Then the sequence of
I -adic completions

0! OM 0 ! OM ! OM 00 ! 0

is also exact.

Proof. The filtration .InM/ determines the I -adic topology on M . So the filtration
.'�1.InM// D ..InM/\M 0/ determines the I -adic topology onM 0 by the theorem
above and . .InM// D ..InM CM 0/=M 0/ determines the I -adic topology onM 00.
Thus we consider the exact sequence

0!M 0=..InM/ \M 0/!M=InM !M 00= .InM/! 0:

But the natural mapsM 0=.InC1M/\M 0 !M 0=.InM/\M 0 are clearly surjective.
So taking inverse limits gives the exact sequence

0! lim �M
0=.InM/ \M 0 ! lim �M=I

nM ! lim �M
00= .InM/! 0

by Theorem 1.6.13. But then the result follows by Theorem 1.7.7.



Section 2.5 Artin–Rees Lemma and Zariski Rings 67

Corollary 2.5.12. If 0 ! M 0 ! M ! M 00 ! 0 is an exact sequence of finitely
generated R-modules, then .M=M 0/^ Š OM= OM 0.

If we set M 0 D InM , then M 00 D M=InM has the discrete topology and so
OM 00 DM 00. Hence we have the following.

Corollary 2.5.13. 1InM is an OR-submodule of OM and OM=1InM ŠM=InM .

Theorem 2.5.14. Let R be a Noetherian ring, I an ideal of R and M a finitely gen-
erated R-module. If OM , OR denote the I -adic completions of M and R respectively,
then

OR˝ RM Š OM:

In particular, if R is complete, then so is M .

Proof. By Remark 2.3.12, M has an exact sequence F1 ! F0 ! M ! 0 with
F1; F0 finitely generated and free. So we have the following commutative diagram

OR˝ RF1 ��

��

OR˝ RF0

��

�� OR˝ RM

��

�� 0

OF1 �� OF0 �� OM �� 0

with exact rows. But the first two vertical maps are isomorphisms. So OR˝RM Š OM.

Corollary 2.5.15. If R is Noetherian and OR is the I -adic completion of R, then

(1) OR is a flat R-algebra.

(2) I OR Š I ˝ R
OR Š OI .

(3) The topology of OR is the OI -adic topology.

(4) OI � rad. OR/.
Proof. (1) Let M be a finitely generated R-module. Then there is an exact sequence
0! K ! P ! M ! 0 with P projective and K;P finitely generated. So there is
an exact sequence 0 ! TorR1 . OR;M/ ! OR ˝ RK ! OR ˝ RP ! OR ˝ RM ! 0.
But 0 ! OK ! OP ! OM ! 0 is exact by Theorem 2.5.11. So TorR1 . OR;M/ D 0 by
Theorem 2.5.14. Hence OR is a flat R-algebra by Theorem 2.1.8.

(2) Since OR is flat, I OR Š I ˝ R
OR by Proposition 2.1.7. So the result follows from

the theorem above.
(3) Since I OR Š OI , the topology of OR is determined by .In OR/ D . OIn/.
(4) We note that OR is complete in its OI -adic topology. So if x 2 OI , then .1�x/�1 D

1CxCx2C� � � converges in OR. Thus 1�xy is a unit in OR for all y 2 OR. So x 2 rad. OR/
by Definition 1.3.12. That is, OI � rad. OR/.
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Corollary 2.5.16. If R is Noetherian, then the I -adic completion OR is also Noether-
ian.

Proof. Let I D ha1; a2; : : : ; ari. Suppose S D RŒx1; : : : ; xr 	 and J D Pr
iD1.xi �

ai /S . Then S=J Š R and so S=J is an S-algebra. Furthermore, if I1 DPr
iD1 xiS ,

then the I1-adic topology on the S -algebra S=J coincides with the I -adic topology
on R and so with respect to these topologies, we have .S=J /^ Š OR. But .S=J /^ Š
OS= OJ Š OS=J OS Š RŒŒx1; : : : ; xr 		=.x1� a1; : : : ; xr � ar/. So the result follows since
RŒŒx1; : : : ; xr 		 is Noetherian.

Lemma 2.5.17. Let ' W R ! S be a ring homomorphism and S be a faithfully flat
R-module, that is, S is a faithfully flat R-algebra. Then

(1) IfM is anR-module, then the map N' WM !M˝ RS defined by N'.x/ D x˝1
is a monomorphism. In particular ' is a monomorphism.

(2) If I is an ideal of R, then IS \R D I .

(3) The map  W SpecS ! SpecR defined by  .p/ D '�1.p/ D p \ R is
surjective.

(4) If m is a maximal ideal of R, then there exists a maximal ideal m0 of S such
that m0 \R D m, that is, m0 lies over m.

Proof. (1) Suppose x 2 M , x ¤ 0. Then 0 ¤ Rx ˝ RS � M ˝ RS since S is
faithfully flat. So Rx ˝ RS D .x ˝ 1/S ¤ 0 and thus x ˝ 1 ¤ 0.

(2) We simply note that R=I ! R=I ˝ RS D S=IS is an embedding by part (1)
above since R=I ˝ RS is a faithfully flat R=I -module. So I D IS \ R by Lemma
2.1.13.

(3) Let q 2 SpecR. Then S ˝ RRq D Sq is a faithfully flat Rq-module. So
Sq ¤ qSq by again the lemma above. Therefore there exists a maximal ideal m of
Sq that contains qSq. So m\Rq � qRq. But qRq is maximal. So m\Rq D qRq.
We now let p D m \ S . Then p 2 SpecS and  .p/ D p \ R D .m \ S/ \ R D
m \R D .m \Rq/ \R D qRq \R D q.

(4) Since m 2 SpecR, we have that there is a p 2 SpecS such that p \ R D m

by part (3) above. Now let m0 be a maximal ideal of S containing p. Then m0 \R �
p \R D m. But m is maximal. So m0 \R D m.

Theorem 2.5.18. Let R be Noetherian and I be an ideal of R. Then the following
are equivalent:

(1) I � rad.R/.

(2) Every finitely generatedR-module is Hausdorff with respect to the I -adic topol-
ogy.

(3) If M is a finitely generated R-module, then every submodule of M is closed
with respect to the I -adic topology on M .
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(4) Every ideal of R is closed with respect to the I -adic topology.

(5) Every maximal ideal of R is closed with respect to the I -adic topology.

(6) The I -adic completion OR is a faithfully flat R-module.

Proof. .1/) .2/) .3/ by the proof of Corollary 2.5.8.
.3/) .4/) .5/ is trivial.
.5/) .6/. OR is a flatR-module by Corollary 2.5.15. Now let m be a maximal ideal

of R. Then m OR D Om is the closure of m in OR. But m is closed. So m OR \ R D m

and thus m OR ¤ OR. That is, OR is faithfully flat by Lemma 2.1.13.
.6/) .1/. Let m be a maximal ideal of R. Then by Lemma 2.5.17, there exists a

maximal ideal m0 of OR such that m0 \ R D m. But OI � rad. OR/ by Corollary 2.5.15.
So OI � m0. Hence I � OI \R � m0 \R D m. Thus I � rad.R/.

Definition 2.5.19. A Zariski ring is a Noetherian ring R with an I -adic topology
that satisfies the equivalent conditions of Theorem 2.5.18 above. In this book, we
will from time to time be concerned with an important class of Zariski rings, namely,
Noetherian local rings .R;m; k/ with the m-adic topology. In this case, OR is a local
ring with maximal ideal m OR and residue field OR=m OR Š .1R=m/ D k.

Theorem 2.5.20. Let R be a semilocal ring and m1;m2; : : : ;mr be its maximal
ideals. If I D rad.R/, then the I -adic completion OR is a direct product of local
rings ORmi

. That is,
OR Š ORm1

� ORm2
� � � � � ORmr

:

Proof. I D m1m2 � � �mr D Tr
iD1mi since I D rad.R/. So for each n � 0, In D

mn
1mn

2 � � �mn
r where mn

i ’s are pairwise coprime. Hence R=In Š R=mn
1 � R=mn

2 �
� � � � R=mn

r . But R=mn
i is local and so R=mn

i D .R=mn
i /mi

D Rmi=.miRmi
/n.

Thus lim �R=m
n
i D ORmi

. But OR D lim �R=I
n. So the result follows.

Exercises

1. Prove that if R is a graded ring, then RC DL

n>0Rn is an ideal of R.

2. Let R be a Noetherian ring and I D rad.R/. Prove that
T

n>0 I
n D 0.

3. If R is Noetherian and OR is its I -adic completion, prove that b.In/ Š . OI /n.

4. Let R be a Zariski ring and OR be its completion. Prove that

(a) R � OR and I OR \R D I for any ideal I of R.

(b) There is a bijective map  W mSpecR ! mSpec OR given by  .m/ D m OR
where m OR \R D m.

(c) If R is a local ring, then OR is also a local ring.
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5. Prove that if R is a Noetherian ring, then RŒŒx1; � � � ; xn		 is a faithfully flat R-
module.

6. Let R be Noetherian, I be an ideal of R such that I � rad.R/, M and N be
finitely generated R-modules, and OR; OM; ON denote I -adic completions. Argue
that an R-homomorphism f W M ! N is an isomorphism if and only if Of W
OM ! ON is an isomorphism.

7. Let R be Noetherian, I be an ideal of R and M;N be R-modules. Prove that
TorRi .M;N /

^ Š Tor
OR
i .
OM; ON/ for all i � 0 where ^ denotes the I -adic comple-

tion.



Chapter 3

Injective and Flat Modules

3.1 Injective Modules

We recall the following

Definition 3.1.1. An R-module E is said to be injective if given R-modules A � B
and a homomorphism f W A ! E, there exists a homomorphism g W B ! E such
that gjA D f , that is, such that

A

f
��

, �� B

g��	
	
	
	

E

is a commutative diagram.

Theorem 3.1.2. The following are equivalent for an R-module E:

(1) E is injective.

(2) Hom.�; E/ is right exact.

(3) E is a direct summand of every R-module containing E.

Proof. .1/) .2/ is clear.
.2/ ) .3/. We consider the exact sequence 0 ! E ! B ! C ! 0 of R-mod-

ules. Then Hom.B;E/ ! Hom.E;E/ ! 0 is exact and so E is a direct summand
of B .
.3/) .1/. Let A � B be R-modules. Then we consider the pushout diagram

0 �� A

f
��

i �� B

f 0

��
E

j
�� C

of Example 1.4.20. But then j is one-to-one and thus 0! E
j! C is split exact. So

there is a map s W C ! E such that s ı j D idE . Then g D s ı f 0 is an extension of
f since g ı i D s ı f 0 ı i D s ı j ı f D f . Hence E is injective.
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Theorem 3.1.3 (Baer’s Criterion). An R-module E is injective if and only if for all
ideals I of R, every homomorphism f W I ! E can be extended to R.

Proof. Let A � B be R-modules and f W A ! E be a homomorphism. Now let
C be the collection of all pairs .C; g/ such that A � C � B and gjA D f . Then
C ¤ ; since .A; f / 2 C . Now partially order C by .C; g/ � .C 0; g0/ if C � C 0 and
gj0C D g. Then C is an inductive system and hence has a maximal element .C0; g0/
by Zorn’s Lemma.

Suppose C0 ¤ B . Then let x 2 B � C0 and set I D ¹r 2 R W rx 2 C0º. Then
I is a left ideal of R. Define a map h W I ! E by h.r/ D g0.rx/. Then h is a
homomorphism and thus can be extended to h0 W R ! E by assumption. We now
define a map Ng W C0CRx ! E by Ng.c0Crx/ D g0.c0/Ch0.r/. If c0Crx D c00Cr 0x,
then c0 � c00 D .r 0 � r/x and so r 0 � r 2 I . Thus g0.c0 � c00/ D g0..r

0 � r/x/ D
h.r 0 � r/ D h0.r 0 � r/ and so g0.c0/C h0.r/ D g0.c00/C h0.r 0/. Hence Ng is a well-
defined homomorphism. Furthermore Ng.a/ D g0.a/ D f .a/ for all a 2 A and so
.C0CRx; Ng/ 2 C . This contradicts the maximality of .C0; g0/ since C0 ¤ C0CRx.
Hence C0 D B and we are done.

Theorem 3.1.4. LetR be a principal ideal domain. Then anR-moduleM is injective
if and only if it is divisible.

Proof. Let x 2M and r 2 R be a nonzero divisor. Then we define a map f W hri !
M by f .sr/ D sx. f is a well-defined homomorphism since r is a nonzero divisor.
If M is injective, then we can extend the map f to a map g W R ! M such that
x D f .r/ D g.r/ D rg.1/. Thus M is divisible. Conversely, let I be an ideal
of R and f W I ! M be an R-homomorphism. By Baer’s Criterion, it suffices to
extend f to R for I ¤ 0. But R is a principal ideal domain and so I D hsi for some
s 2 R; s ¤ 0. If M is divisible, then there is x 2 M such that f .s/ D sx. Now
define an R-homomorphism g W R!M by g.r/ D rx. Then gjI D f for if r 0 2 R,
then g.r 0s/ D r 0sx D r 0f .s/ D f .r 0s/.
Corollary 3.1.5. Every Abelian group can be embedded in an injective Abelian group.

Proof. LetG be an Abelian group. ThenG D .L Z/=S � .L Q/=S . But .
L

Q/=S
is divisible since Q is and so we are done by the theorem above.

Proposition 3.1.6. If R ! S is a ring homomorphism and if E is an injective left R
module, then HomR.S;E/ is an injective left S module.

Proof. Note that S is an .R; S/-bimodule. Let A � B be a submodule of the left
S -module B . Then by Theorem 2.1.10, HomS .A;HomR.S;E// Š HomR.S ˝
SA;E/ Š HomR.A;E/ and likewise for HomS .B;HomR.S;E//. So we have
that HomS .B;HomR.S;E// ! HomS .A;HomR.S;E// ! 0 is exact since
HomR.B;E/! HomR.A;E/! 0 is exact. Hence HomR.S;E/ is injective.
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We note that it follows from the above that HomZ.R;G/ is an injective leftR-mod-
ule for any ring R when G is a divisible Abelian group.

Theorem 3.1.7. Every R-module can be embedded in an injective R-module.

Proof. Let M be an R-module. Then M can be embedded into an injective Abelian
group G by Corollary 3.1.5. But M can be embedded in HomZ.R;G/ by the map
' W M ! HomZ.R;G/ defined by '.x/.r/ D rx since '.x/ D 0 implies x D
'.x/.1/ D 0. Hence we are done by Proposition 3.1.6 above.

Remark 3.1.8. It follows from the theorem above that every R-module N has an
exact sequence 0 ! N ! E0 ! E1 ! � � � with each Ei injective. This sequence
is called an injective resolution of N .

Let � � � ! P1 ! P0 ! M ! 0 be a projective resolution of a left R-mod-
ule M and consider the deleted projective resolution � � � ! P1 ! P0 ! 0. Then
the i th cohomology module of the complex 0 ! Hom.P0; N / ! Hom.P1; N / !
� � � is denoted ExtiR.M;N /. Note that Ext0R.M;N / D Hom.M;N / since 0 !
Hom.M;N / ! Hom.P0; N / ! Hom.P1; N / is exact. ExtiR.M;N / can also be
computed using a deleted injective resolution of N and is independent of the pro-
jective and injective resolutions used, and moreover given an exact sequence 0 !
M 0 ! M ! M 00 ! 0 there exists a long exact sequence 0 ! Hom.M 00; N / !
Hom.M;N /! Hom.M 0; N /! Ext1.M 00; N /! � � � (see Chapter 8 for details).

We can now characterize injective modules as follows.

Theorem 3.1.9. The following are equivalent for an R-module E:

(1) E is injective.

(2) Exti .M;E/ D 0 for all R-modules M and for all i � 1.

(3) Ext1.M;E/ D 0 for all R-modules M .

(4) Exti .R=I;E/ D 0 for all ideals I of R and for all i � 1.

(5) Ext1.R=I;E/ D 0 for all ideals I of R.

Proof. .1/) .2/. Let � � � ! P1 ! P0 ! M ! 0 be a projective resolution of M .
Then 0 ! Hom.M;E/ ! Hom.P0; E/ ! Hom.P1; E/ ! � � � is exact since E is
injective and so (2) follows.
.2/) .3/) .5/ and .2/) .4/) .5/ are trivial.
.5/) .1/ follows from Baer’s Criterion (Theorem 3.1.3).

Corollary 3.1.10. A product of R-modules
Q

i2I Ei is injective if and only if each
Ei is injective.



74 Chapter 3 Injective and Flat Modules

Definition 3.1.11. If M is a submodule of an injective R-module E, then M � E is
called an injective extension ofM . It therefore follows from Theorem 3.1.7 that every
R-module has an injective extension.

Definition 3.1.12. Let A � B be R-modules. Then B is said to be an essential
extension of A if for each submodule N of B , N \ A D 0 implies N D 0. In this
case, A is said to be an essential submodule of B .

We note that if A � B � C are modules and C is an essential extension of A, then
B is an essential extension of A and C is an essential extension of B . If A � B is a
direct summand, then B is an essential extension of A if and only if A D B .

Definition 3.1.13. An injective module E which is an essential extension of an R-
module M is said to be an injective envelope of M .

Theorem 3.1.14. Every R-module has an injective envelope which is unique up to
isomorphism.

Proof. Embed an R-module M into an injective R-module E by Theorem 3.1.7, and
let C be the collection of all essential extensions of M in E. C ¤ ; since M 2 C .
Partially order C by inclusion. Then C is an inductive system and so has a maximal
element E 0 by Zorn’s Lemma. We claim that E 0 is a maximal essential extension
of M . For let E 00 be an essential extension of M that contains E 0. Then we have a
commutative diagram

E 0 , ��

,

��

E 00
'












E

since E is injective. But Ker' \ E 0 D 0 and E 0 � E 00 is an essential extension. So
Ker' D 0 and thus ' is an embedding. Therefore, '.E 00/ is an essential extension
of M contained in E, that is, '.E 00/ 2 C . Thus '.E 00/ D E 0 and so E 00 D E 0. We
now want to argue E 0 is injective. We do this by arguing E 0 is a direct summand of
E. Consider the submodules S � E with E 0 \ S D 0. Using Zorn’s Lemma we
see that there is a maximal such S . We claim then that .E 0 C S/=S � E=S is an
essential extension. For if T=S is a nonzero submodule of E=S then S ¨ T . But by
the maximality of S , E 0\T ¤ 0. So ..E 0CS/=S/\ .T=S/ D ..E 0CS/\T /=S D
..E 0 \ T / C S/=S ¤ 0. The canonical isomorphism .E 0 C S/=S ! E 0 can be
extended to a necessarily injective f W E=S ! E. Since .E 0 C S/=S is essential in
E=S we get f ..E 0CS/=S/ D E 0 is essential in f .E=S/. But then by the maximality
of E 0, f .E=S/ D E 0, that is, f ..E 0 C S/=S/ D f .E=S/. Since f is injective this
implies .E 0 C S/=S D E=S . This means that E 0 C S D E. Since E 0 \ S D 0 we
get that E 0 is a direct summand of E and so is injective.



Section 3.1 Injective Modules 75

Now suppose E 0; E 00 are injective envelopes of M . Then since E 00 is injective, the
inclusion map M ! E 00 can be extended to a map ' W E 0 ! E 00. But M � E 0 is an
essential extension. So ' is an embedding as in the above. Thus '.E 0/ is an injective
extension of M and '.E 0/ is a direct summand of E 00. But then '.E 0/ D E 00 since
M is essential in E 00 and so ' is an isomorphism.

Remark 3.1.15. We can construct an exact sequence 0 ! M ! E0 ! E1 ! � � �
with each Ei injective using injective envelopes by the theorem above. This sequence
is called a minimal injective resolution of M .

Notation. An injective envelope of an R-module M is denoted by E.M/. We
easily see that if M � E with E injective then E contains an injective envelope of
M (just extend the identity M ! E to E.M/! E).

Lemma 3.1.16. Let R be left Noetherian, M be a finitely generated R-module, and
lim�!Nj be a direct limit of R-modules. Then

ExtiR.M; lim�!Nj / Š lim�!ExtiR.M;Nj /

for all i � 0.

Proof. By Remark 2.3.12, M has an exact sequence � � � ! F1 ! F0 ! M ! 0

with each Fi finitely generated and free. We consider the complex

0! Hom.M; lim�!Nj /! Hom.F0; lim�!Nj /! Hom.F1; lim�!Nj /! � � �
and note that Hom.Fi ; lim�!Nj / Š ˚Nj Š lim�!Hom.Fi ; Nj /. Thus the result follows
since lim�! commutes with homology.

Theorem 3.1.17. The following are equivalent for a ring R:

(1) R is left Noetherian.

(2) Every direct limit of injective R-modules is injective.

(3) Every direct sum of injective R-modules is injective.

Proof. .1/ ) .2/. Let E D lim�!Ej where each Ej is an injective R-module, and I

be a left ideal of R. Then Ext1.R=I;E/ D lim�!Ext1.R=I;Ej / by the lemma above.

Hence Ext1.R=I;E/ D 0. Thus E is injective by Theorem 3.1.9.
.2/) .3/ is trivial since a direct sum is a direct limit of the finite sums which are

injective.
.3/ ) .1/. Suppose R is not Noetherian. Then there exists a strictly ascending

chain I1 � I2 � � � � of left ideals of R that never stops. Let I D S1
iD1 Ii . Then

I is an ideal of R and I=Ii ¤ 0 for each i . Now let fi be the composition of the
natural map �i W I ! I=Ii and the inclusion I=Ii � E.I=Ii /. Then define a map
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f W I !L1
iD1E.I=Ii / by f .a/ D .fi .a//. We note that for each a 2 I , �i .a/ D 0

for sufficiently large i . So f .I / is indeed contained in the direct sum.
If

L1
iD1E.I=Ii / is injective, then f extends to a map g W R ! L1

iD1E.I=Ii /.
Now let �j WL1

iD1E.I=Ii /! E.I=Ij / be the projection map. Then for sufficiently
large i , �i ı g.1/ D 0. So for each a 2 I , fi .a/ D �i ı f .a/ D �i ı g.a/ D
a.�i ı g/.1/ D 0 for sufficiently large i . So for such i , the map fi W I ! E.I=Ii /

is a zero homomorphism, a contradiction. Hence
L1
iD1E.I=Ii / is not injective and

the result follows.

Theorem 3.1.18 (Eakin–Nagata Theorem). IfR � S is a subring of the commutative
ring S and if S is a finitely generated R-module, then R is Noetherian if and only if
S is Noetherian.

Proof. If R is Noetherian then S is a Noetherian R-module by Corollary 2.3.10 and
so clearly S is a Noetherian ring.

Now suppose S is Noetherian. Let .Ei /i2I be an arbitrary family of injective
S -modules. By Theorem 3.1.17 above it suffices to prove that

L

Ei is injective.
Let

L

Ei � E be an injective envelope. Since
L

Ei is essential in E (as R-mod-
ules), we claim HomR.S;

L

Ei / is essential in HomR.S;E/ as S-modules. For if
f 2 HomR.S;E/, f ¤ 0, then since S is a finitely generated R-module and

L

Ei
is essential in E, there is an r 2 R such that rf .S/ � L

Ei with rf .S/ ¤ 0.
Thus rf ¤ 0 and rf 2 HomR.S;

L

Ei /. Hence HomR.S;
L

Ei / is essential in
HomR.S;E/ as R-modules and so also as S -modules.

Now since S is a finitely generatedR-module, HomR.S;
L

Ei /ŠL

HomR.S;Ei /
(naturally). By Proposition 3.1.6, HomR.S;Ei / is an injective S -module and since S
is Noetherian,

L

HomR.S;Ei / and so also HomR.S;
L

Ei / are injective S -modules
by the preceding theorem.

But by the above HomR.S;
L

Ei / is essential in HomR.S;E/. By Theorem 3.1.2
Hom.S;

L

Ei / is a direct summand of HomR.S;E/ and so in fact HomR.S;
L

Ei /D
HomR.S;E/.

It only remains to show that this equality implies
L

Ei D E, that is, that
L

Ei
is injective. But if x 2 E, the function R ! E that maps r to rx has an R-linear
extension f W S ! E. So f 2 HomR.S;E/ D HomR.S;

L

Ei /. But then f .1/ D
x 2L

Ei . Hence
L

Ei D E.

Definition 3.1.19. The sum of all simple submodules of M is called the socle of M
and is denoted by Soc.M/. If M has no simple submodules, we set Soc.M/ D 0.
Clearly Soc.M/ is the largest semisimple submodule of M and Soc.M/ D M if and
only if M is semisimple. It is also easy to see that Soc.M/ D ¹x 2 M W Ann.x/ is
the intersection of finitely many maximal left ideals of Rº. In particular, if R is local
with maximal ideal m, then Soc.M/ D ¹x 2 M W Ann.x/ D mº is a vector space
over the residue field k D R=m.
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Proposition 3.1.20. Let A � B be R-modules. Then Soc.A/ � Soc.B/ and equality
holds if B is an essential extension of A.

Proof. Soc.A/ � Soc.B/ is trivial. Now let S be a simple submodule of B . When B
is an essential extension ofA, then S\A ¤ 0 sinceA � B is essential. So S\A D S
and thus S � A.

Corollary 3.1.21. If M is an R-module, then Soc.M/ D Soc.E.M//.

Proposition 3.1.22. If M is an Artinian R-module, then M is an essential extension
of Soc.M/.

Proof. Let N be a nonzero submodule of M . Then N is Artinian and so the collec-
tion of all nonzero submodules of N has a minimal element, say S . S is a simple
submodule and so N \ Soc.M/ ¤ 0. Hence Soc.M/ is essential in M .

Exercises

1. Let R be an integral domain. Prove that a torsion free R-module is injective if
and only if it is divisible.

2. Let R be an integral domain and K be its field of fractions. Prove that a torsion
free R-module is divisible if and only if it is a vector space over K. Conclude
that every torsion free R-module can be embedded in a vector space over K,
and hence in particular every finitely generated torsion free R-module can be
embedded in a finitely generated free R-module.

3. Prove that ifR is a commutative Noetherian ring, then anR-moduleE is injective
if and only if Ext1.R=p; E/ D 0 for all p 2 SpecR.
Hint: Use Lemma 2.4.7 and Baer’s Criterion.

4. Let .Mi /i2I be a family of R-modules and N be an R-module. Prove

(a) Extn.N;
Q

I Mi / ŠQ

I Extn.N;Mi / for all n � 0.

(b) Extn.
L

I Mi ; N / ŠQ

I Extn.Mi ; N / for all n � 0.

Hint: By induction on n using the long exact sequence corresponding to a short
exact sequence 0 ! N ! E ! C ! 0 with E injective and Propositions
1.2.10 and 1.2.11.

5. Prove Corollary 3.1.10.

6. Let A � B � C be modules. Prove

(a) C is an essential extension of A if and only if C is an essential extension of
B and B is an essential extension of A.

(b) If B and C are both essential extensions of A, then C is an essential extension
of B .
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7. Prove that an R-module M is injective if and only if it has no proper essential
extension.

Hint: If M has no essential extension, let M � E be an injective extension and
S � E be maximal with respect to M \ S D 0 (by Zorn’s Lemma). Argue that
M Š .M C S/=S � E=S is essential.

8. Let M be a submodule of E. Prove that the following are equivalent.

(a) E is an injective envelope of M .

(b) E is a maximal essential extension of M .

(c) E is a minimal injective extension of M .

9. Let R be an integral domain. Show that E.R/ is its quotient field.

10. Prove that the following are equivalent.

(a) R is semisimple.

(b) Every R-module is semisimple.

(c) Every R-module is injective.

(d) Every exact sequence 0! A! B ! C ! 0 of R-modules is split exact.

(e) Every R-module is projective.

11. Let .Mi /i2I be a family of R-modules. Prove

(a) If Ni is an essential extension of Mi for each i , then
L

i2I Ni is an essential
extension of

L

i2I Mi .

(b) Soc.
L

i2I Mi / DL

i2I Soc.Mi /.

(c) If I is finite or R is Noetherian, then E.
L

i2I Mi / ŠL

i2I E.Mi /.

12. Prove that Soc.M/ D ¹x 2 M W Ann.x/ is the intersection of finitely many
maximal left ideals of Rº.

13. Prove that if R is a local ring with maximal ideal m and residue field k, then
Soc.M/ is a vector space over k.

14. State and prove Schanuel’s Lemma for injective modules.

3.2 Natural Identities, Flat Modules, and Injective Modules

We start with the following

Theorem 3.2.1. LetR and S be rings, A a leftR-module, andB an .S;R/-bimodule.
If C is an injective left S -module, then

ExtiR.A;HomS .B; C // Š HomS .TorRi .B;A/; C /

for all i � 0.
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Proof. The case i D 0 is the natural identity in Theorem 2.1.10. Now let P� denote a
deleted projective resolution of A. Then

H i .HomR.P�;HomS .B; C /// Š H i .HomS .B ˝ RP�; C //
Š HomS .Hi .B ˝ RP�; C //

sinceH i commutes with HomS .�; C / ifC is injective (see Exercise 2 of Section 1.4).
So we are done. We also note that this theorem easily follows from Theorem 8.2.11
of Chapter 8.

Definition 3.2.2. An R-module M is said to be finitely presented if there is an exact
sequence F1 ! F0 ! M ! 0 where F0 and F1 are finitely generated free R-mod-
ules.

Remark 3.2.3. It is easy to see that an R-module M is finitely presented if and only
if there is an exact sequence 0 ! K ! F ! M ! 0 where F and K are finitely
generated R-modules and F is free. In particular, every finitely presented R-module
is finitely generated and the converse holds ifR is left Noetherian by Corollary 2.3.11.

Lemma 3.2.4. Let R and S be commutative rings, S be a flat R-algebra and M;N
be R-modules. If M is finitely presented, then

HomR.M;N /˝ RS Š HomS .M ˝ RS;N ˝ RS/:

Proof. Since M is finitely presented, we have the following commutative diagram
with exact rows

0 �� Hom.M;N /˝ S
'

��

�� Hom.F0; N /˝ S
'

��

�� Hom.F1; N /˝ S
'

��
0 �� Hom.M ˝ S;N ˝ S/ �� Hom.F0 ˝ S;N ˝ S/ �� Hom.F1 ˝ S;N ˝ S/

where the maps ' are given by '.f ˝s/.x˝t / D s.f .x/˝t /. But the last two vertical
maps are isomorphisms since F0 and F1 are free and finitely generated. Hence the
first ' is also an isomorphism.

Theorem 3.2.5. LetR and S be commutative rings, S be a flatR-algebra, andM;N
be R-modules. If R is Noetherian and M is finitely generated, then

ExtiR.M;N /˝ RS Š ExtiS .M ˝ RS;N ˝ RS/

for all i � 0.
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Proof. By Remark 2.3.12,M has a projective resolution � � � ! P1 ! P0 !M ! 0

with each Pi finitely generated (and hence finitely presented). But then � � � ! P1 ˝
RS ! P0 ˝ RS ! M ˝ RS ! 0 is a projective resolution of the S -module
M ˝ RS . So as in Theorem 2.1.11,

ExtiR.M;N /˝ RS Š H i .HomR.P�; N //˝ RS

Š H i .HomR.P�; N /˝ RS/

Š H i .HomS .P� ˝ RS;N ˝ RS//

Š ExtiS .M ˝ RS;N ˝ RS/:

Corollary 3.2.6. Let R;M , and N be as in the theorem above. Then

ExtiR.M;N /p Š ExtiRp
.Mp; Np/

for all p 2 SpecR and all i � 0.

Definition 3.2.7. An injective R-module E is said to be an injective cogenerator
for R-modules if for each R-module M and nonzero element x 2 M , there is
f 2 HomR.M;E/ such that f .x/ ¤ 0. This is equivalent to the condition that
HomR.M;E/ ¤ 0 for any module M ¤ 0. For if x 2 M , x ¤ 0, any g 2
HomR.Rx;E/ with g ¤ 0 has g.x/ ¤ 0. And such a g has an extension f 2
HomR.M;E/. The group Q=Z is an injective cogenerator for Abelian groups. Hence
if M is a nonzero right R-module, then the character module MC of M defined
by MC D HomZ.M;Q=Z/ is a nonzero left R-module. Moreover, if M is any
left R-module, then HomR.M;RC/ Š MC by Theorem 2.1.10. Hence RC D
HomZ.R;Q=Z/ is an injective cogenerator for left R-modules since RC is injec-
tive by Proposition 3.1.6. Thus there exists an injective cogenerator for R-modules
for any ring R.

Lemma 3.2.8. Let R and S be rings and E be an injective cogenerator for R-mod-

ules. Then a sequence 0 ! A
'! B

 ! C ! 0 of .R; S/-bimodules is exact if and

only if the sequence 0 ! HomR.C;E/
 �

! HomR.B;E/
'�

! HomR.A;E/ ! 0 of
left S -modules is exact.

Proof. The ‘only if’ part is clear since E is an injective R-module. For the ‘if’ part,
we show that Im' D Ker . Suppose Im' 6� Ker . Then choose b 2 Im'�Ker .
So  .b/ ¤ 0. But  .b/ 2 C . So there is an f 2 HomR.C;E/ such that f . .b// ¤
0 sinceE is an injective cogenerator. But b D '.a/ for some a 2 A. Thus f ı ı' ¤
0. But then .'� ı  �/.f / ¤ 0, a contradiction. So Im ' � Ker . Now suppose
Im' ¨ Ker . Then let b 2 Ker � Im '. So bC Im' is nonzero in B= Im'. Thus
there is an f 2 HomR.B= Im';E/ such that f .bC Im'/ ¤ 0. Hence the composite



Section 3.2 Natural Identities, Flat Modules, and Injective Modules 81

map g W B �! B= Im'
f! E where � is the natural homomorphism is such that

g.b/ ¤ 0. But '�.g/ D g ı ' D 0 since f .Im'/ D 0. So g 2 Ker'� D Im �.
That is, g D  �.h/ D h ı  for some h 2 HomR.C;E/. But b 2 Ker . So
g.b/ D h. .b// D 0, a contradiction since g.b/ ¤ 0.

Theorem 3.2.9. The following are equivalent for an .R; S/-bimodule F :

(1) F is a flat left R-module.

(2) HomS .F;E/ is an injective rightR-module for all injective right S-modulesE.

(3) HomS .F;E/ is an injective right R-module for any injective cogenerator E for
right S-modules.

Proof. .1/ ) .2/. Let I be a right ideal of R. If F is flat, then 0 ! I ˝ F !
R ˝ F is an exact sequence of right S -modules. But then HomS .R ˝ RF;ES / !
HomS .I ˝ RF;ES / ! 0 is exact for any injective right S-module E. Hence by
Theorem 2.1.10, HomR.R;HomS .F;E//! HomR.I;HomS .F;E//! 0 is exact.
Thus HomS .F;E/ is injective by Baer’s Criterion.
.2/) .3/ is trivial.
.3/ ) .1/. Let A � B be right R-modules. By (3), HomR.B;HomS .F;E// !

HomR.A;HomS .F;E// ! 0 is exact. So HomS .B ˝ RF;E/ ! HomS .A ˝
RF;E/! 0 is exact. But then 0! A˝ RF ! B ˝ RF is exact by Lemma 3.2.8
above.

Theorem 3.2.10. The following are equivalent for an R-module F :

(1) F is flat.

(2) The character module FC is an injective right R-module.

(3) TorR1 .R=I; F / D 0 for all finitely generated right ideals I of R.

(4) 0! I ˝ RF ! F is exact for all finitely generated right ideals of R.

Proof. .1/, .2/ follows from Theorem 3.2.9 above.
.1/) .3/) .4/ is trivial.
.4/) .2/. Every ideal is a direct limit of finitely generated ideals and direct limits

preserve exact sequences. Hence (4) means that 0 ! I ˝ RF ! F is exact for all
right ideals I ofR. So FC ! .I ˝ RF /

C ! 0 is exact. But then HomR.R; FC/!
HomR.I; FC/! 0 is exact for all ideals I of R. So (2) follows by Baer’s Criterion.

We now consider yet another natural identity.

Theorem 3.2.11. Let R and S be rings, A be a finitely presented right S -module, B
an .R; S/-bimodule, and C an injective left R-module. Then the natural homomor-
phism

� W A˝ S HomR.B; C /! HomR.HomS .A;B/; C /
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defined by �.a˝f /.g/ D f .g.a// is an isomorphism where a 2 A, f 2 Hom.B; C /,
and g 2 Hom.A;B/. If A is a finitely presented left R-module, B an .R; S/-
bimodule, and C and injective right S -module, then

HomS .B; C /˝ RA Š HomS .HomR.A;B/; C /

where the isomorphism is given by �.f ˝ a/.g/ D f .g.a//.
Proof. We consider the exact sequence F1 ! F0 ! A ! 0 with F0; F1 finitely
generated and free. Then we have the following commutative diagram

F1 ˝ Hom.B; C / ��

��

F0 ˝ Hom.B; C /

��

�� A˝ Hom.B; C /

�

��

�� 0

Hom.Hom.F1; B/; C / �� Hom.Hom.F0; B/; C / �� Hom.Hom.A;B/; C / �� 0

with exact rows. But the first two vertical maps are isomorphisms. So � is an isomor-
phism. The second isomorphism follows similarly.

As an application, we have the following result.

Proposition 3.2.12. A finitely presented flat R-module is projective.

Proof. Let F be a finitely presented flat right R-module and B ! C ! 0 be
an exact sequence of right R-modules. We want to show that HomR.F; B/ !
HomR.F; C / ! 0 is exact, or equivalently 0 ! HomR.F; C /C ! HomR.F; B/C
is exact by Lemma 3.2.8. But then we have the following commutative diagram

0 �� F ˝ RC
C

��

�� F ˝ RB
C

��

0 �� HomR.F; C /C �� HomR.F; B/C

where the first row is exact since F is flat. But the vertical maps are isomorphisms
by Theorem 3.2.11 above since F is finitely presented. Hence the second row is also
exact and thus we are done.

Theorem 3.2.13. Let R and S be rings. If R is left Noetherian, A a finitely presented
left R-module, B an .R; S/-bimodule, and C an injective right S-module, then

TorRi .HomS .B; C /; A/ Š HomS .ExtiR.A;B/; C /

for all i � 0.
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Proof. This follows from Theorem 3.2.11 as in the proof of Theorem 3.2.1 since A
has a deleted projective resolution with each term finitely presented.

Theorem 3.2.14. LetA be a finitely presented leftR-module, B and .R; S/-bimodule
and C a left flat S -module. Then the natural map � W HomR.A;B/ ˝ SC !
HomR.A;B ˝ SC/ defined by �.f ˝ c/.a/ D f .a/˝ c is an isomorphism.

Proof. The proof is similar to that of Theorem 3.2.11.

Theorem 3.2.15. Let R; S;A;B and C be as in Theorem 3.2.14 above. If R is left
Noetherian, then

ExtR.A;B/˝ SC Š ExtiR.A;B ˝ SC/

for all i � 0.

Proof. This is also similar to the proofs of Theorems 3.2.1 and 3.2.13.

Theorem 3.2.16. Let R be left Noetherian. Then the following are equivalent for an
.R; S/-bimodule E:

(1) E is an injective left R-module.

(2) HomS .E;E 0/ is a flat right R-module for all injective right S -modules E 0.
(3) HomS .E;E 0/ is a flat rightR-module for any injective cogeneratorE 0 for right

S -modules.

(4) E ˝ SF is an injective left R-module for all flat left S-modules F .

(5) E ˝ SF is an injective left R-module for any faithfully flat left S -module F .

Proof. .1/) .2/. Let I be a left ideal of R. Then I is finitely presented since R is
Noetherian. But E is injective. So

0! HomS .HomR.I; E/;E
0/! HomS .HomR.R;E/;E

0/

being exact means 0! HomS .E;E 0/˝ RI ! HomS .E;E 0/ is exact by Theorem
3.2.11. Hence (2) follows by Proposition 3.2.10.
.2/) .3/ and .4/) .5/ are trivial.
.3/) .1/ follows by reversing the proof of .1/) .2/ and using the fact that E 0 is

an injective cogenerator.
.1/) .4/. HomR.R;E/˝ SF ! HomR.I; E/˝ SF ! 0 is exact for an ideal I

ofR since RE is injective. But then HomR.R;E˝ SF /! HomR.I; E˝ SF /! 0

is exact by Theorem 3.2.14 since SF is flat. Hence (4) follows.
.5/ ) .1/ follows by reversing the proof of .1/ ) .4/ above and using the fact

that SF is faithfully flat.
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Corollary 3.2.17. Let R be left Noetherian. Then a left R-module E is injective if
and only if the character module EC is a flat right R-module.

Definition 3.2.18. An R-module M is said to have injective dimension at most n,
denoted inj dim � n, if there is an injective resolution 0 ! M ! E0 ! E1 !
� � � ! En ! 0. If n is the least, then we set inj dimM D n. The flat dimension and
projective dimension of an R-module are defined similarly using flat and projective
resolutions, respectively. These are denoted flat dimM and proj dimM , respectively.
We note that flat dimM � proj dimM and equality holds if R is left Noetherian and
M is finitely generated.

Now using Theorems 3.2.1, 3.2.13, and 3.2.15, we get the following results of
Ishikawa.

Theorem 3.2.19. Let M be an .R; S/-bimodule and E an injective cogenerator for
right S -modules. Then flat dimRM D inj dimR HomS .M;E/. If furthermore R is
left Noetherian, then inj dimRM D flat dimR HomS .M;E/.

Theorem 3.2.20. LetM be an .R; S/-bimodule and F be a faithfully flat left S-mod-
ule. If R is left Noetherian, then inj dimRM D inj dimRM ˝ SF .

Now letM be a right R-module and .A�/ be a family of left R-modules over some
index set ƒ. Then we define a map

� WM ˝ R

Y

�

A� !
Y

�

M ˝ RA�

by �.x˝.a�// D .x˝a�/. IfA� D R for each �, then we have a map � WM˝Rƒ !
Mƒ given by �.x ˝ .r�// D .xr�/. It is easy to see that � is an isomorphism when
M is finitely generated and free.

Lemma 3.2.21. The following are equivalent for a right R-module M :
(1) M is finitely generated.
(2) � WM ˝Q

ƒA� !
Q

ƒM ˝A� is an epimorphism for every family .A�/ƒ of
left R-modules.

(3) � WM ˝Rƒ !Mƒ is an epimorphism for any set ƒ,
(4) � WM ˝RM !MM is an epimorphism.

Proof. .1/) .2/. Let 0 ! K ! F ! M ! 0 be exact with F finitely generated
and free. Then we have the following commutative diagram

K ˝Q

ƒA�
��

�K
��

F ˝Q

ƒA�

�F

��

�� M ˝Q

ƒA�

�M
��

�� 0

Q

ƒK ˝ A� ��
Q

ƒ F ˝ A� ��
Q

ƒM ˝ A� �� 0

with exact rows. But �F is an isomorphism. So �M is onto.



Section 3.2 Natural Identities, Flat Modules, and Injective Modules 85

.2/) .3/) .4/ is trivial.

.4/) .1/. Let .xx/M 2MM . Then since � is onto, .xx/M D �.
Pn
iD1 xi˝.rix//

where xi 2 M , rix 2 R. So .xx/M D .
Pn
iD1 xirix/. Hence x D Pn

iD1 xirix and
thus x1; x2; : : : ; xn are generators of M .

Theorem 3.2.22. The following are equivalent for a right R-module M :

(1) M is finitely presented.

(2) � WM ˝Q

ƒA� !
Q

ƒM ˝A� is an isomorphism for every family .A�/ƒ of
left R-modules.

(3) � WM ˝Rƒ !Mƒ is an isomorphism for any set ƒ.

Proof. .1/) .2/. Let F1 ! F0 ! M ! 0 be exact with F0; F1 finitely generated
and free. Then we get a commutative diagram similar to the one in the proof of the
lemma above where �F1

and �F0
are isomorphisms. Thus �M is an isomorphism.

.2/) .3/ is trivial.

.3/ ) .1/. M is finitely generated by the lemma above. So let 0 ! K ! F !
M ! 0 be exact with F finitely generated and free. It now suffices to show that K is
finitely generated. But for any ƒ, we have a commutative diagram

K ˝Rƒ ��

�K
��

�� F ˝Rƒ
�F

��

�� M ˝Rƒ
�M
��

�� 0

0 �� Kƒ �� Fƒ �� Mƒ �� 0

with exact rows where �F and �M are isomorphisms. So �K is onto and hence K is
finitely generated again by Lemma 3.2.21.

Definition 3.2.23. A ring R is said to be right coherent if every finitely generated
right ideal of R is finitely presented. It follows from Remark 3.2.3 that every right
Noetherian is right coherent.

We are now in position to prove the following characterization of coherent rings.

Theorem 3.2.24. The following are equivalent for a ring R:

(1) R is right coherent.

(2) Every product of flat left R-modules is flat.

(3) Rƒ is a flat left R-module for any set ƒ.

(4) Every finitely generated submodule of a finitely presented right R-module is
finitely presented.



86 Chapter 3 Injective and Flat Modules

Proof. .1/ ) .2/. Let .F�/ƒ be a family of flat left R-modules. If I is a finitely
generated right ideal of R, then I ˝Q

� F� Š
Q

� I ˝ F� by Theorem 3.2.22. But
I ˝ F� � F� since F� is flat. So we have an embedding I ˝Q

� F� ,!
Q

� F� for
each finitely generated right ideal I of R. Hence

Q

� F� is flat by Theorem 3.2.10.
.2/) .3/ and .4/) .1/ are trivial.
.3/ ) .4/. Let M be a finitely presented right R-module and N be a finitely

generated submodule of M . We now consider the following commutative diagram

0 �� N ˝Rƒ ��

�N

��

M ˝Rƒ
�M
��

0 �� Nƒ �� Mƒ

with exact rows. But �M is an isomorphism by Theorem 3.2.22. So �N is one-to-one.
But N is finitely generated. So �N is surjective by Lemma 3.2.21. Hence �N is an
isomorphism and thus N is finitely presented.

Remark 3.2.25. Suppose M is a finitely presented right R-module. Then there is an
exact sequence 0 ! K ! F0 ! M ! 0 with F0 and K finitely generated and
F0 free. If R is right coherent, then K is finitely presented by the theorem above.
Thus continuing in this manner, we see that if R is right coherent then every finitely
presented right R-module M has a free resolution � � � ! F1 ! F0 ! M ! 0 with
each Fi finitely generated and free.

Theorem 3.2.26. Let R be right coherent, M be a finitely presented right R-module,
and .A�/ƒ be a family of left R- modules. Then

TorRn
�

M;
Y

�

A�

�

Š
Y

�

TorRn .M;A�/

for all n � 0.

Proof. The case n D 0 is Theorem 3.2.22 and the rest is left as an exercise.

Remark 3.2.27. Lemma 3.1.16 and Theorems 3.2.5, 3.2.13, and 3.2.15, hold without
the Noetherian hypothesis if we assume that the left R-module M (or A) has a pro-
jective resolution � � � ! P1 ! P0 !M ! 0 with each Pi finitely presented. Hence
by Remark 3.2.25 above, these results together with Theorems 3.2.19 and 3.2.20 hold
if we assume R is right coherent.
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Exercises

1. Prove Remark 3.2.3.

2. Prove that the group Q=Z is an injective cogenerator for Abelian groups.

3. A ring is said to be left semihereditary if its finitely generated left ideals are pro-
jective. Prove that if R is a left semihereditary ring, then every finitely generated
submodule of a free R-module is a direct sum of finitely many finitely generated
left ideals.

4. Prove that the following are equivalent for a ring R.

(a) R is left semihereditary.

(b) Every finitely generated submodule of a projective R-module is projective.

Moreover if R is a domain, then the above statements are equivalent to

(c) Every finitely generated torsion free R-module is projective.

5. A semihereditary integral domain is called a Prüfer domain. Prove that if R is a
Prüfer domain, then an R-module is flat if and only if it is torsion free.

Hint: Use Exercises 5 and 6 of Section 2.1.

6. Prove Theorem 3.2.13.

7. Prove Theorem 3.2.14.

8. Prove Theorem 3.2.15.

9. Prove Theorems 3.2.19 and 3.2.20.

10. Prove Theorem 3.2.26.

11. Prove Remark 3.2.27.

12. Let R be a commutative Noetherian ring, I be an ideal of R, and M;N be R-
modules. Prove that if M is finitely generated, then

ExtiR.M;N /
^ Š ExtiOR.

OM; ON/

for all i � 0 where ^ denotes the I -adic completion.

3.3 Injective Modules over Commutative Noetherian Rings

In this section, R will denote a commutative Noetherian ring. We start with the fol-
lowing result.

Proposition 3.3.1. Let S � R be a multiplicative set. If A � B is an essential
extension of R-modules, then so is S�1A � S�1B as R-modules (and so also as
S�1R-modules).
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Proof. LetN be a nonzero finitely generated submodule of S�1B . ThenN D S�1B 0
for some finitely generated submodule B 0 of B . Suppose N \ S�1A D 0. Then
S�1.B 0\A/ D N\S�1A D 0. Thus sinceB 0\A is finitely generated, t .B 0\A/ D 0
for some t 2 S . Now let I D Rt . Then by Artin–Rees Lemma, there is an r such that

.InB 0/ \ .B 0 \ A/ D In�r ..I rB 0/ \ .B 0 \ A// D 0

for all n > r since I.B 0 \ A/ D 0. But .InB 0/ \ A D .InB 0/ \ .B 0 \ A/. So
.InB 0/\A D 0, a contradiction since InB 0 ¤ 0 andA � B is an essential extension.
Hence S�1A is an essential submodule of S�1B .

Proposition 3.3.2. Let S � R be a multiplicative set. If E is an injective R-module,
then S�1E is an injective S�1R-module.

Proof. Let J be an ideal of S�1R. Then J D S�1I for some ideal I ofR by Lemma
2.2.6. So

Ext1
S�1R

..S�1R/=J; S�1E/ Š Ext1
S�1R

.S�1.R=I /; S�1E/

Š S�1 Ext1R.R=I;E/

by Theorem 3.2.5. So the result follows from Baer’s Criterion (Theorem 3.1.9).

Theorem 3.3.3. S�1ER.M/ Š ES�1R.S
�1M/ for any R-module M .

Proof. S�1ER.M/ is an injective S�1R-module by the proposition above. But then
S�1ER.M/ is an essential injective extension of S�1M by Proposition 3.3.1. Thus
S�1ER.M/ is an injective envelope of S�1M .

Remark 3.3.4. It follows from the above that if 0 ! M ! E0 ! E1 ! � � � is an
injective resolution of an R-module M , then 0 ! S�1M ! S�1E0 ! S�1E1 !
� � � is an injective resolution of the S�1R-module S�1M . Similarly for the minimal
injective resolution of M .

Definition 3.3.5. An R-module M is said to be indecomposable if there are no non-
zero submodules M1 and M2 of M such that M DM1 ˚M2.

Lemma 3.3.6. An injective R-module M is indecomposable if and only if it is the
injective envelope of each of its nonzero submodules.

Proof. Let N be a nonzero submodule of M . Then M Š E.N/ ˚ N 0 for some R-
module N 0. Thus N 0 D 0 since M is indecomposable. Conversely, suppose M D
M1 ˚M2. If M1 ¤ 0, then M1 
 M is an essential extension by assumption. But
M1 \M2 D 0. So M2 D 0 and we are done.
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Theorem 3.3.7. The following properties hold:

(1) E.R=p/ is indecomposable for all p 2 SpecR.

(2) If E is an indecomposable injective R-module, then E Š E.R=p/ for some
p 2 SpecR.

Proof. (1) Suppose there are nonzero submodules E1 and E2 of E.R=p/ such that
E.R=p/ D E1 ˚ E2. Then Ei \ R=p ¤ 0 for i D 1; 2 since R=p � E.R=p/ is
an essential extension. So let xi 2 Ei \ R=p be a nonzero element. Then x1x2 2
.E1 \ R=p/ \ .E2 \ R=p/. But .E1 \ R=p/ \ .E2 \ R=p/ D 0. So x1; x2 are
nonzero elements in R=p such that x1x2 D 0. This contradicts the fact that R=p is a
domain. Hence E.R=p/ is indecomposable.

(2) Let p 2 Ass.E/. Then R=p is isomorphic to a submodule of E. Thus E Š
E.R=p/ by Lemma 3.3.6 above.

Theorem 3.3.8. Let p;q 2 SpecR. Then

(1) If r 2 R � p, then r is an automorphism on E.R=p/.

(2) E.R=p/ Š E.R=q/ if and only if p D q.

(3) AssE.R=p/ D ¹pº.
(4) If x 2 E.R=p/, then there exists a positive integer t such that ptx D 0.

(5) Hom.E.R=p/; E.R=q// ¤ 0 if and only if p � q.

(6) If S � R is a multiplicative set, then

S�1E.R=p/ D
´

E.R=p/ if S \ p D ;
0 if S \ p ¤ ;:

(7) HomRp
.k.p/; E.R=p// Š k.p/.

Proof. (1) Let ' W E.R=p/ ! E.R=p/ be the map multiplication by r . Then ' is
one-to-one on R=p. So Ker' \ R=p D 0. But R=p � E.R=p/ is essential. So
Ker' D 0 and thus ' is one-to-one. But then '.E.R=p// is an injective summand of
E.R=p/. So ' is an isomorphism sinceE.R=p/ is indecomposable by Theorem 3.3.7.

(2) Suppose p ¤ q. Let p 6� q. Then r 2 p � q is an automorphism on E.R=q/
but not on E.R=p/. So E.R=q/ 6Š E.R=p/.

(3) Let q 2 Ass.E.R=p//, then R=q is isomorphic to a submodule of E.R=p/ and
so E.R=p/ Š E.R=q/. Hence p D q by (2).

(4) Let x 2 E.R=p/, x ¤ 0. Then Rx Š R=Ann.x/. But AssE.R=p/ D ¹pº by
(3). So Ass.Rx/ D ¹pº. But then p is the unique minimal element in Supp.Rx/. But
Supp.Rx/ D ¹q 2 SpecR W Ann.x/ � qº by Remark 2.4.15. Hence p is the radical
of Ann.x/. That is, Ann.x/ is p-primary and we are done.
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(5) If p � q, then we have a map R=p
'! R=q induced by the inclusion p � q.

Now embed R=q into E.R=q/. Then the composition of ' and the inclusion R=q �
E.R=q/ can be extended to a nonzero map in Hom.E.R=p/; E.R=q//.

Now let ' 2 Hom.E.R=p/; E.R=q// be nonzero. Then let x 2 E.R=p/ be such
that '.x/ ¤ 0. If r 2 p, then r tx D 0 for some t > 0 by (4) above. So r t 2 Ann.x/.
But Ann.'.x// � q by (3). Therefore Ann.x/ � Ann.'.x// � q. So r t 2 q and
thus r 2 q. Hence p � q.

(6) This follows from parts (1) and (4).
(7) E.R=p/ D E.R=p/p by (6) above. So E.R=p/ Š ERp

.k.p// by Theo-
rem 3.3.3. So HomRp

.k.p/; E.R=p// Š HomRp
.k.p/; ERp

.k.p/// Š k.p/.

Remark 3.3.9. We see from Theorems 3.3.7 and 3.3.8 above that there is a bijective
correspondence between the prime ideals p of R and the indecomposable injective
modules given by p$ E.R=p/.

Example 3.3.10. Let k be a field and kŒX	 denote kŒx1; : : : ; xq	 where xi are vari-
ables. Recall that hx1; : : : ; xqi is a maximal ideal in kŒx1; : : : ; xq	 and hence a prime
ideal. Thus k Š kŒx1; : : : ; xq	=hx1; : : : ; xqi and so k can be viewed as a kŒX	-
module. Furthermore, by Theorem 3.3.7 above, E.k/ Š E.kŒX	=hx1; : : : ; xqi/ is
indecomposable.

Now let R D kŒŒx�11 ; x�12 ; : : : ; x�1q 		 denote the ring of formal power series in
x�11 ; x�12 ; : : : ; x�1q with coefficients in k. Terms in the series are of the form

ˇx
�1

1 x
��2

2 � � � x��q

q where ˇ 2 k and �i ’s are nonnegative integers. Then R can be
considered as a kŒX	-module where the product of terms is given by

.˛x
�1

1 x
�2

2 � � � x�q
q /.ˇx

��1

1 x
��2

2 � � � x��q
q /D

´

.˛ˇ/x
�.�1��1/
1 x

�.�2��2/
2 � � � x�.�q��q/

q

0 if any �i > �i for any i:

Now consider the kŒX	-module Homk.kŒX	kŒX	; kŒX	k/ and let A be a kŒX	-mod-
ule. Then since A Š A˝kŒX	 kŒX	, we have that

Homk.A; k/ Š Homk.A˝kŒX	 kŒX	; k/
Š HomkŒX	.A;Homk.kŒX	; k//:

So Homk.�; k/ and HomkŒX	.�;Homk.kŒX	; k// are equivalent as functors from
kŒX	-modules to Abelian groups.

Since k is injective as a k-module, ifA�B are kŒX	-modules, then Homk.B; k/!
Homk.A; k/ ! 0 is exact as groups. But then HomkŒX	.B;Homk.kŒX	; k// !
HomkŒX	.A;Homk.kŒX	; k// ! 0 is exact and so Homk.kŒX	; k/ is an injective
kŒX	-module. Now define a map

' W Homk.kŒx	; k/! kŒŒx�11 ; x�12 ; : : : ; x�1q 		
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by '.f / DP

�i�0 f .x
�1

1 : : : x
�q

q /x
��1

1 : : : x
��q

q . Then ' is an isomorphism of Abel-
ian groups. As kŒX	-modules, let ˛ 2 k, f 2 Homk.kŒX	; k/, and h 2 kŒX	, then
set ..˛x�1

1 x
�2

2 � � � x�q

q /f /.h/ D f .˛x�1

1 x
�2

2 � � � x�q

q � h/ where �i ’s are nonnegative
integers. Thus

'..˛x
�1

1 x
�2

2 � � � x�q
q /f / D

X

�i�0
f̨ .x

�1C�1

1 � � � x�qC�q
q /x

��1

1 x
��2

2 � � � x��q
q

and ' is an isomorphism as kŒX	-modules. Hence kŒŒx�11 ; x�12 ; : : : ; x�1q 		 is an injec-
tive kŒX	-module.

But k � kŒx�11 ; : : : ; x�1q 	 � kŒŒx�11 ; x�12 ; : : : ; x�1q 		 where kŒx�11 ; : : : ; x�1q 	 is
the inverse polynomial ring which can also be viewed as a kŒX	-module. Let h 2
kŒx�11 ; : : : ; x�1q 	, h ¤ 0 and suppose ˛x��1

1 x
��2

2 � � � x��q
q is a nonzero term in h with

the largest sum �1 C �2 C � � � C �q . Let ˇx��1

1 : : : x
��q

q be any term in h, then
�1 C �2 C � � � C �q � �1 C �2 C � � � C �q and so �i � �i for some i . Thus
x
�1

1 : : : x
�q

q � .˛x��1

1 : : : x
��q

q / D 0 in kŒx�11 : : : ; x�1q 	. So .x�1

1 : : : x
�q

q /h D ˛ ¤ 0.
Thus k is an essential submodule of kŒx�11 ; : : : ; x�1q 	. So E.kŒx�11 ; : : : ; x�1q 	/ D
E.k/ and is such that kŒx1; : : : ; xq	=hx1; : : : ; xqi Š k � kŒx�11 ; : : : ; x�1q 	 
 E.k/ 

kŒŒx�11 ; : : : x�1q 		.

Now let h 2 E.k/, h ¤ 0. Then h 2 kŒŒx�11 ; : : : ; x�1q 		. But by Theorem 3.3.8,
there exists a positive integer s such that xsi h D 0 for i D 1; 2; : : : ; q. So h 2
kŒx�11 ; : : : ; x�1q 	. That is, E.k/ D kŒx�11 ; : : : ; x�1q 	 as kŒX	-modules.

Now let kŒŒX		 denote the power series ring kŒŒx1; : : : ; xq		. Then kŒx�1; : : : ; x�1q 	

and k are also kŒŒX		-modules and again kŒx�11 ; : : : ; x�1q 	 is an essential extension of
k. If E 0 D E.kŒx�11 ; : : : ; x�1q 	/ as kŒŒX		-modules, then E 0 D E.k/ and so is an
indecomposable kŒŒX		-module.

But viewing kŒx�11 ; : : : ; x�1q 	 and E 0 as kŒX	-modules, then we see that E 0 D
kŒx�11 ; : : : ; x�1q 	 ˚ E 00 for some kŒX	-submodule E 00 since kŒx�11 ; : : : ; x�1q 	 is an
injective kŒX	-module from the above. But if f 2 kŒŒX		 and h 2 E 00, h ¤ 0, then
Ann.h/ is hx1; : : : ; xqi-primary. So f D f1Cf2 where f1 2 kŒX	 and f2 2 Ann.h/.
Thus f h D f1h 2 E 00. That is, E 00 is also a kŒŒX		-module. But then E 00 D 0 since
E 0 is indecomposable as a kŒŒX		-module. Hence kŒx�11 ; : : : ; x�1q 	 is also an injective
envelope of k when regarded as kŒŒX		-modules.

Theorem 3.3.11. Every injective R-module E is a direct sum of indecomposable R-
modules. This decomposition is unique in the sense that for each p 2 SpecR, the num-
ber �p of summands isomorphic to E.R=p/ depends only on p and E. In fact, �p D
dimk.p/ HomRp

.k.p/; Ep/ and E DL

p2SpecR E.R=p/
.Xp/ where CardXp D �p.

Proof. We assume E ¤ 0. Let C be the class of submodules of E that are direct
sums of indecomposable injective modules. C ¤ ; since E has an indecomposable
injective summand. For if p 2 Ass.E/, then E.R=p/ is an indecomposable summand
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of E. Now partially order C by inclusion. Then C is an inductive system and so it
has a maximal element E0. But R is Noetherian. So E0 is an injective R-module by
Theorem 3.1.17. Thus E Š E0 ˚ E 0 for some injective E 0. If E 0 D 0, then we are
done. If not, let p 2 Ass.E 0/. So E 0 Š E.R=p/ ˚ E 00. But then E0 ˚ E.R=p/
contradicts the maximality of E0. Hence E 0 D 0.

Now let E DL

i2I Ei where the Ei are indecomposable. Then Ei Š E.R=p/ for
some p 2 SpecR by Theorem 3.3.7. But if p;q 2 SpecR, then E.R=q/p D 0 if q 6�
p by Theorem 3.3.8. So for each p 2 SpecR, Ep D .

L

i Ei /p D
L

q�pE.R=q/p.
But if q ¤ p, then r 2 p� q is an automorphism on E.R=q/ and is zero on k.p/ and
so HomRp

.k.p/; E.R=q/p/ D 0. Thus using Lemma 3.1.16 and Theorem 3.3.8, we
have

HomRp
.k.p/; Ep/ Š HomRp

�

k.p/;
M

q�p

E.R=q/p

�

Š
M

q�p

HomRp
.k.p/; E.R=q/p/

Š
M

p

HomRp
.k.p/; E.R=p//

Š k.p/.Xp/

where CardXp is the number of copies of E.R=p/ in E.

Corollary 3.3.12. If M is an R-module, then E.M/ Š L

E.R=p/.Xp/ over p 2
SpecR where CardXp D dimk.p/ HomRp

.k.p/;Mp/ D dimk.p/ HomR.R=p;M/p.
In particular, if M is finitely generated, then CardXp <1 for each p 2 SpecR.

Proof. It suffices to show that Hom.k.p/;Mp/ D Hom.k.p/; Ep/whereE D E.M/.
But clearly Hom.k.p/;Mp/ � Hom.k.p/; Ep/. Now let 0 ¤ f 2 Hom.k.p/; Ep/.
Then f is one-to-one since k.p/ is simple and so Ker f D 0. Therefore f .k.p// is a
simple submodule ofEp. ButMp � Ep is essential and so f .k.p//\Mp D f .k.p//.
Hence f .k.p// � Mp and thus Hom.k.p/; Ep/ � Hom.k.p/;Mp/. Now the result
follows from the theorem above.

Theorem 3.3.13. Let F be a flat R-module and p 2 SpecR. Then F ˝ RE.k.p// Š
E.k.p//.X/ for some set X .

Proof. F ˝ RE.k.p// is an injective Rp-module by Theorem 3.2.16 and so F ˝
RE.k.p// Š

L

E.k.q//.Xq/ over q � p. If q ¨ p, let r 2 p, r … q. For each
w 2 F ˝ E.k.p//, w ¤ 0, there exists an n > 0 such that rnw D 0 by Theorem
3.3.8. If w 2 L

E.k.q//.Xq/, then multiplication by rn is an automorphism of
L

E.k.q//.Xq/ and thus rnw ¤ 0. Hence p D q.
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Theorem 3.3.14. If E and E 0 are injective R-modules, then

HomR.E;E
0/ Š

Y

Hom.E.k.p//; E.k.p//.Xp//

for some sets Xp, p 2 SpecR.

Proof. E can be written as
L

E.k.p//.Xp/ over p 2 SpecR by Theorem 3.3.11
above. So

Hom.E;E 0/ Š
Y

Hom.E.k.p//; E 0/Xp Š
Y

Hom.E.k.p//; E 0Xp/

by Propositions 1.2.10 and 1.2.11. Hence we consider the modules Hom.E.k.p//; G/
for G injective. We have

Hom.E.k.p//; G/ Š Hom.E.k.p//˝Rp; G/ Š Hom.E.k.p//;Hom.Rp; G//:

But Hom.Rp; G/ is injective over Rp. So Hom.Rp; G/ Š ˚E.k.q//.Xq/ over q �
p. But if q ¨ p, then Hom.E.k.p//; E.k.q/// D 0. Hence Hom.E.k.p//; G/ Š
Hom.E.k.p//; E.k.p//.Xp//.

Remark 3.3.15. The Rp-module Hom.E.k.p//; E.k.p//.Xp// is denoted by Tp and
so HomR.E;E 0/ Š

Q

p2SpecR Tp. In the next section, we will use Matlis duality to
show that Tp is the pRp-adic completion of a free Rp-module (Theorem 3.4.1 (7)).

Exercises

1. Let E be an injective R-module. Prove that the following are equivalent.

(a) E is indecomposable.

(b) 0 is not the intersection of two nonzero submodules of E.

(c) HomR.E;E/ is a local ring.

2. Prove part (6) of Theorem 3.3.8

3. Prove Remark 3.3.9.

4. Prove that
L

m2mSpecE.R=m/ is an injective cogenerator of R.

3.4 Matlis Duality

Throughout this section,Rwill denote a commutative local Noetherian ring with max-
imal ideal m and residue field k. M v will denote the Matlis dual HomR.M;E.k//
of the R-module M . There is a natural homomorphism ' W M ! M vv defined by
'.x/.f / D f .x/ for x 2 M , f 2 M v. We call this map the canonical homomor-
phism. We will say that an R-module M is Matlis reflexive (or simply reflexive) if
M ŠM vv D .M v/v under the canonical homomorphism M !M vv.
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We start with the following result.

Theorem 3.4.1. Let OR be the m-adic completion of R. Then

(1) E.k/ is an injective cogenerator for R.

(2) The canonical map ' WM !M vv is an embedding.

(3) If M is an R-module of finite length, then lengthM D lengthM v and M is
reflexive.

(4) OR˝ RE.k/ Š E.k/.
(5) E.k/ Š E OR. OR= Om/ as an OR-module.

(6) OR Š HomR.E.k/; E.k//.

(7) HomR.E.k/; E.k/.X// Š1R.X/, the m-adic completion of a free R-module.

(8) If M is a finitely generated R-module, then OM ŠM vv.

(9) E.k/ is Artinian as an R and OR-module.

Proof. (1) Let M be an R-module and x 2 M , x ¤ 0. Then Rx Š R=Ann.x/ and
so we have a nonzero map g W Rx ! E.k/ which is obtained from the canonical map
R=Ann.x/ ! k D R=m and the inclusion k � E.k/. But g can be extended to a
map f 2M v. So f .x/ ¤ 0. Thus E.k/ is an injective cogenerator.

(2) Let x 2 M , x ¤ 0. Then there is an f 2 M v such that f .x/ ¤ 0 by part (1).
So '.x/.f / D f .x/ ¤ 0. Thus ' is one-to-one.

(3) By induction on lengthM . If lengthM D n, then M has a submodule N
of length n � 1 where M=N is a simple R-module. So we have an exact sequence
0 ! k ! M v ! N v ! 0 where .M=N/v D kv D k. But lengthN v D n � 1 by
the induction hypothesis. Hence lengthM v D n. Thus lengthM D lengthM vv. So
the embedding ' WM !M vv of part (2) above is an isomorphism.

(4) Let Sn D ¹x 2 E.k/ W mnx D 0º. Then E.k/ D S

Sn by Theorem 3.3.8. But
S1 � S2 � � � � and so E.k/ D lim�!Sn. Now we consider the exact sequence 0 !
mn OR! OR! OR=mn OR! 0. Then mn OR˝Sn ! OR˝Sn ! . OR=mn OR/˝Sn ! 0 is
exact. But mn OR˝Sn ! OR˝Sn is the zero map and OR=mn OR Š R=mn by Corollary
2.5.13. So OR ˝ Sn Š . OR=mn OR/ ˝ Sn Š R=mn ˝ Sn Š Sn. Hence taking limits
gives the result.

(5) By part (4), E.k/ is an OR-module and so E.k/ is an injective OR-module that
contains k Š OR= Om by Theorem 3.2.16. Now it is easy to show that E OR.k/ is an

indecomposable OR-module. Hence E OR.k/ is an injective envelope of OR= Om as an
OR-module.

(6) Let Sn be as in the above. Then Hom.R=mn; E.k// Š Sn and so

HomR.E.k/; E.k// D HomR.lim�!Sn; E.k// D lim �Hom.Sn; E.k//

D lim �.R=m
n/vv D lim �R=m

n D OR:
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(7) We again let Sn be as in the above and note that Sn Š Hom.R=mn; E.k// is of
finite length. So

HomR.E.k/; E.k/
.X// Š lim �Hom.Sn; E.k/

.X//

Š lim �Hom.Sn; E.k//
.X/

Š lim �.R=m
n/.X/

Š1

R.X/:

(8) If M is finitely generated, then

M vv Š Hom.M v; E.k//

ŠM ˝ R Hom.E.k/; E.k// by Theorem 3.2.11

ŠM ˝ R
OR by part (6) above

Š OM by Theorem 2.5.14.

(9) By part (4), E.k/ is an OR-module and the OR-submodules of E.k/ coincide with
the R-submodules. Hence we may assume R is complete.

Let E.k/ D N0 � N1 � � � � be a descending chain of submodules of E.k/. Then
Hom.Ni ; E.k// D R=Ii for some ideal Ii of R and so we have an ascending chain
I0 � I1 � I2 � � � � of ideals of R. But R is Noetherian, so there is an integer n0
such that Ii D IiC1 for all i � n0. So R=Ii D R=IiC1 for all i � n0. We claim that
this implies that Ni D NiC1 for all i � n0. For if Ni ¤ NiC1 and R=Ii D R=IiC1,
then Ni=NiC1 ¤ 0 with Hom.Ni=NiC1; E.k// D 0, a contradiction since E.k/ is
an injective cogenerator by part (1) above.

Example 3.4.2. It follows from Examples 1.7.8 and 3.3.10 and the theorem above
that if kŒx�11 ; : : : ; x�1n 	 is viewed as a kŒx1; : : : ; xn	-module, then

HomkŒx1;:::;xn	.kŒx
�1
1 ; : : : ; x�1n 	; kŒx�11 ; : : : ; x�1n 		/ Š kŒŒx1; : : : ; xn		:

Proposition 3.4.3. An Artinian local ringR with residue field k is self injective if and
only if dimk Soc.R/ D 1.

Proof. If dimk Soc.R/ D 1, then k is an essential submodule of R by Proposi-
tion 3.1.22 and so an extension R ! E.k/ of the embedding k ! E.k/ is an in-
jection. But since the lengths of R and E.k/ are the same by Corollary 2.3.25 and
Theorem 3.4.1 above, R! E.k/ is an isomorphism and so R is injective.

Conversely, if R is injective then dimk Soc.R/ D 1. For if k ˚ k � R, then
E.k ˚ k/ D E.k/˚E.k/ � R and R would not be indecomposable.
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Theorem 3.4.4. An R-module M is Artinian if and only if it is finitely embedded,
that is, M � E.k/n for some n � 1.

Proof. E.k/ is Artinian by Theorem 3.4.1 above and so the “if” part is clear.
Now suppose M is Artinian and M ¤ 0. Then since E.k/ is an injective co-

generator, the set of nonzero R-homomorphisms from M to E.k/ is nonempty. We
now consider the set of all possible maps f W M ! E.k/i where i � 1. Since M
is Artinian, we can find an f W M ! E.k/n with minimal kernel. We claim that
f is one-to-one. For if not, let x 2 Ker f , x ¤ 0. Then there is a nonzero map
g WM ! E.k/ such that g.x/ ¤ 0 as in proof of part (1) of the theorem above. Thus
h D .f; g/ W M ! E.k/n ˚ E.k/ is an R-homomorphism such that Ker h ¨ Ker f .
But this contradicts the minimality of Ker f . So f is one-to-one.

Corollary 3.4.5. An R-module M is Noetherian if and only if M v is Artinian.

Proof. If M is Noetherian, then there is an exact sequence Rn ! M ! 0. But then
M v � E.k/n and so M v is Artinian by the theorem above. Conversely, if M v is
Artinian, then M v � E.k/n for some n � 1. But then we have an exact sequence
.Rn/vv ! M vv ! 0. Thus the map Rn ! M ! 0 is exact since E.k/ is an
injective cogenerator. That is, M is Noetherian.

Corollary 3.4.6. If M v is Noetherian, then M is Artinian.

Proof. If M v is Noetherian, then M vv is Artinian by the above. But the canonical
homomorphism M !M vv is an embedding. So M is Artinian.

Lemma 3.4.7. Let R be complete. If an R-moduleM is Noetherian or Artinian, then
M is reflexive.

Proof. If M is Noetherian, then we have an exact sequence Rm ! Rn ! M ! 0.
Thus we have the following commutative diagram

Rm ��

��

Rn ��

��

M ��

��

0

.Rm/vv �� .Rn/vv �� M vv �� 0

with exact rows. But the first two vertical maps are isomorphisms since E.k/v D
OR D R. So M ŠM vv.

Similarly for Artinian modules.

Theorem 3.4.8. If R is complete, then an R-module M is Artinian if and only if M v

is Noetherian.
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Proof. Suppose M is Artinian, then M � E.k/n for some n � 1. But then we have
an exact sequence Rn ! M v ! 0 since R is complete and so E.k/v D R. Thus
M v is Noetherian. The converse follows from Corollary 3.4.6.

Exercises

1. Let Sn D ¹x 2 E.k/ W mnx D 0º. Prove that Hom.R=mn; E.k// Š Sn.

2. Prove that if 0 ! M 0 ! M ! M 00 ! 0 is an exact sequence of R-modules,
then M is reflexive if and only if M 0;M 00 are reflexive.

3. Let N be a submodule of M and set N? D ¹' 2 M v W '.N / D 0º. Prove
that if M is reflexive, then the map N 7! N? gives a one-to-one correspon-
dence between all submodules of M and all submodules of M v which reverses
inclusions.

Hint: Note that N? D Ker.M v ! N v/.

4. Prove that if R is complete, then there is a one-to-one correspondence between
all submodules of E.k/ and all ideals of R given by N 7! AnnN .

5. Prove Lemma 3.4.7 for Artinian modules.

6. Enochs [53, Proposition 1.3]. Let R be complete. Prove that an R-module M is
reflexive if and only if it contains a finitely generated R-submodule N such that
M=N is Artinian.



Chapter 4

Torsion Free Covering Modules

In this chapter, R will denote an integral domain, K will denote its field of fractions,
and module will mean an R-module. We recall that an R-module M is said to be
torsion free if rx D 0 for r 2 R and x 2 M implies r D 0 or x D 0. M is said to
be a torsion module if for each x 2 M , there is an r 2 R, r ¤ 0 with rx D 0. Each
module M has a largest torsion submodule, denoted t .M/, and M=t.M/ is torsion
free. Furthermore, the canonical map M ! M=t.M/ is universal in the sense that
any linear map M ! G where G is a torsion free module, the diagram

M ��

���
��

��
��

��
� M=t.M/

���
�
�

G

can be completed uniquely to a commutative diagram. Clearly the module M=t.M/

and the mapM !M=t.M/ are characterized up to isomorphism by these properties.
In general, given an R-moduleM , there does not exist a torsion free module T and

a map T ! M satisfying the dual condition, that is, given any linear map G ! M

where G is torsion free, the diagram

G

		�
��

��
��

�

���
�
�

T �� M

can be completed uniquely to a commutative diagram.
However, if the requirements on T and T ! M are weakened, their existence and

uniqueness can be proved.

4.1 Existence of Torsion Free Precovers

Definition 4.1.1. A linear map ' W T !M where T is a torsion free module is called
a torsion free cover of M if

(1) for every torsion free module G and linear map f W G ! M there is a linear
map g W G ! T such that ' ı g D f

(2) Ker' contains no nonzero pure submodule of T (here S is a pure submodule of
T means that aS D aT \ S for all a 2 R).
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Definition 4.1.2. If ' satisfies (1) and maybe not (2) above, it is called a torsion free
precover of M .

The existence of a torsion free precover of M is a consequence of the following
lemmas:

Lemma 4.1.3. If ' W T ! M is a torsion free precover of M and S � M is a
submodule, then '�1.S/! S is a torsion free precover.

Proof. Immediate.

Lemma 4.1.4. If M is divisible, then ' W T ! M is a torsion free precover (where
T is torsion free) if and only if for every linear map f W K !M (recall that K is the
field of fractions of R) there is a linear map g W K ! T with ' ı g D f .

Proof. The condition is clearly necessary. Let G !M be linear with G torsion free.
Since G is a submodule of a torsion free and divisible module G0 and G ! M can
be extended to G0 !M , we can assume G is itself divisible. But then G is the direct
sum of modules isomorphic to K and hence the condition is sufficient.

Lemma 4.1.5. If M is a divisible R-module, then there is a torsion free precover
' W T !M .

Proof. By the preceding lemma, it suffices to let T DK.X/ whereX DHomR.K;M/

and ' W T ! M be the evaluation map defined by '..x� /� / D P

�.x� /, � 2
Hom.K;M/.

Corollary 4.1.6. Every module M has a torsion free precover.

Proof. We only need note that M is a submodule of a divisible module and then
appeal to Lemmas 4.1.5 and 4.1.3.

Exercises

1. Prove that if T is torsion free, then S is a pure submodule of T if and only if T=S
is torsion free.

2. Prove Lemma 4.1.3.

3. Prove that every torsion free R-module is a submodule of a torsion free divisible
R-module.

4. If each '� W T� !M� for � 2 ƒ is a torsion free precover, argue that
Q

�2ƒ '� W
Q

T� !
Q

M� is also a torsion free precover.
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5. Let n > 1 be a natural number. Argue that the canonical surjection � W Z !
Z=.n/ is not a torsion free precover (here R D Z).

Hint: Let T � Q consist of all rational numbers that can be written a=b with
gcd.b; n/ D 1. Argue that Z! Z=.n/ can be extended to a map ' W T ! Z=.n/.
Then argue that there is no map f W T ! Z except 0.

6. Argue that a torsion free precover is necessarily surjective.

7. Let a 2 R where R is an integral domain and a is not a unit of R. Let b 2 R
be such that b C .a/ is a unit of R=.a/. Show that if the canonical surjection
R! R=.a/ is a torsion free precover then .b/C .a/ D R.

8. If ' W T ! M is a torsion free precover over some integral domain R and M is
torsion free, show that T ŠM ˚N for some R-module N .

9. Let ' W T ! M be a torsion free precover. Show by an example that in general
'Œx	 W T Œx	!MŒx	 is not a torsion free precover over RŒx	.

10. If M DM1 ˚M2 and M admits a torsion free precover ' W T !M , argue that
both M1 and M2 admit torsion free precovers.

11. If ' W T ! M is a torsion free precover and ' D  ı 
 with 
 W T ! U ,
 W U ! M where U is torsion free, argue that  W U ! M is also a torsion
free precover.

12. If ' W T !M is a torsion free precover, argue that 'ŒŒx		 W T ŒŒx		!MŒŒx		 is a
torsion free precover over RŒŒx		.
Hint: If G is torsion free over RŒŒx		 and n � 1, then G=xnG is torsion free
over R. Use the previous problem to get that

T ŒŒx		=xnT ŒŒx		!MŒŒx		=xnMŒŒx		

is a torsion free precover over R.

4.2 Existence of Torsion Free Covers

Theorem 4.2.1. For each module M there exists a torsion free cover ' W T ! M .
Furthermore if '0 W T 0 ! M is also a torsion free cover, then any map g W T ! T 0
such that '0 ı g D ' is an isomorphism.

Proof. By Corollary 4.1.6, there is a torsion free precover ' W T ! M . Now let the
submodule S � T be maximal such that

(a) S � Ker'

(b) S is a pure submodule of T .
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Then a quick check shows that the induced map T=S ! M is a torsion free cover
of M .

Now let ' W T ! M and '0 W T 0 ! M be torsion free covers. If g W T ! T 0
is such that '0 ı g D ', then Kerg � Ker' and since T 0 is torsion free, Ker g is
pure in T . Hence by hypothesis, Kerg D 0 and so g is an injection. This means
CardT � CardT 0 and so reversing the argument we see that CardT D CardT 0. We
must show g is a surjection.

Now let X be a set such that X � T , X � T 0 and such that CardX > CardT . Let
F be the set of all pairs .T0; '0/ where T0 is a torsion free module whose elements
are elements of X and where '0 W T0 ! M is a torsion free cover. Partially order
F by setting .T0; '0/ � .T1; '1/ if T0 is a submodule of T1 and '1jT0 D '0. Then
F has maximal elements, for if C is a chain of F , let T � be the union of the first
coordinates of the pairs in C with the unique structure of a module such that for each
.T0; '0/ 2 C , T0 is a submodule of T �. Let '� W T � ! M be such that '�jT0 D '0
for each such .T0; '0/. Then clearly '� W T � ! M is a torsion free precover. If
N � T � is a pure submodule with N � Ker'�, then for each .T0; '0/ 2 C , N \ T0
is a pure submodule of E0 contained in the kernel of '0, so N \ T0 D 0. Hence
N D 0 and so .T �; '�/ belongs to F and is an upper bound of C .

So assume .T �; '�/ is a maximal element of F . Let f W T � ! T be such that
' ı f D '�. As above, f is an injection. To show that it is a surjection, let Y � X
be such that CardY D Card.T � f .T �// and such that T � \ Y D ;. Such a Y is
available since CardX > CardT D CardT �. Let NT D T � [ Y and let h W NT ! T

be a bijection with hjT � D f . Then NT can be made into a module such that g is an
isomorphism. But then . NT ; ' ı h/ is an element of F and .T �; '�/ � . NT ; ' ı h/.
Since .T �; '�/ is maximal, Y D ;. So f is a surjection and thus an isomorphism.
But then the same argument gives that g ı f W T � ! T ! T 0 is an isomorphism and
so that g is an isomorphism. This completes the proof.

Using the fact that the Pontryagin dual of a compact Abelian group is torsion free
if and only if the group is connected (see [159]), we get the following result.

Corollary 4.2.2. Every compact Abelian group G can be embedded uniquely up to
isomorphism in a connected compact Abelian group G0 in such a way that every con-
tinuous homomorphism ofG into a connected compact Abelian group can be extended
intoG0 and such thatG0 has no closed connected proper subgroups containing G. G0
is uniquely determined up to isomorphism by these properties.

Exercises

1. Let n > 1 and � W Z ! Z=.n/ be the canonical surjection. Prove that there are
an infinite number of morphisms f W Z ! Z with � ı f D � which are not
automorphisms of Z. Conclude that � is not a torsion free cover.
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2. Let ' W T ! M be a torsion free cover. Show that if U is a torsion free module
then ' ˚ idU W T ˚ U !M ˚ U is a torsion free cover.

3. Let a 2 R where R is an integral domain. Suppose that R ! R=.a/ is a torsion
free cover. Show that if b 2 R and .b/C .a/ D R, then b is invertible in R.

4. If ' W T ! M is a torsion free cover and '0 W T 0 ! M a torsion free precover,
argue that T is isomorphic to a direct summand of T 0.

5. Let 'i W Ti ! Mi for i D 1; 2 be torsion free covers. Show that for every
morphism f W M1 ! M2 there is a morphism g W T1 ! T2 such that '2 ı g D
f ı '1. Then argue that if f is such that g is an isomorphism for some g with
'2 ı g D f ı '1, then any morphism Ng W T1 ! T2 with '2 ı Ng D f ı '1 is an
isomorphism.

6. Let ' W T ! M be a torsion free precover and let U D '�1.t.M//. Note that
U ! t .M/ is a torsion free precover. Show that if U ! t .M/ is a cover, then
so is ' W T !M .

7. Let ' W T ! M be a torsion free cover. Argue that if L � Ker.'/ is a direct
summand of T , then L D 0.

4.3 Examples

The proof of the existence of torsion free covers in the previous section does not give
much information about a torsion free cover ' W T ! M of a given module M . The
next proposition is useful in this respect.

Proposition 4.3.1. Let M be a module and let E.M/ be its injective envelope. Let
T � Hom.K;E.M// consist of all � such that �.1/ 2M and let ' W T !M be the
evaluation map � ! �.1/. Then ' W T !M is a torsion free cover of M .

Proof. Hom.K;E.M// is a vector space over K and so T is torsion free. Let G be
torsion free and let f W G ! M be linear. Since G is torsion free, G Š G ˝ R !
G ˝ K is an injection. Hence G ! M can be extended to G ˝ K ! E.M/. By
the natural isomorphism Hom.G ˝K;E.M// Š Hom.G;Hom.K;E.M///, we get
a map G ! Hom.K;E.M//. But then a quick check gives that the image of G is in
T and the map g W G ! T is such that ' ı g D f .

To argue that no pure submodule of T is in the kernel of ', let � 2 Ker', � ¤ 0.
Then �.K/ ¤ 0. If �. r

s
/ ¤ 0, with r; s 2 R; s ¤ 0, then r

s
� … Ker'. Hence the pure

submodule of T generated by � is not contained in Ker'.

Remark 4.3.2. The first part of the proof of the above Proposition gives a quick proof
of Corollary 4.1.6. The two proofs are included since the two different approaches
may be of interest.
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Example 4.3.3. If R D Z, p 2 Z is a prime, and T ! Z=.p/ is a torsion free cover,
then T Š OZp since by the above T � Hom.Q;Z.p1// consists of those � with
�.1/ 2 Z.p/.Š Z=.p//. But then �.p/ D 0. Hence T Š Hom.Q=pZ, Z.p1//.
But Q=pZ ŠL

Z.q1/ (over all positive primes q) and Hom.Z.q1/;Z.p1// D 0
if q ¤ p and Hom.Z.p1/, Z.p1// Š OZp. We note that this construction carries
through if R is any principal ideal domain and p 2 R is a prime. So the natural map
ORp ! R=.p/ is a torsion free cover. For example, if k is a field and we let R D kŒx	

with p D x, then kŒŒx		! k in a torsion free covering where xk D 0 and the map is
f 7! f .0/ for f 2 kŒŒx		. It is natural to ask whether the similar map kŒŒx; y		! k

over R D kŒx; y	 is a torsion free cover. But as will be shown below in Corollary
4.3.11, this is not the case.

Now given maps f W S ! P and g W S ! M of modules, we can form the
pushout diagram

S
g

��

f
��

M

��
P �� G

as in Example 1.4.20. We will be interested in the case when g is the canonical
injection. G will then be denoted M f̊ P . We note that the map P ! M f̊ P

which maps y onto the coset of .0; y/ is an injection in this case. So identifying P
with its image givesM f̊ P=P ŠM=S . Any submodule ofM f̊ P containing P
is of the form M 0

f̊ P where S �M 0 �M . Also it is easy to see that f W S ! P

can be extended to M if and only if P is a direct summand of M f̊ P .

Proposition 4.3.4. Let ' W T ! M be a torsion free cover and let S � G be a
pure submodule of a torsion free module G. If a linear map f W S ! T is such that
' ı f W S !M can be extended to G, then f W S ! T can be extended to G so that
the extension G ! T lifts the extension G !M .

Proof. The hypothesis guarantees a mapG f̊ T !M such thatG ! G f̊ T !M

is the given extension and T ! G f̊ T ! M is '. Since S is pure in G, G=S is
torsion free. But G f̊ T=T Š G=S by the above. So G f̊ T is torsion free.
Therefore, the map G f̊ T ! M can be lifted to a map g W G f̊ T ! T since
' W T ! M is a torsion free cover. Then ' ı .gjT / D ' and so by Theorem 4.2.1,
gjT is an automorphism of T . Replacing g with .gjT /�1 ı g we see that we can
assume gjT D idT . Then the composition G ! G ˚ T ! T gives the required
extension.

Corollary 4.3.5. Any linear map S ! Ker' can be extended to G.
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Proof. The map S ! Ker' � T gives the zero map S ! M and so can be trivially
extended toG. IfG !M extends S !M and lifts the zero map, we get the required
extension G ! Ker'.

Corollary 4.3.6. Extn.G;Ker'/ D 0 and Extn.G; T /! Extn.G;M/ is an isomor-
phism for all torsion free groups G and n � 1.

Proof. Let 0! S ! F ! G ! 0 be exact withF a free module. Then by Corollary
4.3.5, Hom.F;Ker'/! Hom.S;Ker'/! 0 is exact and so 0! Ext1.G;Ker'/!
Ext1.F;Ker'/ D 0 is exact since F is free. Thus Ext1.G, Ker'/ D 0. Since F is
free, Extn.F;Ker'/ D 0 for all n � 1 and so Extn.S;Ker'/! ExtnC1.G;Ker'/ is
an isomorphism for n � 1. But S is torsion free. So by the above, Ext1.S , Ker'/ D 0
and hence Ext2.G;Ker'/ D 0. Proceeding in this manner we get Extn.G;Ker'/ D
0 for all n � 1. The fact that Extn.G; T / ! Extn.G;M/ is an isomorphism for
all n � 1 then follows from the fact that Extn.G;Ker'/ D 0 for n � 1 and that
Hom.G; T /! Hom.G;M/! 0 is exact.

Definition 4.3.7. A map of modules f W M ! M 0 is said to be neat if given any
submodule S of a module G and any map � W S ! M , � has a proper extension in
G whenever f ı � does. Diagrammatically f W M ! M 0 being neat means that a
commutative diagram

S , ��

�
��

H � G

��
M

f
�� M 0

with S ¤ H always guarantees the existence of a commutative diagram

S , ��

�
��

H � G
















M
f

�� M 0

(with, perhaps a different H with S ¤ H ). It is not hard to see that in order to check
whether M !M 0 is neat, it suffices to restrict ourselves to the case G D R by using
the type of argument one uses to prove Baer’s Criterion for the injectivity of a module
(see Theorem 3.1.3).

Example 4.3.8. If R D Z and M 0 is a subgroup of the group M , then M 0 ! M is
neat if and only if pM 0 D .pM/\M 0 for all primes p. To show that the condition is
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necessary, note that any x 2M 0 \ pM , say x D py, gives a commutative diagram

.p/ , ��

��

Z

��
M 0 �� M

Then by hypothesis, there is a commutative diagram

.p/ , ��

��

Z

����
��
��
��

M 0

showing that x 2 pM 0. In a similar manner we see that the condition is sufficient.

Proposition 4.3.9. If ' W T !M is a torsion free cover, then ' is neat.

Proof. Suppose � W I ! T is linear where I � R is an ideal and suppose ' ı � has
an extension to an ideal J with I ª J � R. Then we have a map J ˚� T ! M .
If J ˚� T is torsion free, then J ˚� T ! M is a torsion free precover and so T is
a direct summand of J ˚� T by Problem 4 of Section 4.2 and thus I ! T can be
extended to J . Hence suppose t .J ˚� T / ¤ 0. Then t .J ˚� T / C T D I 0 ˚� T
for I ª I 0 � J . Since T is torsion free, T \ t .J ˚� T / D 0 and so T is a direct
summand of I 0 ˚� T . This means I ! T can be extended to I 0.

Corollary 4.3.10. T is injective if and only if M is injective.

Proof. If T is injective and I ! M is linear for an ideal I � R, lift to I ! T . This
can be extended to R ! T . Then the composition R ! T ! M gives the required
extension of I ! M . Conversely, if M is injective, let � W I ! T be linear for
I � R. We can suppose � cannot be extended in R. But then if I ¤ R, ' ı � can be
extended to R. So there is a proper extension of � in R since ' is neat.

Corollary 4.3.11. If k is a field andR D kŒx; y	, the map S ! S.0; 0/ from kŒŒx; y		
to k is not a torsion free cover.

Proof. If this were the case, then consider the map � W .x/! kŒŒx; y		 with �.x/ D
y. Since .x/ ! kŒŒx; y		 ! k is the 0 map, it has an extension to kŒx; y	. If
� W .x/! kŒŒx; y		 has a proper extension, say � , then for some nonzero g.y/ 2 kŒy	,
g.y/ is in the domain of � . But �.g.y/x/ D g.y/�.x/ D g.y/y. Also �.g.y/x/ D
�.xg.y// D x�.g.y//. But clearly g.y/y D x�.g.y// is impossible.

Other interesting examples can be found in Cheatham [36], Jenda [124] and Matlis
[148].
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Exercises

1. Prove that the canonical mapping OZp ! Z=.pn/ with n � 1 is a torsion free
cover.

2. Show that any surjective morphism OZp ! Z=.pn/ with n � 1 is a torsion free
cover.

3. Show that if 'i W Ti ! Mi for i D 1; 2 are torsion free covers, then '1 ˚ '2 W
T1 ˚ T2 !M1 ˚M2 is also a torsion free cover.

4. Give an example of torsion free covers 'i W Ti ! Mi , i D 1; 2, and morphisms
g W T1 ! T2, f W M1 ! M2 with '2 ı g D f ı '1 where g is an isomorphism
but f is not an isomorphism.

5. The canonical homomorphism OZp ! Z=.p/ is a torsion free cover by Problem
1. So Problem 3 gives a torsion free cover ' W OZp ˚ OZp ! Z=.p/ ˚ Z=.p/.
Prove that the group of linear maps f W OZp˚ OZp ! OZp˚ OZp such that 'ıf D '
is isomorphic to the group of 2 � 2 matrices .aij / over OZp such that aij � ıij
(mod p) for all i; j .

6. Let R be a local domain and let a 2 R where a ¤ 0 and a is not a unit of R.
Show that the canonical surjection R! R=.a/ is a torsion free cover if and only
if Ext1.G;R/ D 0 for all torsion free modules G.

7. Use Corollary 4.3.10 to argue that the torsion free cover of every divisible module
is divisible if and only if every divisible module is injective.

8. If k is a field and R D kŒx; y; z	, argue that the map S ! S.0; 0; 0/ from
kŒŒx; y; z		 to k is not a torsion free cover.

4.4 Direct Sums and Products

It is rarely true that given a family 'i W Ti ! Mi of torsion free covers,
L

Ti !
L

Mi is also a torsion free cover. In Section 5 of Chapter 5, we will show that this
property is preserved by countable sums under suitable conditions. The next result
considers the corresponding question for products.

Theorem 4.4.1. The following are equivalent for R:

(1) Every torsion module G ¤ 0 has a simple submodule.

(2) If 'i W Ti !Mi is any family of torsion free covers, then
Q

'i WQTi !Q

Mi

is a torsion free cover.

(3) A module E is injective if and only if Ext1.S;E/ D 0 for all simple modules S .
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Proof. Recall that K is the field of fractions of R. We first show that (1) is equivalent
to each of the following:

(a) R=I has a simple submodule for each ideal I ¤ 0;R.

(b) K=T has a simple submodule for each submodule T of K, T ¤ 0;K.

Since every torsion moduleG ¤ 0 has a submodule isomorphic toR=I for an ideal
I ¤ 0;R, clearly (1) and (a) are equivalent. .1/) .b/ is trivial.

Now suppose (b) holds and let I ¤ 0;R be an ideal. By transfinite induction we
can define a submodule I� of K for each ordinal � such that

(i) I0 D I
(ii) I�C1=I� is the socle of K=I� for each �

(iii) I� DS

I� (for � < �) when � is a limit ordinal.

Then by (b), I� D K for some � . Hence since I ¤ R, there is a least � with
I ¤ R \ I� . Clearly � is not a limit ordinal and � > 0. Then I D R \ I��1 and so

R \ I�=I ! I�=I��1

is a nonzero injection. Thus R=I has a simple submodule.
Now we prove .1/ ) .3/. Suppose E is such that Ext1.S;E/ D 0 for all simple

modules S . Let � W I ! E be linear where I � R is an ideal. We want to show �

can be extended to R.
Clearly we can assume I ¤ 0;R. But then R=I has a simple submodule J=I and

so Ext1.J=I;E/ D 0. Then the exactness of

Hom.J;E/! Hom.I; E/! Ext1.J=I;E/ D 0
implies � can be extended to J . But J © I . So by using Zorn’s Lemma, � can be
extended to R.
.3/ ) .1/. By (b) above it suffices to prove K=T has a simple submodule for

T ¤ 0;K. Suppose not. Then we claim Ext1.S; T / D 0 for any simple module S .
For let S D R=m, m a maximal ideal. Then if � W m! T is linear, there is a linear
� W R ! K agreeing with � on m. If �.R/ 6� T , then K=T would have a simple
submodule. So �.R/ � T . This means

Hom.R; T /! Hom.m; T /! 0

is exact. But

Hom.R; T /! Hom.m; T /! Ext1.S; T /! Ext1.R; T /

is exact and Ext1.R; T / D 0. So Ext1.S; T / D 0. Since S was arbitrary, by (3), T
is injective. Since T ¤ 0, this is possible only if T D K. Hence .3/ ) .b/ and so
.3/) .1/.
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.1/ ) .2/. Clearly
Q

'i W Q

Ti ! Q

Mi is a precover, so we only need to
show that Ker.

Q

'i / contains no nonzero pure submodule of
Q

Ti . Suppose .xi / 2
Ker.

Q

'i / generates a pure submodule contained in Ker.
Q

'i /. We want to show
.xi / D 0. Let R ! Q

Ti map 1 to .xi /. We order the extensions of R ! Q

Ti to
submodules T ofK in the obvious fashion.

Q

Ti torsion free implies there is a unique
maximal extension � W T ! Q

Ti . Now �.T / � Ker.
Q

'i / by our hypothesis on
.xi /. If T D K, then either �.K/ D 0 in which case �.1/ D .xi / D 0 and we
are through, or �.K/ Š K in which case �.K/ is a divisible submodule of

Q

Ti in
Ker.

Q

'i /, and in fact for each i , the pure submodule of Ti generated by xi would
be a divisible submodule of Ti contained in Ker.'i / which is possible only if xi D 0.
But this contradicts �.K/ Š K since �.1/ D .xi /. Hence we suppose T ¤ K. We
have T ¤ 0 and R � T . Let U=T be a simple submodule of K=T . Consider the
diagram

T ��

��

U

Ti �� Mi

for each i and note that T ! Mi is the 0 map, which can be extended to the 0 map
U !Mi . But 'i is neat, so T ! Ti can be extended to U , that is, T !Q

Ti can be
extended to U . This contradicts the maximality of T . Hence .xi / D 0.

2 ) 1 Let T � K, T ¤ 0;K. We prove .2/ ) .b/, that is, that K=T has a
simple submodule. Let .Mi / be a family of modules such that each Mi D U=T

for some U � K with T ¨ U and such that given U , Mi D U=T for some i .
Let 'i W Ti ! Mi be a torsion free cover for each i . Given i , if Mi D Ui=T , let
�i W Ui ! Ti lift Ui ! Mi (the canonical surjection). Then .�i jT / gives rise to a
map � W T !Q

Ti with �.T / � Ker.
Q

'i /. Hence the composition

T !
Y

Ti !
Y

Mi

is 0 and can be extended. By hypothesis
Q

Ti ! Q

Mi is a torsion free cover
and so is neat. Thus T ! Q

Ti has an extension to some U � K, T ¨ U . Let
� W U ! Q

Ti be this extension. Suppose now for some j , Ej D Uj =T � U=T ,
that is, Uj � U . Let �j W Q

Ti ! Tj be the canonical projection. By hypothesis,
� jT D � . But �j ı � D �j jT . So �j ı � jT D �j jT . Since

Q

Ti is torsion free, we
get that �j ı � jUj D �j . But since 'j ı �j W Uj ! Uj =T is the canonical surjection
we have that

'j ı �j ı � W U ! Uj =T

induces a map U=T ! Uj =T whose restriction to Uj =T is idUj =T . Hence Uj =T is
a direct summand of U=T . Since j was arbitrary with Uj � U , we see that U=T has
every submodule a direct summand and so by a standard argument (since U=T ¤ 0),
U=T has a simple submodule. Thus K=T has a simple submodule.



Section 4.4 Direct Sums and Products 109

Remark 4.4.2. If R is a Dedekind domain, that is, every ideal is projective, then
R is Noetherian and every nonzero prime ideal is maximal (see Jacobson [119] for
example). So R satisfies (1)–(3) of the Theorem by Exercise 3 of Section 3.1.

If R is not a field and satisfies (1)–(3), then it has Krull dimension 1 for if p is
a nonzero prime ideal, then R=p has a simple submodule only if p is maximal. In
fact, if R is Noetherian (and not a field), R satisfies (1)–(3) if and only if its Krull
dimension is 1.

If R is a local domain with maximal ideal m, then R satisfies (1)–(3) if and only if
for every sequence .ai / of elements of m and every ideal I � R, a1a2 : : : an 2 I for
some n � 1.

Exercises

1. If k is a field, argue that R D kŒx; y	 does not have the property of Theorem
4.4.1.

2. Give an argument for the last comment in Remark 4.4.2.

3. Let k be a field and let R D kŒŒx2; x3		 (so R consists of all formal power series
a0 C a1x C a2x2 C � � � with a1 D 0). Argue that R satisfies the conditions of
Theorem 4.4.1.

Hint: Let I � R be a nonzero ideal. Argue that for some n0 � 2, I contains all
elements of R of the form an0

xn0 C an0C1xn0C1 C � � � . Deduce that if m � R
is generated by x2 and x3, then mn0 � I .

4. If I is an infinite set, argue that the canonical morphism OZ.I / ! Z=.p/.I / is not
a torsion free precover.

Hint: Show there is a natural extension of OZ.I /p ! Z=.p/.I / to a morphism
OZ.I /p C p OZIp ! Z=.p/.I /. Then use Proposition 4.3.4.

5. If a domainR has the property of Theorem 4.4.1 and if ' W T !M is any torsion
free cover, argue that Hom.P; T /! Hom.P;M/ is a torsion free cover for any
projective R-module P .



Chapter 5

Covers

We note that there is no loss of generality in what follows in assuming that if F is
a class of R-modules and C , D are R-modules such that C Š D and C 2 F , then
D 2 F . Hence we will always assume that the classes of modules F are closed under
isomorphisms. In the previous chapter, we considered torsion free coverings. In this
chapter, we will give a general definition of coverings whose examples will include
torsion free covers and the familiar projective covers.

5.1 F -precovers and covers

Definition 5.1.1. Let R be a ring and let F be a class of R-modules. Then for an
R-module M , a morphism ' W C !M where C 2 F is called an F -cover of M if

(1) any diagram with C 0 2 F

C 0

		�
��

��
��

�

���
�
�

C
'

�� M

can be completed to a commutative diagram and

(2) the diagram

C
'

		�
��

��
��

�

���
�
�

C
'

�� M

can be completed only by automorphisms of C .

So if an F -cover exists, then it is unique up to isomorphism.

If ' W C ! M satisfies (1) but may be not (2), then it is called an F -precover
of M .

For example, if F is the class of projective modules, an F -cover (precover) is
called a projective cover (precover). Note that this is not the usual definition but can
be seen to agree with it. Similar terminology will be used in other situations, for
example, if F is the class of torsion free modules over an integral domain, we get the
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torsion free covers of Chapter 4 (see Theorem 4.2.1). Note also that if the class F

contains the ring R, then F -precovers are surjective.
We say that a class F is (pre)covering if every R-module has an F -(pre)cover. For

example, we saw in Chapter 4 that the class of torsion free modules over a domain is
covering.

The following proposition illustrates a close relationship between covers and pre-
covers.

Proposition 5.1.2. Let M be an R-module. Then the F -cover of M , if it exists, is a
direct summand of any F -precover of M .

Proof. Let C ! M be the F -cover and C 0 ! M be an F -precover. Then we have
the following commutative diagram

C

����
���

��

��
C 0

��

�� M

C

���������

But then C ! C 0 ! C is an automorphism. So C is a direct summand of C 0.

Exercises

1. If ' W C ! M is an F -cover, argue that there is a bijective correspondence
between the set of linear maps f W C ! C such that ' ı f D ' and the set
HomR.C;Ker'/.

2. Let F be a class of R-modules closed under summands and such that every R-
module M has an F -cover. Argue that every such cover is surjective if and only
if F contains all the projective modules.

3. If M D M1 ˚ M2 for R-modules M1 and M2 and if M has an F -precover,
argue that both M1 and M2 have F -precovers.

4. Let R be an integral domain and F be the class of torsion R-modules. Show that
every R-module has an F -cover which is an injection.

5. An R-submodule A of B is said to be superfluous if for each submodule N of B ,
N C A D B implies N D 0. Prove that a map ' W P ! M is a projective cover
if and only if P is projective and Ker' is superfluous.

6. Let J D rad.R/ and M be a finitely generated R-module. Prove that JM is a
superfluous submodule of M . Conclude that the natural map ' W R ! R=J is a
projective cover.
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5.2 Existence of Precovers and Covers

We start by giving easy necessary and sufficient conditions for the existence of pre-
covers.

Lemma 5.2.1. Let F be a class of R-modules that is closed under direct sums. Then
anR-moduleM has an F -precover if and only if there is a set I and a family .Ci /i2I
of elements of F and morphisms 'i W Ci !M for each i 2 I such that any morphism

D !M with D 2 F has a factorization D ! Cj
'j!M for some j 2 I .

Proof. The only if part is trivial. For the if part, we simply note that
L

i2I Ci
L

'j! M

is an F -precover.

Proposition 5.2.2. If F is a class of R-modules closed under direct sums, then an
R-module M has an F -precover if and only if there is a cardinal number @˛ such
that any morphism D ! M with D 2 F has a factorization D ! C ! M with
C 2 F and CardC � @˛.

Proof. If M has an F -precover C ! M , then let @˛ D CardC . Conversely, there
is a set X with cardinality @˛ such that any morphism D ! M with D 2 F has a
factorization D ! C ! M for some C 2 F with C � X (as sets). Let .'i /i2I
give all such morphisms 'i W Ci ! M with Ci � X (as sets). Then any morphism
D ! M has a factorization D ! Cj ! M for some j . So M has a F -precover by
Lemma 5.2.1.

We now show that if we assume that the class F is closed under inductive lim-
its, then a module M has a F -cover whenever it has an F -precover. We prove the
following

Theorem 5.2.3. LetR be a ring, F be a class ofR-modules closed under summands,
andM be anR-module. Suppose for any well ordered inductive system ..C˛/, .'ˇ˛//
of modules in F , every map lim�!C˛ ! M can be factored through some C ! M

with C 2 F . If M has an F -precover, then it has an F -cover.

Proof. We break the proof into the following three lemmas.

Lemma 5.2.4. For each C 2 F and morphism C !M , there exists an F -precover

D ! M and a morphism f in the factorization C
f! D ! M such that for any

morphism g in the factorization D
g! E ! M where E ! M is an F -precover,

Ker.g ı f / D Ker f .



Section 5.2 Existence of Precovers and Covers 113

Proof. Suppose the conclusion is not true. Then any such f does not have the desired
property. Hence we can construct a diagram

C

��

�� C1

��











�� C2

�����
���

���
���

���
�

�� � � �

M

with Ker.C ! Cn/ ¨ Ker.C ! CnC1/ for each n � 1 and with each Cn ! M an
F -precover. But by assumption, the map lim�!Cn !M can be factored through a map
D ! M with D 2 F . We can assume D ! M is an F -precover. Let C! D D.
Then Ker.C ! Cn/ ¨ Ker.C ! C!/ for all n, and C ! C! does not have the
desired property. So there is an F -precover C!C1 ! M and a map C! ! C!C1 in
the factorization C! ! C!C1 ! M such that Ker.C ! C!/ ¨ Ker.C ! C!C1/.
Continuing in this fashion, we see that for any ordinal ˛, we can construct precovers
Cˇ !M for all ˇ < ˛ with maps C ! Cˇ so that for ˇ < � < ˛, Ker.C ! Cˇ / ¨
Ker.C ! C�/. If for each ˇ with ˇC1 < ˛, we choose xˇ with xˇ … Ker.C ! Cˇ /,
xˇ 2 Ker.C ! CˇC1/, then xˇ ¤ xˇ 0 for ˇ ¤ ˇ0. This implies CardC � Card .˛/
whenever ˛ is infinite. This is impossible since ˛ is arbitrary.

Lemma 5.2.5. There exists an F -precover D ! M such that in any factorization
D ! E !M with E !M an F -precover, D ! E is an injection.

Proof. Using the lemma above, for any ordinal � we construct the diagram in the
lemma where for each ˛ < � , C˛ ! M is an F -precover and such that when
˛ C 1 < � ,

C˛

��

�� M

C˛C1

�����������

has the property guaranteed by the lemma. For ˛ C 1 < � , we let D˛ � C˛C1 be
the image of C˛ ! C˛C1. Then by our requirement on C˛ ! C˛C1, we see that if
C !M is any F -precover and if

C˛C1

��

�� M

C

�����������

is commutative then C˛C1 ! C restricted to D˛ is an injection. Hence if we let
@� D CardC for some fixed F -precover C ! M , we see that CardD˛ � @� for
all such ˛. But when ˛ < ˇ < ˇ C 1 < � we see that C˛C1 ! CˇC1 induces
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an injection D˛ ! Dˇ . So because of the restriction on the size of the D˛’s, we
see that if the original � is large enough, we must be able to find an ˛ and ˇ with
˛ < ˇ < ˇ C 1 < � such that D˛ ! Dˇ is a bijection. But then D˛ is a direct
summand of C˛C1 and so is in F . Then noting that any factorizationD˛ ! E !M

with E ! M an F -precover can be extended to a factorization C˛C1 ! E ! M ,
we see that D˛ ! E is an injection. So we let D D D˛ and let D ! M be the
restriction of C˛C1 !M to D.

Lemma 5.2.6. If  W D !M is an F -precover having the property of Lemma 5.2.5,
then  W D !M is an F -cover.

Proof. If every map D ! D completing

D

���
�
�

�� M

D

����������

is an isomorphism, then we are through. So suppose C ! C is such a map, but not
an automorphism. Then for any ordinal ˛, we can construct a commutative diagram

D0

��

�� D1
















�� D2

�����
���

���
���

���
��

�� � � �

M

with Dˇ D D for each ˇ < ˛ and Dˇ ! DˇC1 not an isomorphism (but an
injection) for each ˇ < ˛. Now complete

lim�!Dˇ

���
�
�

�� M

D

������������

By construction, if ˇ < v < ˛, then Dˇ ! Dv, Dv ! D are injections but
not surjections. This implies CardD � Card.˛/ for all infinite ˛, and so gives a
contradiction.

Corollary 5.2.7. Let F be a class of R-modules that is closed under well ordered
inductive limits and M be an R-module. If M has an F -precover, then it has an
F -cover.

Proof. In Theorem 5.2.3 we can let C D lim�!C˛.
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Exercises

1. Let G be any set of modules and F be the class of modules which are isomor-
phic to a direct summand of a direct sum of modules in G. Argue that F is
precovering.

2. Let F be a class such that M has an F -cover and let ' W C ! M be an F -
precover. Then show that the following are equivalent:

(a) ' W C !M is a cover

(b) any f W C ! C with ' ı f D ' is an injection

(c) any f W C ! C with ' ı f D ' is a surjection.

3. Let F be a class of R-modules andM1 andM2 be two R-modules satisfying the
initial hypothesis of Theorem 5.2.3. If F is closed under finite sums, argue that
M1 ˚M2 also satisfies this hypothesis.

4. Let R D Z and F consist of all direct sums of cyclic groups. Show that every
module has an F -precover. Find a module that does not have an F -cover.

5.3 Projective and Flat Covers

We now know that flat covers always exist. We will defer the proof of this fact to
Chapter 7 (Theorem 7.4.4) after we establish necessary tools. So in this section, we
will only consider the existence of flat precovers and covers for special rings and
classes of modules.

Since, for any ring R, any inductive limit of flat R-modules is flat, we have the
following as a consequence of Corollary 5.2.7.

Theorem 5.3.1. For any ring R and any R-module M , if M has a flat precover, then
it has a flat cover.

If R is a Prüfer domain, then the class of flat R-modules is covering by Theo-
rem 4.2.1.

It is easy to see that projective precovers always exist. The following result of Bass
[23] tells us when projective modules are covering.

Theorem 5.3.2. Let Proj be the class of projective R-modules. Then the following
are equivalent:

(1) Every flat R-module is projective.

(2) Every projective precover is a flat precover.

(3) P roj is covering (that is, R is left perfect).
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Proof. .1/) .2/ is trivial.
.2/) .1/. Let F be a flat R-module and P ! F be its projective precover. Then

P ! F is also a flat precover by assumption. But projective precovers are surjective.
So the diagram

F

��	
	
	
	

P �� F �� 0

can be completed to a commutative diagram. Hence F is a summand of P .
.1/) .3/ EveryR-module has a flat precover since flat means projective. So every

R-module has a projective cover by Theorem 5.3.1.
.3/) .1/. Let F be a flat R-module. We consider the minimal projective resolu-

tion

� � � ! P2
d2! P1

d1! P0 ! F ! 0:

If J is the Jacobson radical of R, then dn.Pn/ 
 JPn�1 since Ker.dn�1/ is superflu-
ous in Pn�1 and so Ker.dn�1/ 
 JPn�1. So the deleted complex

� � � ! R=J ˝ P2 ! R=J ˝ P1 ! R=J ˝ P0 ! 0

has zero differentiation. Hence Tor1.R=J; F / D R=J ˝ P1 Š P1=JP1. But since
F is flat, Tor1.R=J; F / D 0. So P1 D JP1. But then P1 D 0 by Exercise 9. Thus F
is a projective left R-module.

We now argue that finitely generated modules over local rings have projective cov-
ers.

Theorem 5.3.3. If R is a local ring, then every finitely generated R-module has a
projective cover.

Proof. LetM be a finitely generatedR-module and m be the maximal left ideal ofR.
Then R=m is a division ring and soM=mM is a finite-dimensional vector space over
R=m. ThusM=mM Š .R=m/n for some integer n � 1. So we have an epimorphism
� W Rn !M=mM which factors through the natural map � WM !M=mM , that is,
there is a map ' W Rn !M such that � ı ' D � .

If y 2 M , then there is an x 2 Rn such that �.y/ D �.x/ D � ı '.x/ since �
is surjective. But then '.x/ � y 2 Ker � D mM . So M D Im ' C mM . Thus
M D Im' by Nakayama Lemma. So ' is surjective. Hence ' W Rn ! M is a
projective precover. Note that Ker ' 
 mRn D mn. We now argue that it is also a
cover.

Suppose f W Rn ! Rn is a map such that ' ı f D '. Then as in the above,
Rn D Imf C Ker'. So Im f D Rn since Ker' � mRn. Therefore f is surjective.
But then f splits and so there is a map f 0 W Rn ! Rn such that f ı f 0 D idRn .
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Hence Imf 0 ˚ Ker f D Rn. But Ker f � Ker' and so Im f 0 C Ker' D Rn.
Thus Imf 0 D Rn again by Nakayama Lemma. Therefore Ker f D 0 and so f is
one-to-one. Hence the diagram

Rn

���
�
�

'

���
��

��
��

�

Rn
'

�� M

can be completed only by automorphisms of Rn. That is, ' W Rn !M is a projective
cover.

Remark 5.3.4. Rings for which every finitely generated module has a projective
cover are said to be semiperfect. So we see that locals rings are semiperfect and
every perfect ring is semiperfect. Further characterizations and examples of perfect
and semiperfect rings can be found in Anderson–Fuller [6] or in the original paper of
Bass [23].

Recall that given an R-module M , the character module HomZ.M;Q=Z/ is de-
noted by MC. With this notation, we have the following result.

Proposition 5.3.5. Let R be a right coherent ring, M be a right R-module, and E be
an injective right R-module containing M . Then EC !MC is a flat precover.

Proof. EC is a flat left R-module since R is right coherent. We want to show that
if F is a flat left R-module, HomR.F;EC/ ! HomR.F;MC/ ! 0 is exact, or
equivalently, HomZ.E˝ RF;Q=Z/! HomZ.M ˝ RF;Q=Z/! 0 is exact which
is obvious since F is flat and Q=Z is injective. So EC !MC is a flat precover.

Definition 5.3.6. A submodule T of an R-module N is said to be a pure submodule
if 0 ! A ˝ T ! A ˝ N is exact for all right R-modules A, or equivalently, if
Hom.A;N / ! Hom.A;N=T / ! 0 is exact for all finitely presented R-modules A.
An exact sequence 0 ! T ! N ! N=T ! 0 (or 0 ! T ! N ) is said to be pure
exact if T is a pure submodule of N .

An R-module M is said to be pure injective if for every pure exact sequence
0 ! T ! N of R-modules, Hom.N;M/ ! Hom.T;M/ ! 0 is exact. Clearly,
every injective module is pure injective.

Proposition 5.3.7. For any R-module M , the character module MC is a pure injec-
tive right R-module.

Proof. Let T � N be a pure submodule of the right R-module N . Then

HomR.N;M
C/! HomR.T;M

C/! 0
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is exact if and only if HomZ.N ˝ RM;Q=Z/ ! HomZ.T ˝ RM;Q=Z/ ! 0 is
exact. But the latter is exact since 0! T ˝ RM ! N ˝ RM is exact.

We note that a similar result holds for right R-modules.

Proposition 5.3.8. The sequence 0 ! T ! N of R-modules is pure exact if and
only if NC ! TC admits a section.

Proof. If 0 ! T ! N is pure exact, then 0 ! M ˝ T ! M ˝ N is exact for
any right R-module M . Hence .M ˝ N/C ! .M ˝ T /C ! 0 is exact and so
Hom.M;NC/! Hom.M; TC/! 0 is exact. But if M D TC then this implies that
NC ! TC has a section.

Conversely ifNC ! TC has a section, then Hom.M;NC/! Hom.M; TC/! 0

is exact for all M , and so .M ˝ N/C ! .M ˝ T /C ! 0 is exact too implying
that 0 ! M ˝ T ! M ˝ N is exact for all M . This means 0 ! T ! N is pure
exact.

Proposition 5.3.9. Every R-module is a pure submodule of a pure injective R-mod-
ule.

Proof. By Proposition 5.3.7, MCC is pure injective. To show that the canonical map
M ! MCC is a pure injection we need to show MCCC ! MC admits a section.
But the canonical map MC ! .MC/CC DMCCC is such a section.

Remark 5.3.10. If R is commutative, the arguments above hold if we replace MC
by HomR.M;E/ where E is an injective cogenerator of R.

Theorem 5.3.11. Let R be a right coherent ring. Then every pure injective left R-
module has a flat cover ' W F !M with F and Ker' pure injective.

Proof. Let M be a pure injective left R-module. Then M is a direct summand of
MCC since M is a pure submodule of MCC by Proposition 5.3.9. But MC is a
right R-module and so MCC has a flat precover F ! MCC by Proposition 5.3.5.

But then the composition F ! MCC 
! M where � is the projection map is a flat
precover. Hence M has a flat cover by Theorem 5.3.1.

Now let 0 ! MC ! E ! C ! 0 be exact with E injective. Then since M
is a direct summand of MCC, F and Ker' are direct summands of EC and CC
respectively whenever F ! M is a flat cover of M . Thus F and Ker' are pure
injective.

We now use Theorem 5.3.11 above to show that the class of submodules of flat left
R-modules is covering over a right coherent ring. But first we need the following
result from set theory.
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Lemma 5.3.12. Let M and N be R-modules. Then there is a cardinal number @˛
dependent on CardN and CardR such that for any morphism f W N ! M , there is
a pure submodule S of M such that f .N / � S and CardS � @˛ .

Proof. A submodule S is pure in M if for every m � 1 and every finitely generated
T � Rm any linear map T ! S has an extension Rm ! M if and only if it has an
extensionRm ! S (see Exercise 2). If we consider the direct sum P DL

.T;Rm/R
m

summed over the set of pairs .T;Rm/ where m � 1 and where T � Rm is finitely
generated we have the submodule U D L

.T;Rm/ T of P . We then see that S � M
is pure if and only if any linear U ! S has an extension P !M if and only if it has
an extension P ! S .

We construct a sequence S0 � S1 � S2 � � � � of submodules ofM as follows. We
let S0 D f .N /. Having constructed Sn for n � 0 we consider the set X of all linear
f W U ! Sn such that there is a linear Nf W P ! M agreeing with f . For each such
f we choose one such Nf and let NX be the set of these Nf . Then let

SnC1 D Sn C
X

Nf 2 NX
Nf .P /:

We have S0 � S1 � S2 � � � � and we let S DS1
nD0 Sn.

Each such Sn has the property that if U ! Sn is linear and can be extended to
P ! M then it can be extended to P ! SnC1. Then we note that if .T;Rm/ is
one of the original pairs, any linear T ! S can be factored T ! Sn ! S for some
n � 0 since T is finitely generated. Hence by the criterion mentioned above, S �M
is pure.

But Card NX � CardR and CardS0 � CardN and so S1 D S0CP

Nf 2 NX Nf .P / has

CardS1 � Card
�

S0
M

�

M

Nf 2 NX
Nf .P /

��

and so CardS1 � CardN C .CardR/.CardR/. But then CardS1 � @˛ where
@˛ D max.CardN;CardR/. In a similar manner, CardS2 � @˛ , CardS3 � @˛; : : : .
But then CardS D Card

S1
iD0 Si � CardS0 C CardS1 C � � � � @˛ C @˛ C � � � D

@0 � @˛ D @˛.

Lemma 5.3.13. Let R be a right coherent ring. Then the class of submodules of flat
left R-modules is closed under inductive limits.

Proof. Let ..Si /; .'j i // be a well ordered inductive system with each Si a submodule
of a flat left R-module. We need to show that lim�!Si is also a submodule of a flat
module. For each i , we have Si � Fi for some flat module Fi . But in general, there
is no reason why a morphism Si ! Sj can be extended to a morphism Fi ! Fj and
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even so, the different morphisms might not be compatible. Hence we need to choose
the embeddings Si � Fi in a functorial manner.

But by the lemma above, there is a cardinal number @˛ (dependent on CardSi and
on CardR) such that if f W Si ! G is any morphism with G flat, then there is a pure
and hence flat submodule F � G with f .Si / � F and where CardF � @˛ . So let
X be a set with CardX D @˛. For each i , we consider all morphisms f W Si ! F

where F is a flat left R-module with F � X (as sets). Let Ff D F , Fi D Q

Ff
over all such f , and Si ! Fi be the morphism x 7! .f .x//. Then Fi is flat since R
is right coherent. Furthermore, if ' W Si ! Sj is a morphism, we define a morphism
Fi ! Fj as follows: Let Fj D Q

Gg (over morphisms g W Sj ! Gg described
above). To define Fi ! Fj , we only need to define

Q

Ff ! Gg 0 for each g0. But
the composition Si ! Sj ! Q

Gg ! Gg 0 (the last map being the projection map)
is one of the morphisms f 0, that is, Gg D Ff 0 and Si ! Gg 0 is the morphism f 0. So
let

Q

Ff ! Gg 0 be the projection map corresponding to f 0. Then we see that

Si

��

�� Fi

��
Sj �� Fj

is commutative and the morphisms Fi ! Fj are functorial in the obvious sense. So
we can define an inductive limit lim�!Fi . But Si ! Fi is an injection. So lim�!Si !
lim�!Fi is also an injection. Thus we are done since lim�!Fi is flat.

Theorem 5.3.14. If R is a right coherent ring, then the class of submodules of flat
left R-modules is covering.

Proof. Let M be a left R-module and F be the class of submodules of flat left R-
modules. Let M � E with E injective. Then E has a flat cover ' W F ! E by
Theorem 5.3.11. Now let S D '�1.E/. Then by chasing an obvious diagram, we
see that S ! M is an F -precover. Hence M has an F -cover by Corollary 5.2.7 and
Lemma 5.3.13 above.

Remark 5.3.15. IfR is a commutative ring andM is anR-module, then HomR.M;E/
is pure injective for each injective R-module E as in Proposition 5.3.7 above. Thus
HomR.M;E/ has a flat cover by Theorem 5.3.11. Furthermore, just like in the proof
of Proposition 5.3.5, if R is Noetherian, then Hom.E.M/;E/ ! Hom.M;E/ is a
flat precover of Hom.M;E/ noting that Hom.E.M/;E/ is flat by Theorem 3.2.16.
In order to apply this to a specific example, we need the following easy results.

Proposition 5.3.16. Let R be a local ring and p 2 SpecR. If M is an ORp-module
and Matlis reflexive, then M has a flat cover as an R-module.
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Proof. Since M Š Hom.M v; E.k.p///, M has a flat ORp-module cover F ! M by
Remark 5.3.15 above. If G is a flat R-module and G ! M is a morphism, then we
have a factorization G ! G ˝ ORp ! M . But G ˝ ORp is flat as an ORp-module and
so G˝ ORp !M can be lifted to F . But then we have a factorization G ! F !M .
So F !M is a flat precover as R-modules. Hence M has a flat cover.

Lemma 5.3.17. A flat precover ' W F !M of anR-moduleM is a cover if and only
if Ker' contains no nonzero direct summand of F .

Proof. We simply note that if ' W F ! M is a cover and '0 W F 0 ! M is a flat
precover and ' ı f D '0, then f is surjective and Ker f is a summand of F 0 (see
Proposition 5.1.2).

Lemma 5.3.18. If R is right coherent,
Q

Mi has a flat cover if and only if each left
R-module Mi does.

Proof. If Fi ! Mi is a flat cover for each i , then
Q

Fi is flat and
Q

Fi ! Q

Mi

is a flat precover and so
Q

Mi has a flat cover by Theorem 5.3.1. Conversely, if
F ! Q

Mi is a flat cover, then for any j , F ! Q

Mi ! Mj is a flat precover and
so Mj has a cover.

We note that if Fi ! Mi is a flat cover for each i and the index set I is infinite,
Q

Fi ! Q

Mi may fail to be a cover and
L

Fi !L

Mi may fail to be a precover.
If I is finite,

L

Fi !L

Mi is a cover (see Section 5.5).

Example 5.3.19. For a local ring R, we will let m.R/ denote its maximal ideal.
If p 2 SpecR, then the residue field k.p/ of Rp is a reflexive ORp-module. Hence it

has a flat cover over R by Proposition 5.3.16. Thus for any set X , k.p/X , and hence
its direct summand k.p/.X/, has a flat cover overR by Lemma 5.3.17. But k.p/.X/ Š
Hom.k.p/; E.k.p/.X// and so by Remark 5.3.15 above a flat precover of k.p/.X/ is
T D Hom.E.k.p//, E.k.p//.X// . The R-module T is the completion of a free Rp-
module with base indexed by X by Theorem 3.4.1. The map T ! k.p/.X/ induces
an isomorphism T=m. ORp/T ! k.p/.X/. If S is a summand of T that is in m. ORp/T ,
then S D m. ORp/S . But this is impossible unless S D 0 since T is Hausdorff in the
m. ORp/-adic topology. So T ! k.p/.X/ is a flat cover by Lemma 5.3.17.

In particular, if k is a field and CardX D m <1, then kŒŒx1; : : : ; xn		X ! kX is
a flat cover over the local ring kŒŒx1; : : : ; xn		. If X is infinite, kŒŒx1; : : : ; xn		.X/ !
k.X/ is not even a precover.

Proposition 5.3.20. If ' W F ! M is a flat cover of an R-module M and F D
F1˚F2,M DM1˚M2 are decompositions compatible with ' (that is, '.Fi / �Mi /,
then Fi !Mi is a flat cover for i D 1; 2.
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Proof. We easily see that Fi ! Mi is a flat precover. But Ker f contains no direct
summand of Fi by Lemma 5.3.17 since ' W F !M is a flat cover. So Fi !Mi is a
cover, again by the same lemma.

Remark 5.3.21. Let T be as in Example 5.3.19 above. Then any decomposition
T D T1 ˚ T2 gives one of T=m. ORp/T . So T1 ! T1=m. ORp/T1 is a flat cover by the
proposition above. But by Example 5.3.19, T1=m. ORp/T1 Š k.p/.Y / for some subset
Y of X . Thus, since covers are unique, T1 is also the completion of a free Rp-mod-
ule whose dimension is the same as that of T1=m. ORp/T1 over k.p/. In fact, T1 Š
Hom.E.k.p//; E.k.p//.Y //. This means that a direct summand of the completion of
a free module is again such.

Definition 5.3.22. An R-module M is said to be cotorsion if Ext1.F;M/ D 0 for
all flat R-modules F . This generalizes the definitions of Harrison [108] and Warfield
[180] and agrees with that of Fuchs [98] but differs from that of Matlis [147].

We note that if M is cotorsion, then Exti .F;M/ D 0 for all flat R-modules F
and all i � 1. For consider an exact sequence 0 ! K ! Pi�2 ! � � � ! P0 !
F ! 0 with each Pi projective where i � 2. Then K is flat and so Exti .F;M/ Š
Ext1.K;M/ D 0.

Our aim now is to study flat covers of cotorsion modules. We need the following
preliminary results.

Lemma 5.3.23. Every pure injective R-module is cotorsion.

Proof. Let M be a pure injective R-module and 0! K ! P ! F ! 0 be a short
projective resolution of a flat R-module F . Then K � P is pure (see Exercise 1) and
so Ext1.F;M/ D 0.

Remark 5.3.24. Let R be commutative and Noetherian. If M is any R-module and
E is an injective R-module, then Hom.M;E/ is cotorsion since it is pure injective
(see Remark 5.3.15).

Lemma 5.3.25. If ' W F !M is a flat cover, then Ker' is cotorsion.

Proof. Let F 0 be a flat module and 0 ! K ! P ! F 0 ! 0 be a short projective
resolution. Let f W K ! Ker' be any morphism. Then let P f̊ F be the amalga-
mated sum of P and F along K (see Section 4.3). Then F � P f̊ F and P f̊ F

is flat. Furthermore, ' can be extended to a morphism � W P f̊ F !M which maps
P to zero. If we complete

P f̊ F

�

������
��
��
��
�

F
'

�� M
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we can assume � induced the identity on F . But then � gives a map P ! Ker' which
extends f . Thus 0 ! Hom.F 0;Ker'/ ! Hom.P;Ker'/ ! Hom.K;Ker'/ ! 0

is exact and so Ext1.F 0;Ker'/ D 0. Hence Ker' is cotorsion.

Corollary 5.3.26. Let ' W F ! M be a flat cover. Then F is cotorsion whenever M
is.

Proof. Since F ! M is surjective, we have the exact sequence Ext1.G;Ker'/ !
Ext1.G; F /! Ext1.G;M/. So Ext1.G; F / D 0 whenever G is flat and M is cotor-
sion.

Lemma 5.3.27. Let R be a commutative Noetherian ring. Then an R-module F is
flat and cotorsion if and only if it is a direct summand of a module Hom.E;E 0/ where
E;E 0 are injective R-modules.

Proof. Hom.E;E 0/ is cotorsion by Remark 5.3.24 above and flat by Theorem 3.2.16.
Thus a direct summand of Hom.E;E 0/ is such. Conversely, let F be flat and co-
torsion. If E is an injective cogenerator, then F ,! F 0 D Hom.Hom.F;E/;E/ is
a pure injection by Remark 5.3.10. But Hom.F;E/ is injective by Theorem 3.2.9
and so F 0 is flat. But then F 0=F is flat and thus Hom.F 0; F / ! Hom.F; F / !
Ext1.F 0=F; F / D 0 is exact. Hence F is a direct summand of F 0.

We are now in a position to characterize flat covers of cotorsion modules.

Theorem 5.3.28. Let R be a commutative Noetherian ring. Then the following are
equivalent for an R-module F :

(1) F is a flat cover of some cotorsion module.

(2) F is flat and cotorsion.

(3) F ŠQ

Tp (over p 2 SpecR/ where Tp is the completion of a free Rp-module.

Furthermore, the decomposition in (3) is uniquely determined by the dimension of the
free modules.

Proof. .1/) .2/ follows from Corollary 5.3.26.
.2/) .3/. Suppose F is flat and cotorsion. Then by Lemma 5.3.27, F is a direct

summand of Hom.E;E 0/ for some injective modules E, E 0. Thus a flat cotorsion
module is a direct summand of a product

Q

Tp, over p 2 SpecR by Theorem 3.3.14.
Now let T D Q

Tp. If q 2 SpecR, then qTp D Tp for q 6� p and
T

qnTp D 0

for q � p. Hence T 0 D T

qnTp D Tp for p 6� q. Thus H D T=T 0 Š Q

Tp for
p � q. But then

T

p¨q.
T

n pnH/ Š Tq. This means that given T , we can “recover”
each Tp. The procedure commutes with direct sums, that is, if T D T1 ˚ T2, then
we get an induced decomposed Tp D .Tp/1 ˚ .Tp/2 for each p 2 SpecR so that
T1 D Q

.Tp/1. But as we noted in Remark 5.3.21, .Tp/1 is again the completion of a
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free module over Rp. Thus F , being a direct summand, is also such a product. This
also proves the last statement of the theorem.
.3/ ) .1/. By Example 5.3.19 , we have that Tp ! Tp=m. ORp/Tp is a flat cover

for each p 2 SpecR. Therefore,
Q

Tp ! Q

Tp=m. ORp/Tp is a flat precover (see
proof of Lemma 5.3.18) with kernel K D Q

m. ORp/Tp. Let F D Q

Tp and suppose
S � K is a direct summand of F . If q is a prime ideal such that S � qF , then
S D qS which implies that the projection of S on Tq is zero since Tq is Hausdorff in
the q-adic topology. Thus S D 0 if S � qF for all q. If not, let q be maximal with
S 6� qF . But if q 6� p, then qTp D Tp. If q ¨ p, then as above, the projection of S
on Tp is zero. But then S � qF since qTq D m. ORq/Tq, a contradiction. Thus S D 0
and K has no nonzero direct summands of F . Hence

Q

Tp ! Q

Tp=m. ORp/Tp is
a flat cover by Lemma 5.3.17. But Tp=m. ORp/Tp Š k.p/.X/ for some set X . So
Tp=m. ORp/Tp Š Hom.k.p/, E.k.p//.X// and is cotorsion by Remark 5.3.24. Hence
Q

Tp=m. ORp/Tp is cotorsion.

Remark 5.3.29. Theorem 5.3.28 above generalizes Harrison’s characterization of co-
torsion groups in [108] as products G D Q

Tp over primes p where Tp is a direct
summand of OZXp for some set X , and in which case G is uniquely determined by the
dimensions of Tp=pTp over Z=.p/.

Exercises

1. Let R D Z. Prove that A is a pure subgroup of B if and only if nA D nB \ A
for all n 2 Z.

2. Let S be a submodule of an R-module N . Prove that if N=S is a flat R-module,
then S � N is pure and that the converse holds if N is flat.

3. Let S be a submodule of a flat R-module N . Prove that N=S is flat if and only
if IS D IN \ S for all finitely generated right ideals I of R. Conclude that if
N is flat, then S is a pure submodule of N if and only if IS D IN \ S for all
finitely generated right ideals I of R.

4. Let S be a submodule of anR-moduleN . Prove that the following are equivalent.

(a) S is a pure submodule of N .

(b) Hom.A;N /! Hom.A;N=S/! 0 is exact for all finitely presented R-mod-
ules A.

(c) Any linear map f W T ! S where T � Rm, m � 1, is finitely generated has
an extension Rm ! N if and only if it has an extension Rm ! S .

5. Prove the assertion that kŒŒx		.N/ ! k.N/ is not a flat cover over kŒx	 (here k is
a field).

6. Prove that the class F of submodules of flat R-modules is precovering if and
only if every injective R-module has a flat cover.



Section 5.4 Injective Covers 125

7. If S � R is multiplicative and F ! M is a flat cover of S�1R-modules, show
that F !M is also a flat cover of R-modules.

8. If S � R is multiplicative and M is an S�1R-module, let F ! M be a flat
cover of M as an R-module. Prove that S�1F Š F and that F ! M is a flat
cover as S�1R-modules.

9. If S � R is multiplicative andM is a cotorsion S�1R-module, show that M is a
cotorsion R-module.

Hint: If 0 ! M ! U ! F ! 0 is a short exact sequence of R-modules with
F flat, apply the functor S�1R˝ R�.

10. LetM 0 be a submodule of anR-moduleM and suppose thatM=M 0 is flat. Argue
that if M has a flat cover, so does M 0.

11. (Bass [23, Proposition 2.7]) Let J D rad.R/, Prove that if P is a nonzero projec-
tive R-module, then P ¤ JP .

12. (Bass [23]) An ideal I of R is said to be left (right) T -nilpotent if for every
sequence a1; a2; : : : 2 I there exists an integer n such that a1a2 � � � an D 0

(an � � � a2a1 D 0). Prove that if R is left perfect, then rad.R/ is left T -nilpotent.

13. (Nakayama Lemma) Prove that if an ideal I of R is left T -nilpotent, then M ¤
IM for any nonzero left R-module M.
Hint: If IM D M ¤ 0, let a1 2 I; x1 2 M be such that a1x1 ¤ 0. Use
a1x1 to construct a sequence a1; a2; : : : 2 I for which there is no n such that
a1a2 � � � an D 0.

14. The radical of an R-module M , denoted rad.M/, is the intersection of all maxi-
mal submodules of M . Prove that rad.M/ is the sum of all superfluous submod-
ules of M .

15. Let J D rad.R/ and P be a projective R-module. Prove that rad.P / D JP .
Conclude that JP contains all superfluous submodules of P .

5.4 Injective Covers

We start by showing that the class of injective R-modules is precovering precisely
when R is a Noetherian ring.

Theorem 5.4.1. Let E be the class of injective left R-modules. Then the following
are equivalent:

(1) R is left Noetherian.

(2) E is precovering.

(3) E is covering.
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Proof. .1/ ) .2/. If R is left Noetherian, then every injective R-module is the
direct sum of indecomposable injective left R-modules. Each such module is the
injective envelope of a cyclic R-module. Hence, we can find a set of representa-
tives of such (see Gabriel [100]). So there is a family .Ei /i2I of indecomposable
injective left R-modules such that every injective left R-module is the direct sum of
copies of the various Ei . If Xi D Hom.Ei ;M/ and E.Xi /

i ! M is the evaluation

map .'f /f 2Xi
7! P

f 2Xi
f .'f /, then any map Ei

f! M can be factored through

E
.Xi /
i !M by mapping Ei onto the f component of E.Xi /

i . Hence
L

E
.Xi /
i !M

is an injective precover of M .
.2/) .1/. It suffices to show that every direct sum of injective left R-modules is

injective (by Theorem 3.1.17). Let .Ei /i2I be a family of injective left R-modules,
and E ! L

Ei be an injective precover. Then there are factorizations Ej ! E !
L

Ei where Ej ! L

Ei is the canonical injection for each j . These give rise to
a map

L

Ei ! E with the composition
L

Ei ! E ! L

Ei the identity. Hence
L

Ei is isomorphic to a summand of E and so is injective.
.2/, .3/. If E is precovering, then R is left Noetherian by the above and so E is

closed under well ordered inductive limits. Hence E is covering by Corollary 5.2.7.
The converse is trivial.

The proof of the existence of F -covers does not give us the structure of these F -
covers. As we saw in Example 5.3.19, one has to appeal to other results in order to
get the structure of covers. We now describe the structure of injective covers of some
modules.

Lemma 5.4.2. Let R be a commutative Noetherian ring. If M is a finitely generated
R-module and p is a prime ideal of R with Hom.E.R=p/;M/ ¤ 0, then p is a
maximal ideal.

Proof. Let ' 2 Hom.E.R=p/;M/, ' ¤ 0. By replacing M with Im', we may
assume ' is surjective and by going modulo a maximal submodule, we may assume
M is simple. Hence we may assume M D R=m for some maximal ideal m.

If p 6� m, then let r 2 p and r … m. Then for each z 2 R=m, z ¤ 0, rz ¤ 0.
But for each x 2 E.R=p/, rnx D 0 for some n � 1. So for '.x/ D z we would
have rnz D 0, a contradiction. Hence p � m. If p ¤ m, let r 2 m, r … p. Then
rE.R=p/ D E.R=p/ and rnE.R=p/ D 0 for some n. So there is no surjective map
' W E.R=p/! R=m. Hence p D m.

Theorem 5.4.3. Let R be a commutative Noetherian ring. Then the injective cover of
a finitely generated R-module is a direct sum of finitely many copies of E.R=m/ for
finitely many maximal ideals m.
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Proof. Let M be a finitely generated R-module and E ! M be the injective cover.
Then E Š L

p2SpecR E.R=p/. So E is the direct sum of copies of E.R=m/ over
maximal ideals m by Lemma 5.4.2 above. But if Hom.E.R=m/;M/ ¤ 0, then
m 2 Ass.M/. Furthermore, Ass.M/ has only finitely many primes sinceM is finitely
generated. SoE is a direct sum of copies ofE.R=m/ for finitely many maximal ideals
m. We now show that there are only finitely many copies of E.R=m/ for each such
maximal ideal.

We first recall that E.M/ ŠL

E.R=p/.Xp/ over p 2 SpecR and so

Hom.E.R=m/; E.M// Š Hom.E.R=m/; E.R=m/n/ Š . ORm/
n

where CardXm D n < 1 by Corollary 3.3.12. Hence Hom.E.R=m/;M/ is a
finitely generated ORm-module. Let '1; : : : ; '2 2 Hom.E.R=m/;M/ be generators
as an ORm-module. So if ' 2 Hom.E.R=m/;M/, then ' D Ps

iD1 'i ı �i for some
�1; : : : ; �s 2 Hom.E.R=m/; E.R=m// Š ORm. This means we can complete

E.R=m/

'

����� � � � � � �

E.R=m/s
.'1;:::;'s/

�� M

to a commutative diagram.
Now letE D E1˚E2 whereE1 is the direct sum of all copies ofE.R=m/ in some

decomposition of E into indecomposable injective R-modules. Then by the above,
we can complete

E1

����� � � � � � �

E.R=m/s
.'1;:::;'s/

�� M

to a commutative diagram. But then

E D E1 ˚E2

����� � � � � � �

E.R=m/s ˚E2 �� M

can be completed to a commutative diagram. So E.R=m/s ˚ E2 is an injective
precover and hence E is a direct summand of E.R=m/s ˚ E2. Thus E has finitely
many copies of E.R=m/.

Similar arguments give the following result.
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Theorem 5.4.4. Let R be a commutative Noetherian ring. Then the following state-
ments hold:

(1) If p 2 SpecR, then the injective cover of E.R=p/=R=p is the direct sum of
copies of E.R=q/ for prime ideals q such that q � p.

(2) If p … Ass.R/, then the injective cover of E.R=p/=R=p is the sum of copies of
E.R=p/.

(3) If m is a maximal ideal of R, then the injective cover of E.R=m/=R=m is a
direct sum of finitely many copies of E.R=m/.

Proof. (1) Let p, q 2 SpecR. If p 6� q, let r 2 p, r … q. Then multiplication by r on
E.R=q/ is an isomorphism and is zero on R=p. So Ext1.E.R=q/; R=p/ D 0. This
means that the diagram

E.R=q/

����� � � � � �

E.R=q/ �� E.R=p/=R=p

can be completed when the horizontal map is the natural map and the vertical one is
arbitrary. Hence to construct an injective precover of E.R=p/=R=p, it suffices to find
an injective R-module E and a map E ! E.R=p/=R=p such that

Hom.E.R=q/; E/! Hom.E.R=q/; E.R=p/=R=p/! 0

is exact whenever q � p, for then

Hom.E.R=q/; E ˚E.R=p//! Hom.E.R=q/; E.R=q/=R=q/! 0

is exact for any q 2 SpecR.
E˚E.R=p/! E.R=p/=R=p would be an injective precover since every injective

R-module is a direct sum of copies of E.R=p/. So we let E be the direct sum of
sufficiently many copies of the R-modules E.R=q/ when q � p. Then clearly, there
is a map E ! E.R=p/=R=p satisfying the above. But the injective cover is a direct
summand of a precover by Proposition 5.1.2 and thus is also a direct sum of such
copies.

(2) If p … Ass.R/, let K � E.R=p/ be the field of fractions of R=p. If p ¨
q and E.R=q/ ! E.R=p/=R=p is a map, consider the composition E.R=q/ !
E.R=p/=R=p ! E.R=p/=K. But K D .R=p/p, E.R=p/ D E.R=p/p, E.R=p/=
K D .E.R=p/=K/p, E.R=q/p D 0. Thus E.R=q/! E.R=p/=K is the zero map.
Hence the original map E.R=q/ ! E.R=p/=R=p maps E.R=q/ onto K=.R=p/.
But p … Ass.R/ and so there exists an r 2 p which is not a zero divisor. ThusE.R=p/
is divisible by r . But then any map E.R=q/! K=.R=p/ is zero since multiplication
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by r on K=.R=p/ is zero. Consequently, any map E.R=q/! E.R=p/=R=p is zero
for any prime ideal q © p. Hence the injective cover of E.R=p/=R=p is a direct sum
of copies of E.R=p/.

(3) If m is a maximal ideal, then the injective cover of E.R=m/=R=m consists
of copies of E.R=m/ by (1) above. We now show that there are finitely many such
copies. We recall thatE.R=p/vŠ ORp, the completion ofR at p, and .E.R=p/=R=p/v

is isomorphic to the maximal ideal m. ORp/ of ORp. Hence by duality, to find an injec-
tive cover of the desired form, we only need to argue that there is an n � 1 and
a map m. ORp/ ! ORnp such that Hom ORp

. ORnp; ORp/ ! Hom ORp
.m. ORp/; ORp/ ! 0

is exact. But ORp is Noetherian and so let �1; �2; : : : ; �n be a set of generators of

Hom ORp
.m. ORp/; ORp/. Then the map m. ORp/

.�1;:::;�n/�! ORnp satisfies the requirements.

In particular, as we will show below, if m is a maximal ideal of a commutative
Noetherian ring R such that depthmR � 2 (see Definition 9.2.5), then the injective
cover of E.R=m/=R=m is simply E.R=m/, and the injective cover has at least two
copies of E.R=m/ in the case depthmR D 1.

We start with the following general result.

Theorem 5.4.5. Let R be a commutative Noetherian ring, M be a finitely generated
R-module with n generators, and G be an injective R-module. If Ext1.M;R/ D 0,
then the natural map

Gn ! Gn=HomR.M;G/

is an injective precover. The converse holds if G is an injective cogenerator of R.

Proof. Let E be an injective R-module. Then HomR.Ext1R.M;R/;E/ D 0 im-
plies TorR1 .HomR.R;E/;M/ D 0 and so Hom.Tor1.E;M/;G/ D 0. But then
Ext1.E;Hom.M;G// D 0 and so the result follows.

For the converse, note that Gn ! Gn=Hom.M;G/ is an injective precover means
that Ext1.E;Hom.M;G// D 0 for all injectives E. If G is an injective cogenerator,
this in turn implies Ext1.M;R/ D 0 and so we are done.

In particular, we have the following result.

Theorem 5.4.6. Let R be a commutative Noetherian ring. Then the following are
equivalent for a maximal ideal m of R:

(1) Ext1.R=m; R/ D 0.

(2) The natural map E.R=m/! E.R=m/=R=m is an injective cover.

(3) Hom ORm
.m. ORm/; ORm/ is cyclic.
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Proof. .1/ ) .2/. E.R=m/ ! E.R=m/=R=m is an injective precover by the pre-
ceding theorem. But the injective cover of E.R=m/=R=m is then a direct summand
of E.R=m/ and E.R=m/ is indecomposable. Hence E.R=m/ is the injective cover.
.2/ ) .1/. If m0 is a maximal ideal distinct from m, let r 2 m, r … m0. Then r

is an isomorphism on E.R=m0/ and is zero on R=m. So Hom.R=m; E.R=m0// D
0. Therefore Ext1.E;Hom.R=m;

L

p2mSpecR E.R=p/// D Ext1.E;R=m/. Hence

if Ext1.E;R=m/ D 0 for all injective modules E, then Ext1.R=m; R/ D 0 since
L

p2mSpecR E.R=p/ is an injective cogenerator of R.
.2/ ) .3/. By Matlis duality, if E.R=m/n ! E.R=m/=R=m is an injective

cover, then n is the least number of generators of Hom ORm
.m. ORm/; ORm/.

.3/ ) .2/. If Hom ORm
.m. ORm/; ORm/ is cyclic, then as in the proof of Theorem

5.4.4, E.R=m/ ! E.R=m/=R=m is an injective precover and so is an injective
cover.

Corollary 5.4.7. depthmR � 2 if and only if the natural map E.R=m/=R=m is an
injective cover and depthmR > 0.

Proof. We simply note that depthmR D inf¹i W Exti .R=m; R/ ¤ 0º (see Re-
mark 9.2.9).

Corollary 5.4.8. depthmR D 1 if and only if the injective cover of E.R=m/=R=m
has at least two copies of E.R=m/ and depthmR > 0.

Proof. If depthmR D 1, then E.R=m/ ! E.R=m/=R=m is not an injective cover
by Corollary 5.4.7 above. But the injective cover of E.R=m/=R=m is a (finite) sum
of copies of E.R=m/ by Theorem 5.4.4. So the cover has at least two copies of
E.R=m/. The converse follows from the above corollary.

Example 5.4.9. Let R D kŒx1; : : : ; xn	 where k is a field. Then E.k/! E.k/=k is
an injective cover if and only if n � 2 by the above.

Similarly, if R is an n-dimensional local ring with residue field k, then E.k/ !
E.k/=k is an injective cover whenever n � 2.

Exercises

1. Let R be Noetherian. Show that every injective cover is an injection if and only
if every quotient module of an injective module is injective.

2. Let R be Noetherian. Argue that the following are equivalent:

(a) Every injective cover is surjective.

(b) Every projective module is injective.

(c) R (as a left R-module) is injective.
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3. Suppose that 'i W Ei !Mi is a family of injective covers (for i 2 I ). Show that
Q

'i W Qi2I Ei !
Q

i2I Mi is an injective precover and that this precover is a
cover if and only if

Q

Ker.'i / has no nonzero injective submodules.

4. If R! S is a ring homomorphism and if E !M is an injective precover of left
R-modules, argue that HomR.S;E/! HomR.S;M/ is an injective precover of
left S -modules when S is a flat right R-module.

5. Let C be a left R-module such that Ext1R.E; C / D 0 for all injective left R-mod-
ule E. Prove that E.C/ ! E.C/=C is an injective precover and that it is an
injective cover if and only if C has no nonzero injective submodules.

5.5 Direct Sums and T -nilpotency

A direct sum of covers may fail to be a precover, or it may be a precover and still not
be a cover. Namely, if for each i 2 I ,  i W Ci ! Mi is a cover, it may be possible to
complete

L

Ci

�����
���

���
�
�
�

L

Mi

L

Ci

��������

by a map which is not an isomorphism. The next proposition shows when this property
of covers is preserved by countable sums. The necessary condition is a sort of T -
nilpotency, which when applied to projective covers gives the usual T -nilpotency of
the radical of a left perfect ring.

In the situations above, there is no loss in generality in assuming each Mi is a
quotient of Ci , say Ci=Si , and that  i W Ci ! Ci=Si is the canonical surjection.

Proposition 5.5.1. If for each i D 1; 2; 3; : : : , Si � Ci is a submodule such that

Ci
����

���
�

���
�
�

Ci=Si

Ci

��������

can be completed only by automorphisms of Ci , then the same is true for

L

Ci
�����

���

���
�
�
�

L

Ci=Si

L

Ci

��������

(
)
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if and only if for each sequence 1 � k1 < k2 < � � � of positive integers and maps
fn W Ckn

! CknC1
with Im.fn/ � SknC1

and each x 2 Ck1
, there is an m � 1 such

that

fm ı fm�1 ı � � � ı f1.x/ D 0:

Proof. We argue the necessity and let the kn’s and fn’s be as stated. Define ' W
L

Ci !L

Ci so that if i ¤ kn for any n then 'midCi
is the identity map, and so that

'midCkn
agrees with the map Ckn

! Ckn
˚ CknC1

which maps y to .y;�fn.y//.
Then ' completes the diagram .
/. Furthermore one checks that if x 2 Ck1

and if x
is in the image of ', say '..xi // D x, then xi D 0 for i ¤ kn for all n. Also xk1

must be x and by induction we see that xkn
D fn�1 ı � � � ı f1.x/ for n > 1. But

.xi / 2L

Ci and so xkn
D 0 for n sufficiently large.

For the converse, suppose ' completes .
/. Use the matrix notation ' D .'ij / with
'ij W Cj ! Ci . Note that for each i , 'i completes the diagram

Ci

����
���

�

���
�
�
�

Ci=Si

Ci

��������

and so is an isomorphism, and that for i ¤ j , 'ij has its image in Si . Also .'ij / is
locally column finite in the sense that for any j and any x 2 Cj , 'ij .x/ D 0 except
for a finite number of i . Furthermore, any collection of 'ij ’s satisfying these condi-
tions gives a ' completing .
/. To argue that ' is an isomorphism we only need to
find a  which is an isomorphism completing .
/ and such that  ı ' or ' ı  is an
isomorphism. The argument proceeds by showing that ' has a triangular decomposi-
tion, that is, it is the product of an upper and lower triangular matrix (corresponding
to an automorphism of

L

Ci ). If ' is upper triangular, then since its diagonal ele-
ments are automorphisms of the Ci , it is a standard argument that it is invertible, and
its inverse satisfies the conditions above. This guarantees that it corresponds to an
automorphisms of

L

Ci of the desired type (that is, makes .
/ commutative).
So we construct an upper triangular matrix  of the desired form so that ' ı  is

lower triangular. We define  as an infinite product  1 ı  2 ı  3 ı � � � . We start by
letting

 1 D

2

6

6

6

6

4

�'�111 �'�111 '12 '�111 '13 � � �
0 id 0 � � �
0 0 id � � �
:::

:::
:::

: : :

3

7

7

7

7

5

:
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Then ' ı  1 has the form
2

6

6

4

id 0 0 � � �
'021 '022 '023 � � �
:::

:::
:::
: : :

3

7

7

5

:

Hence define  2 as we defined  1 but using the second row of ' ı  1, and then
similarly defining  3; � � � . It is easy to see that ij entry of  1 ı � � � ı  n is constant
for n sufficiently large and so the infinite product converges; and if  is this product
it gives the desired automorphism of

L

Ci so that ' ı  is lower triangular.
Now assume that ' is lower triangular and that it has the identities idCi

on the
diagonal. So ' D idL

Ci
� K where K is strictly lower triangular and �K has 'ij

for its ij entry when i > j . Since K is strictly lower triangular, the sum

'0 D idCK CK2 C � � � CKn C � � �

is well-defined. As a matrix, '0 is '�1. However we need to argue that it is locally
column finite. To argue this, given i , let x 2 Ci . Then the j i entry of '0.x/ for j > i
is

X

'jks
ı 'ksks�1

ı � � � ı 'k2k1
ı 'k1i .x/

with the summation taken over all finite sequences j > ks > � � � > k1 > i . If for an
infinite number of j with j > i the sum is nonzero, an easy application of the König
Graph Theorem (see [131]) allows us to choose i < k1 < k2 < k3 < � � � with

'knkn�1
ı � � � ı 'k1i .x/ ¤ 0:

Setting fn D 'knkn�1
for n � 2 and f1 D 'k1i contradicts our hypothesis.

Corollary 5.5.2. For a left perfect ring R, if Pi !Mi are projective covers for each
i D 1; 2; 3; : : : , then

L

Pi !L

Mi is a projective cover.

Remark 5.5.3. If we apply this result to a countable sum of copies of the projective
cover R ! R=J where J is the Jacobson radical of R we get that

L

R !L

R=J

is a projective cover. If r1; r2; : : : is a sequence of elements of J , then using Proposi-
tion 5.5.1, let kn D n for all n and let fn W R ! R be multiplication by rn. Then the
condition fm ı � � � ı f1.x/ D 0 for x D 1 2 R translates to rm � � � r1 D 0. Thus J is
right T -nilpotent.

We note that the finite counterpart of Proposition 5.5.1 holds since we can choose
ck D 0 for k sufficiently large. So we have the following result.

Proposition 5.5.4. If Ci ! Mi , i D 1; 2; : : : ; n are F -covers and
Ln
iD1 Ci 2 F ,

then
Ln
iD1 Ci !

Ln
iD1Mi is an F -cover.
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Exercises

1. Let R D Zp where p is a prime. Then Zp ! Z=.p/ is a projective cover. Show

that Z.N/p ! Z=.p/.N/ is a projective precover but is not a projective cover.

2. Again with R D Zp with p a prime, we have that OZp ! Z=.p/ is a flat cover.

Show that OZ.N/p ! Z=.p/.N/ is not a flat precover.

3. Give a direct argument showing that if 'i W Ci ! Mi are F -covers for i D 1; 2

and if C1 ˚ C2 2 F , then ' D '1 ˚ '2 W C1 ˚ C2 !M1 ˚M2 is an F -cover.

Hint: Let f W C1 ˚ C2 ! C1 ˚ C2 be such that ' ı f D '. Using matrix

notation let f D
�

f11 f12

f21 f22

�

with fij W Cj ! Ci . Then the equality ' ı f D '

becomes
�

'1 0

0 '2

� �

f11 f12
f21 f22

�

D
�

'1 0

0 '2

�

If g W C1 ˚ C2 ! C1 ˚ C2 is an automorphism such that ' ı g D ', then it
suffices to argue that f ı g (or g ı f ) is an automorphism. Use this observation
to show that we can assume f11 D idM1

, f22 D idM2
and also that f12 D 0.

So then conclude that f D
�

f11 f12

f21 f22

�

D
�

idM1
0

f21 idM2

�

is an automorphism of

C1 ˚ C2.



Chapter 6

Envelopes

Having introduced covers in the previous two chapters, we now define the dual notion
of envelopes. The main aim of this chapter is to prove the existence of envelopes.
We first do this by dualizing the results for covers in Sections 5.1 and 5.2. However
these results do not prove the existence of injective and pure injective envelopes. In
Section 6.6, we will use Maranda’s notion of an injective structure to obtain a result
that proves the existence of these envelopes.

6.1 F -preenvelopes and Envelopes

Definition 6.1.1. Let R be a ring and F be a class of R-modules, by an F -pre-
envelope of an R-module M we mean a morphism ' W M ! F where F 2 F

such that for any morphism f W M ! F 0 with F 0 2 F , there is a g W F ! F 0
such that g ı ' D f . If furthermore, when F 0 D F and f D ' the only such g
are automorphisms of F , then ' W M ! F is called an F -envelope of M . So if
envelopes exist, they are unique up to isomorphism. It is easy to check that if F is
the class of injective modules, then we get the usual injective envelopes. Similarly,
we get pure injective envelopes if F is the class of pure injectives. We note that if
the class F contains injectives, then F -preenvelopes are monomorphisms. If every
R-module has an F -(pre)envelope, we say that F is (pre)enveloping. For example,
we know that the class of injective R-modules is enveloping.

We start with the following result which is dual to Proposition 5.1.2.

Proposition 6.1.2. Let M be an R-module, then the F -envelope of M , if it is exists,
is a direct summand of any F -preenvelope of M .

Exercises

1. Recall that every subgroup of a free Abelian group is free. Deduce that for an
Abelian group A the following are equivalent.

(a) A has a free preenvelope.

(b) A has a free envelope.

(c) A has a direct sum decomposition A D A1 ˚ A2 with A2 free and such that
Hom.A1;Z/ D 0.
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2. (a) Let A D Q1
iD0Zi with Zi D Z for i � 0. Show that if B DL1

iD0Zi , then
A=B has an uncountable divisible subgroup.

(b) Use (a) to deduce that A is not free by arguing that if A were free there would
be a decomposition A D A1 ˚ A2 with B � A1 and A1 countable and so
contradict (a).

(c) Argue that A does not have a free preenvelope by noting that if A0 is a direct
summand of A, then Hom.A0;Z/ D 0 implies A0 D 0.

3. Let F be a class of modules closed under taking submodules, products and in-
jective envelopes. Then

(a) Argue that an R-module M has an F -preenvelope if and only if it has an
F -envelope and that any F -envelope is surjective.

(b) Show that every M has an F -envelope if and only if F is closed under prod-
ucts.

(c) If every M has an F -envelope and K D Ker' for an envelope ' W M ! F ,
argue that Hom.K;G/ D 0 for all G 2 F .

6.2 Existence of Preenvelopes

The following is dual to Proposition 5.2.2. We provide a proof for completeness.

Proposition 6.2.1. If F is a class of R-modules that is closed under products, then
an R-module M has an F -preenvelope if and only if there is a cardinal number @˛
such that any morphism M ! F with F 2 F has a factorization M ! G ! F

with G 2 F and CardG � @˛.

Proof. If M has an F -preenvelope M ! F , then let @˛ D CardF . Conversely,
there is a set X with cardinality @˛ such that any morphism M ! F with F 2 F

has a factorization M ! G ! F for some G 2 F with G � X (as sets). Now
let .'i /i2I give all such morphisms 'i W M ! Gi with Gi � X (as sets). So
any morphism M ! F has a factorization M ! Gj ! F for some j . But then
M !Q

I Gi is an F -preenvelope.

Corollary 6.2.2. Let CardM D @ˇ . Suppose there is an infinite cardinal @˛ such
that if F 2 F and S � F is a submodule with CardS � @ˇ , there is a submodule G
of F containing S with G 2 F and CardG � @˛ . Then M has an F -preenvelope.

Proof. Let M
f! F be a morphism with F 2 F . Then Card f .M/ � @ˇ . So

there is a submodule G of F containing f .M/ with G 2 F and CardG � @˛. But
then we have a factorization M ! G ! F . Hence M has an F -preenvelope by
Proposition 6.2.1.
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We now provide an example to illustrate how the above arguments apply. But
before we do that we need the following.

Definition 6.2.3. AnR-moduleN is said to be absolutely pure if it is a pure submod-
ule in every R-module that contains it, or equivalently, if it is pure in every injective
R-module that contains N . But then N is absolutely pure if and only if it is pure
in E.N/ and if and only if Hom.M;E.N// ! Hom.M;E.N/=N/ ! 0 is exact
for all finitely presented R-modules M by Definition 5.3.6. That is, if and only if
Ext1.M;N / D 0 for all finitely presented R-modulesM . As a result, absolutely pure
modules are also known as FP -injective modules.

We now recall from Remark 3.2.3 that an R-module M is finitely presented if
and only if there is an exact sequence 0 ! A ! Rn ! M ! 0 with A finitely
generated. Hence Ext1.M;N / D 0 for all finitely presented R-modules M if and
only if Ext1.Rn=A;N / D 0 for every n > 0 and finitely generated A 
 Rn. So an
R-module N is absolutely pure if and only if Hom.Rn; N / ! Hom.A;N / ! 0 is
exact for every n > 0 and finitely generated A 
 Rn.

Proposition 6.2.4. Let R be a ring. Then the class of absolutely pure R-modules is
preenveloping.

Proof. Let M be an R-module and let CardM � @ˇ . We need to choose an @˛ and
construct the G in Corollary 6.2.2. But N is absolutely pure if for each n � 1 and
finitely generated A 
 Rn every morphism A ! N has an extension Rn ! N .
Now let f W M ! N be a morphism. Then setting B0 D f .M/, we consider
submodules B1 � N with B0 � B1 such that every morphism A ! B0 has an
extension Rn ! B1. We can choose B1 with a bound on its size depending only on
@ˇ and CardR. The argument for this claim is similar to that used in the proof of
Lemma 5.3.12. Similarly, we can construct B1 � B2 � � � � . Now let B D S1

iD1Bi .
Then B is absolutely pure and we can find an @˛ so that B can always be constructed
with CardB � @˛ . Finally, it is easy to check from the definition above that the
product of absolutely pure modules is again absolutely pure.

Exercises

1. Let R be an integral domain. Modify the proof of Proposition 6.2.4 to show that
the class of divisible modules is preenveloping.

2. Let S be any set of modules. Let F be the class of modules F such that
Exti .S; F / D 0 for all i � 1 and S 2 S .

(a) Prove that every module M has an F -preenvelope which is an injection.

(b) If R D Z and S consists of all Z=.n/, n � 1, argue that F consists of all the
divisible Z- modules.
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3. Prove that the direct sum of any family of absolutely pure modules is absolutely
pure. Deduce that the class of absolutely pure modules coincides with the class
of injective modules if and only if the ring is left Noetherian.

6.3 Existence of Envelopes

The following Theorem is dual to Theorem 5.2.3.

Theorem 6.3.1. Let R be a ring, F be a class of R-modules that is closed under
summands, and M be an R-module. Suppose for any well ordered projective system
..G˛/; .'˛ˇ //, every map M ! lim �G˛ can be factored through some M ! G with
G 2 F . If M has an F -preenvelope, then it has an F -envelope.

Proof. We again break up the proof into three lemmas just as in Theorem 5.2.3.

Lemma 6.3.2. For each F 2 F and morphism M ! F , there exists an F -preen-

velope M ! G and a morphism f in the factorization M ! G
f! F such that

for any morphism g in the factorization M ! H
g! G where M ! H is also an

F -preenvelope, Im.f ı g/ D Im f .

Proof. Dual to the proof of Lemma 5.2.4.

We now modify the argument of Lemma 5.2.5 in order to prove the following dual
result.

Lemma 6.3.3. There exists an F -preenvelopeM ! G such that in any factorization
M ! G ! F with M ! F an F -preenvelope, G ! F is surjective.

Proof. Let ˛ be an infinite ordinal. Then using the lemma above, we can construct a
projective system

M

�����
���

���
���

���
�
















��
� � � �� G2 �� G1 �� G0

for ˇ < ˛ where for each ˇ C 1 < ˛, M ! Gˇ is an F -preenvelope and where

M

��

�� GˇC1

����
��
��
��

Gˇ
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has the property guaranteed by the lemma. For each ˇ C 1 < ˛, let Uˇ � Gˇ be this
image. Let M ! F be any F -preenvelope of M . Then we can complete

M ��

��

F

����
��
��
��
�

lim �Gˇ

to a commutative diagram by assumption. The map F ! Gˇ can be factored F !
Uˇ ! Gˇ when ˇ C 1 < ˛ where F ! Uˇ is surjective by the above. So if
ˇ < v < v C 1 < ˛ and we consider the commutative diagram

F

��		
		
		
		

		�
��

��
��

�

Uv �� Uˇ

we see that Uv ! Uˇ is surjective. If it is never an isomorphism, then Ker.F !
Uv/ ¨ Ker.F ! Uˇ /. But then this implies CardF � Card.˛/ for any such ˛,
which is impossible. Hence U˛ ! Uˇ is an isomorphism for some such ˇ < v <

v C 1 � ˛. This isomorphism is a composition Uv ! GˇC1 ! Uˇ and so it is a
retract of GˇC1. Thus Uv 2 F since F is closed under summands.

We note thatM ! Uv is then an F -preenvelope. Furthermore, letM ! F ! Uv
be a factorization with M ! F an F -preenvelope. Then consider the diagram

F

��
M

���
��

��
��

��
��

��

����
���

��
��

����������
Uv

��
GˇC1

��
Gˇ

By the assumption on the morphism GˇC1 ! Gˇ , the image of F ! Gˇ is Uˇ .
But Uv ! Uˇ is an isomorphism and so F ! Uv is a surjection. Hence if we set
G D Uv, then M ! G is the desired F -preenvelope.

Lemma 6.3.4. If  W M ! G is an F -preenvelope having the property of Lemma
6.3.3, then  WM ! G is an F -envelope.

Proof. Dual to the proof of Lemma 5.2.6.
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Corollary 6.3.5. Let F be a class of R-modules that is closed under summands and
well ordered projective limits, and M be an R-module. If M has an F -preenvelope,
then it has an F -envelope.

Proof. Dual to the proof of Corollary 5.2.7.

Exercises

1. If M1 and M2 satisfy the initial hypothesis of Theorem 6.3.1 and if F is closed
under finite sums, argue that M1 ˚M2 also satisfies this hypothesis.

2. Use Theorem 6.3.1 to prove the existence of injective envelopes (note that M !
E with E injective is an injective preenvelope if and only if M ! E is an
injection).

3. If F is enveloping and every R-moduleM satisfies the initial hypothesis of The-
orem 6.3.1, prove that F is closed under well ordered projective limits.

6.4 Direct Sums of Envelopes

Using a similar argument to the proof of Proposition 5.5.1, we get the following dual
result.

Proposition 6.4.1. If for each i D 1; 2; 3; : : : , Si � Ei is a submodule such that

Ei

���
�
�

Si

����
���

�

��������

Ei

can only be completed by automorphisms of Ei , then the same is true for

L

Ei

���
�
�
�

L

Si

��������

�����
���

L

Ei

if and only if for each sequence 1 � k1 < k2 < � � � and maps fn W Ekn
! EknC1

with fn.Skn
/ D 0 and for each x 2 Ek1

, there is an m � 1 such that

fm ı fm�1 ı � � � ı f1.x/ D 0:
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Corollary 6.4.2. If Mi ! Ei , i D 1; 2; : : : ; n are F -envelopes and
Ln
iD1Ei 2 F ,

then
Ln
iD1Mi !Ln

iD1Ei is an F -envelope.

Proof. We simply set Ek D 0 for k > n.

Corollary 6.4.3. If for any indexed set I , Si � Ei is a submodule such that

Ei

���
�
�

Si

��������

����
���

�

Ei

can be completed only by automorphism of Ei , then

L

I Ei

���
�
�
�

L

I Si

�����
���

��������

L

I Ei

can be completed only by an injection.

Proof. If ' completes the above, then for any finite subset J of I , consider the com-
mutative diagram

L

J Ei

��
L

I Ei

'

��

L

J Si
��

�����������������������

����
���

���
���

���
���

���
�

L

I Si

��������

����
���

�

L

I Ei

��
L

J Ei

The vertical morphism is an automorphism by Corollary 6.4.2 above. But since this
is true for any finite subset J of I , ' is an injection.

Corollary 6.4.4. If for each i 2 I , Mi ! Ei is an F -envelope and
L

Mi has an
F -envelope, then

L

I Mi !L

I Fi is an F -envelope.

Proof. Assume
L

I Mi ! G is an F -envelope and choose the obvious diagrams.
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Remark 6.4.5. IfM � E is an injective envelope ofM over a commutative Noether-
ian ring R, then

L

M !L

E is an injective envelope. Suppose rM D 0 for some
r 2 R, then letting fn W E ! E be multiplication by r for each n, we get that for
each x 2 E, rmx D 0 for some m � 1 by Proposition 6.4.1. Hence if I � R is
an ideal and IM D 0, then we easily get the familiar result that Imx D 0 for some
m � 1.

Exercises

1. Using Proposition 6.4.1, argue that if M � E is an injective envelope over a left
Noetherian ring and if f W E ! E is linear with f .M/ D 0, then f is “locally
nilpotent” on E, that is, for any x 2 E, f n.x/ D 0 for some n � 1.

2. If f is as in the previous problem, show that we can define a linear map h W E !
E represented by the infinite series 1� f C f 2 � f 3C � � � . Then if g D 1C f ,
argue that h D g�1.

3. Use the ideas from the previous two problems to argue that ifR is left Noetherian,
M is an essential R-submodule of N , and g W N ! N is such that g.x/ D x for
all x 2M , then g is an automorphism of N .

4. If we take the same hypothesis as in Problem 3 except that we only assume
g.M/ D M and that x 7! g.x/ is an automorphism of M , show that g is an
automorphism of N .

5. Use the same hypothesis as in Problem 3. Let f W N ! N be linear such that
f .M/ �M and assume that f is locally nilpotent onM . Prove that f is locally
nilpotent on N .

Hint: Define the map � W N ˚N ˚ � � � ! N ˚N ˚ � � � by .x0; x1; x2; : : : /!
.x0; x1�f .x0/; x2�f .x1/; : : : /. Argue that � mapsM˚M˚� � � isomorphically
onto itself. Now appeal to Problem 4 to conclude that � is an automorphism of
N ˚ N ˚ � � � . So now use the fact that if y 2 N; .y; 0; 0; : : : / is in the image
of � .

6.5 Flat Envelopes

In this section, we consider conditions under which flat envelopes and preenvelopes
exist. We start with the following result.

Proposition 6.5.1. A ring R is right coherent if and only if the class of flat left R-
modules is preenveloping.

Proof. Let M be an R-module and let CardM � Nˇ . Then by Lemma 5.3.12; there
is an infinite cardinal @˛ such that if F is a flat module and S is a submodule of F
with CardS � @ˇ , there is a pure, hence flat, submodule G of F with S � G and
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CardG � @˛. Thus M has a flat preenvelope by Corollary 6.2.2 noting that the class
of left flat modules is closed under products when the ring is right coherent.

Conversely, let .Fi /i2I be a family of flat left R-modules. If
Q

Fi has a flat
preenvelope, then

Q

Fi is flat using an argument dual to proof of 2 ) 1 of Theo-
rem 5.4.1.

Proposition 6.5.2. If R is right coherent and every projective limit of flat left R-mod-
ules is flat, then the class of flat left R-modules is enveloping.

Proof. By the Proposition above we know that the class of flat modules is preenvelop-
ing. But then the result follows from Corollary 6.3.5.

The following results provide examples of modules that do not have flat envelopes.

Proposition 6.5.3. If M ! F is a flat envelope and M is finitely presented, then F
is finitely generated and projective.

Proof. Since F is flat and M is finitely presented, the map M ! F can be factored
through a finitely generated projective P . If M ! P ! F is such a factorization,
then we have a commutative diagram

F

��
M ��

���
��

��
�

��������
P

��
F

where F ! P ! F is an automorphism, and thus the result follows.

Corollary 6.5.4. Let R be a domain, M be a finitely presented R-module and M !
F be a flat envelope. If the sum of countably many copies of M has a flat envelope,
then the rank of M equals the rank of F .

Proof. Let M
'! F be a flat envelope. Then F is finitely generated and projective

by the proposition above. So if rank M < rank F , then F='.M/ has a rank 1 torsion
free quotient, say .F='.M//=.F 0='.M// Š F=F 0. If x 2 F , x ¤ 0, there is an
injection F=F 0 ! Rx. If x 2 F , x … F 0, let f W F ! F be the composition
F ! F=F 0 ! Rx ! F . Then f .x/ D rx with r ¤ 0 and f .'.M// D 0. Now set
fi D f in Proposition 6.4.1 to get that f ı � � � ı f .x/ D 0 and so rnx D 0 which is
impossible.

Theorem 6.5.5. Let R be a domain. Then the class of flat R-modules is enveloping
if and only if R is coherent and every projective limit of any projective system of flat
R-modules is flat.
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Proof. If the class of flat R-modules is enveloping, then R is coherent by Proposi-
tion 6.5.1. Thus the product of flat modules is flat. So it suffices to show that the
intersection of flat submodules of a flat module is also flat. But note that if we have an
inductive limit lim�!Mi of finitely presented modules and ifMi ! Fi is a flat envelope
for each i , then by Corollary 6.5.4 above, the rank of Mi is equal to the rank of Fi .
Hence for any flat (hence torsion free) module F , the diagram

M

��

�� Fi

���
�
�
�

F

can be completed uniquely. This implies that we can form lim�!Fi and that lim�!Mi !
lim�!Fi is a flat envelope such that

lim�!Mi

��

�� lim�!Fi

�� 
 
 
 
 

F

can be completed uniquely for any flat module F .
But R is a coherent domain. So every submodule S of a flat module F is the direct

union of finitely generated, hence finitely presented, submodules. This means that the
flat envelope of S , say S ! G, will have the unique morphism ' in the factorization

S ! G
'! F for each flat module F . Now let S D \Fi where .Fi / is some

collection of flat submodules of F . Then we can complete the diagram

S

��

�� G

��	
	
	
	

Fj

by a unique injection for each j . So the image of G in any Fj is in
T

Fi and so S is
the image of G and hence is flat. The converse follows from Proposition 6.5.2.

Exercises

1. Prove that if M is finitely presented and F is flat, then any map M ! F has a
factorization M ! F with P finitely generated projective.

2. Let M be a left R-module such that the algebraic dual M � D HomR.M;R/ is
a finitely generated right R-module. Let P ! M � ! 0 be exact where P is
a finitely generated projective module. Argue that M ! M �� ! P � is a flat
preenvelope where M !M �� is the canonical linear map.
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3. Let R D kŒŒx; y		 where k is a field. Use Problem 2 to show that .x; y/ �
kŒŒx; y		 is a flat envelope.

4. (a) Let M ! F be a flat preenvelope over R. Argue that MŒx	! F Œx	 is a flat
preenvelope over RŒx	.

(b) If M ! F is a flat envelope and if MŒx	 has a flat envelope over RŒx	, show
that in fact MŒx	! F Œx	 is such a flat envelope.

5. For a ring R show that every left R-module has a surjective flat envelope if and
only if R is right coherent and of weak global dimension at most one.

6.6 Existence of Envelopes for Injective Structures

Theorem 6.3.1 does not prove the existence of injective and pure injective envelopes.
In this section, we modify the arguments in Chapter 5 to show that envelopes exist for
a wide range of classes that include the classes of injectives and of pure injectives.

We will need the following result.

Lemma 6.6.1. Let F be a class of leftR-modules that is closed under summands, and
M be a left R-module. SupposeM has an F -preenvelope and if ..F˛/; .'ˇ˛// is any
well ordered inductive system of F -preenvelopes ofM , then for some F -preenvelope
M ! F there is a factorization M ! lim�!F˛ ! F . Then M has an F -envelope.

Proof. We recall that in the arguments for Lemmas 5.2.4, 5.2.5 and 5.2.6 in Chapter 5,
we assumed that if ..C˛/; .'ˇ˛// is any inductive system of F -precovers of M , then
for some C ! M with C 2 F , there is a factorization lim�!C˛ ! C ! M where
lim�!C˛ ! M is lim�!.C˛ ! M/. Hence the condition on the inductive system ..F˛/,
.'ˇ˛// of F -preenvelopes is exactly what is needed to carry through all the arguments
in these three lemmas to show that M has an F -envelope.

Definition 6.6.2. A pair .A;F /, where A is a class of morphisms between R-mod-
ules and F is a class of leftR-modules, is called an injective structure on the category
of left R-modules if

(1) F 2 F if and only if Hom.N; F / ! Hom.M;F / ! 0 is exact for all M !
N 2 A.

(2) M ! N 2 A if and only if Hom.N; F / ! Hom.M;F / ! 0 is exact for all
F 2 F .

(3) Every left R-module M has an F -preenvelope M ! F .

Definition 6.6.3. If G is a class of right R-modules, then we say that the pair .A;F /
is determined by G if M ! N 2 A if and only if 0 ! G ˝M ! G ˝ N is exact
for all G 2 G .
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Theorem 6.6.4. The following statements hold:

(1) If an injective structure .A;F / on the category of left R-modules is determined
by a class G of right R-modules, then every left R-module has an F -envelope.

(2) If G is a set of rightR-modules, then there is a unique injective structure .A;F /
determined by G . In this case, F consists of all F which are isomorphic to a
direct summand of products of copies of the left R-modules GC for G 2 G .

Proof. (1) Let ..F˛/; .'ˇ˛// be an inductive system of F -preenvelopes of M . Then
M ! F˛ 2 A for each ˛ and so 0! G ˝M ! G ˝ F˛ is exact for all G 2 G . So
M ! lim�!F˛ 2 A. But then Hom.lim�!F˛; F / ! Hom.M;F / ! 0 is exact for all
F 2 F . So ifM ! F is an F -preenvelope, we have a factorizationM ! lim�!F˛ !
F . Hence M has an F -envelope by Lemma 6.6.1 above.

(2) Now suppose G is a set of right ofR-modules. Let A be the class of allM ! N

such that 0 ! G ˝M ! G ˝ N is exact for all G 2 G , and F consist of all left
R-modules F which are isomorphic to direct summands of products of copies of GC
for G in G . We easily see that .A;F / is determined by G and that it is the only one
determined by G if .A;F / is an injective structure.

We now show that .A;F / is an injective structure. Let G 2 G . Since 0 !
G ˝ M ! G ˝ N is exact for M ! N 2 A, we get that Hom.N;GC/ !
Hom.M;GC/ ! 0 is exact. Hence by the choice of F , we see that Hom.N; F / !
Hom.M;F /! 0 is exact for all F 2 F . Since for G 2 G , 0! G ˝M ! G ˝N
is exact if and only if Hom.N;GC/ ! Hom.M;GC/ ! 0 is exact, we see that
M ! N 2 A if and only if Hom.N; F /! Hom.M;F /! 0 is exact for all F 2 F .

Now letM be a left R-module. Since G is a set, we can easily construct an F 2 F

and a morphism M ! F such that for any G 2 G and morphism M ! GC,

M

��

�� F

���
�
�
�
�
�

GC

can be completed to a commutative diagram. But then for anyF 02F , Hom.F; F 0/!
Hom.M;F 0/ ! 0 is exact. So since F 2 F , M ! F is an F -preenvelope. Thus
every left R-module has an F -preenvelope.

Suppose Hom.N;L/ ! Hom.M;L/ ! 0 is exact for all M ! N 2 A. Let
L ! F be an F -preenvelope by the above (so L ! F 2 A/. Thus Hom.F;L/ !
Hom.L;L/! 0 is exact. So L is a direct summand of F and so L 2 F . Conversely,
ifL 2 F , thenL is a direct summand ofGC and so Hom.N; F /! Hom.M;F /! 0

is exact by the above. Hence .A;F / is an injective structure.
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Example 6.6.5.

1. If G D ¹Rº, then A is the class of all injections and we get the usual injective
envelopes. Alternatively, note that if F is the class of injective modules, then
given an inductive system ..F˛/; .'ˇ˛// of F -preenvelopes of a module M ,
then we have a factorization

M ! lim�!F˛ ! E

for any map M ! E with E 2 F since the direct limit of injections is an
injection. Hence F is enveloping by Lemma 6.6.1.

2. If G D ¹R=I W I is a finitely generated right ideal of Rº, then A consists of all
pure injections and we get the pure injective envelopes by Theorem 6.6.4 above
noting that every left R-module has a pure injective preenvelope by Proposi-
tion 5.3.9.

Proposition 6.6.6. If R is right coherent, then every left R-module has a pure injec-
tive flat envelope.

Proof. There is a set G of absolutely pure right R-modules such that every absolutely
pure right R-module A is isomorphic to a direct limit of modules Gi with Gi 2 G for
each i . For there is a cardinal @˛ such that if S � A is finitely generated and A is
absolutely pure, then there is an absolutely pure submodule B of A with S � B and
CardB � @˛. Then choosing a set X with CardX D @˛, let G be all absolutely pure
right R-modules G with G 2 X (as a set).

We now let .A;F / be the injective structure determined by G . ThenM ! N 2 A

if and only if 0 ! G ˝ M ! G ˝ N is exact for all G 2 G . Hence every left
R-module has an F -envelope by Theorem 6.6.4. Now, we only need argue that F

consists of all pure injective flat modules. But if F 2 F , then F is a direct summand
of GC for some G 2 G by Theorem 6.6.4. But R is right coherent. So GC is flat
since G is an absolutely pure right R-module. Hence each F 2 F is flat. But GC is
also pure injective. So each F in F is pure injective and flat.

Conversely, suppose F is pure injective and flat. Then FC is injective and so
absolutely pure. Thus 0 ! FC ˝M ! FC ˝ N is exact for all M ! N 2 A, or
equivalently Hom.N; FCC/ ! Hom.M;FCC/ ! 0 is exact for all such M ! N .
But F is a direct summand of FCC since F is pure injective. So Hom.N; F / !
Hom.M;F /! 0 is also exact for all M ! N 2 A. Hence F 2 F .

Corollary 6.6.7. If R is right coherent and pure injective as a left R-module, then
every finitely presented left R-module has a flat envelope.

Proof. Let M be a finitely presented left R-module and ' WM ! F be a pure injec-
tive flat envelope guaranteed by Proposition 6.6.6 above. Then there is a factorization
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M
f! Rn

g! F of the map ' since M is finitely presented and F is flat. But Rn is

flat and pure injective. So M
f! Rn has a factorization M

'! F
h! Rn. But then

g ı h ı ' D '. So g ı h is an automorphism since M
'! F is an envelope. Hence F

is a direct summand of Rn, that is, F is finitely generated and projective.
Now suppose M ! G is linear with G flat. Then there is a factorization M !

Rm ! G. But Rm is flat and pure injective. So there is a factorization M ! F !
Rm of M ! Rm. Hence the map M ! G has a factorization M ! F ! G. Thus
M ! F is a flat preenvelope and so an envelope.

If R is a complete local ring, then R is coherent and pure injective and so every
finitely generated R-module has a flat envelope which is finitely generated and free
by the above. More generally, we have the following result which we state for com-
pleteness.

Proposition 6.6.8. Let R be right semiperfect and right coherent. Then every finitely
presented left R-module has a flat envelope. Such an envelope is finitely generated
and projective.

Proof. Let M be a finitely presented left R-module and let Rm ! Rn !M ! 0 be
exact. Then 0 ! M � ! .Rn/� ! .Rm/� is exact where M � denotes the algebraic
dual Hom.M;R/. Since R is right coherent, M � is finitely generated. Since R is
right semiperfect, M � has a projective cover P ! M � (see Remark 5.3.4). Since
M � is finitely generated, it has a finitely generated projective precover. P is a direct
summand of any such precover and so P is finitely generated. Thus P is a reflexive
right R-module.

We claim M !M �� ! P � is the desired envelope. First note that if

P �

��
M

��������

����
���

�

P �

is commutative, then the dual diagram

P Š P ��
��!!!

!!!!

M �

P Š P ��





  """""""

is too. Since P ! M � is a cover, P �� ! P �� is an isomorphism. But then
P � ! P � is also an isomorphism.
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To show that M ! P � is a flat preenvelope, let M ! F be a linear map with F
flat. But M ! F can be factored M ! Rn ! F for some n � 1. So we only need
prove

M

��#
##

##
##

#
�� P �

���
�
�

Rn

can be completed to a commutative diagram. But the dual diagram

M � P �� Š P!!

.Rn/�

""����������



�
�
�

can be completed to a commutative diagram.
Taking the dual of such a completion we get a commutative diagram

M ��

����
���

���
���

�� P ��� Š P �

��
Rn

But then the canonical map M ! M �� with this diagram gives us the desired com-
mutative diagram

M ��

��#
##

##
##

# P �

��
Rn

Exercises

1. If G is a class of left R-modules, argue that there is an injective structure .A;F /
on the category of leftR-modules with G � F and such that F � F 0 if .A0;F 0/
is any other injective structure with G � F 0.

2. If G is as in Problem 1, show that F contains all direct summands of products of
modules in G .

3. LetR D Z and G D ¹Z=.p/º where p is some fixed prime. Find the pair .A;F /
determined by G and then give a description of the F -envelopes.

4. If .A;F / is the class in Example 6.6.5, argue that there is a largest class G that
determines .A;F / and then describe G .
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6.7 Pure Injective Envelopes

We saw in Example 6.6.5 that the class of pure injective modules is enveloping. Pure
injective envelopes may also be shown to exist by a standard argument using the
notion of pure essential extension (see Warfield [180] or Fuchs [96]). We will let
PE.M/ denote the pure injective envelope of an R-module M .

The following proposition is useful.

Proposition 6.7.1. Let R be a left coherent ring. If F is a flat right R-module, then
PE.F / is also a flat right R-module.

Proof. By Proposition 5.3.9, the canonical map F ! FCC is a pure injection. But
FCC is pure injective, so F ! FCC is a pure injective preenvelope. Hence PE.F /
is a direct summand of FCC. But FCC is flat since R is coherent and so PE.F / is
flat.

Corollary 6.7.2. Let R be a commutative Noetherian ring. If F is a flat R- module,
then PE.F / ŠQ

Tp, over p 2 SpecR.

Proof. This follows from Lemma 5.3.23, Theorem 5.3.28 and Proposition 6.7.1 above.

For the rest of this section, R will denote a commutative Noetherian ring. Our aim
in this section is to study pure injective envelopes of flat modules over such rings.

We start with the following result.

Proposition 6.7.3. Let M be a finitely generated R-module. Then

PE.M/ Š
Y

m2mSpecR

OMm:

Proof. Let OM be the completion of M with respect to the mSpecR-adic topology
on M defined by taking the neighborhoods of 0 to be submodules of IM where I
is the intersection of powers of the maximal ideals (see Warfield [180]). Then OM is
algebraically compact and M � OM is a pure injection since M is finitely generated.
Thus OM Š PE.M/. But OM ŠQ

m2mSpecR
OMm and so we are done.

Lemma 6.7.4. IfF is a flatR-module, then for each p 2 SpecR, OFp is the completion
of a free Rp-module.

Proof. We can assume R is local and so that p D m is its maximal ideal. Then
OFp D lim �F=m

nF . For each n � 1, F=mnF is a flat R=mn-module. But R=mn is
a local ring of dimension zero. So F=mnF is a projective and hence a free R=mn-
module. But then F=mnF Š F=mnC1F ˝ RR=m

n. Thus the base of F=mnC1F
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over R=mnC1 is mapped onto the base of F=mnF over R=mn by the canonical map
F=mnC1F ! F=mnF . So if the base of F=mnF is indexed by X , then we can find
maps R.X/ ! F=mnF so that the diagram

R.X/

##���
���

���
��

��
F=mnC1F �� F=mnF

is commutative for each n. Then going modulo mn for various n and chasing an

obvious diagram, we get lim �F=m
nF Š lim �R

.X/=mnR.X/. But the latter is 1R.X/.

Remark 6.7.5. We note that F ! OFp induces an isomorphism F ˝ k.p/ ! OFp ˝
k.p/. Furthermore, F ! OFp is a universal map into the completion of a freeRp-mod-
ule, that is, a Tp. Hence any map F ! Tp has a unique factorization F ! OFp ! Tp.

Proposition 6.7.6. If F is a flat R-module, then the natural map F ! Q OFp is a
pure injection for each p 2 SpecR.

Proof. By Corollary 6.7.2, PE.F / Š Q

Tp over p 2 SpecR. Furthermore, the
obvious map F ! Tp has a factorization F ! OFp ! Tp by Remark 6.7.5 above.
This gives a map f W Q OFp ! Q

Tp such that F ! Q

Tp has a factorization
F ! Q OFp ! Q

Tp. But then F ! Q OFp is a pure injection since F ! Q

Tp

is.

Lemma 6.7.7. Let p, q 2 SpecR. If Tq ¤ 0, then

Tq ˝E.k.p// Š
´

0 if p 6� q

E.k.p//.X/ for some set X ¤ ;; if p � q:

Proof. By Theorem 3.3.13, Tq˝E.k.p// Š E.k.p//.X/ for some setX since Tq is a

flatR-module. If p � q, let Tq D b

R
.Y /
q for some set Y ¤ ;. ThenR.Y /q ˝E.k.p// Š

.Rq ˝ E.k.p///.Y / Š E.k.p//.Y /. But R.Y /q ! b

R
.Y /
q is a pure injection. Therefore

R
.Y /
q ˝ E.k.p// ! b

R
.Y /
q ˝ E.k.p// is an injection. So E.k.p//.Y / is a direct

summand of Tq ˝E.k.p// and thus X ¤ ;.
If p 6� q, choose r 2 p, r … q. Let S � E.k.p// be a finitely generated submodule.

Then there exists an integer n � 1 such that rnS D 0. Then multiplication by rn

is an automorphism of Tq and so Tq ˝ S D 0. Taking inductive limits, we have
Tq ˝E.k.p// D 0.
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Proposition 6.7.8. Hom.
Q

p 6�q Tq; Tp/ D 0.

Proof. We may assume Tp D Hom.E.k.p//, E.k.p//.X// for some set X . So we
have

Hom
�

Y

p 6�q

Tq; Tp

�

Š Hom
��

Y

p6�q

Tq

�

˝E.k.p//; E.k.p//.X/
�

:

But if S � E.k.p// is a finitely generatedR-module, then .
Q

Tq/˝S ŠQ

.Tq˝S/.
So taking inductive limits, we have .

Q

Tq/˝ E.k.p// Š Q

.Tq ˝ E.k.p/// and so
the result follows from Lemma 6.7.7 above.

Theorem 6.7.9. If F is a flat R-module, then for each p 2 SpecR, Tp in PE.F / is
isomorphic to a summand of OFp. If p is maximal such that F ˝ k.p/ ¤ 0, then the
map OFp ! Tp in the factorization F ! OFp ! Tp is an isomorphism.

Proof. By Proposition 6.7.6, F ! Q OFp is a pure injection. So f W Q OFp ! Q

Tp

has a section s making the diagram

F ��

��

Q

Tp

s����
��
��
��

Q OFp

commutative. This guarantees that each OFp ! Tp has a section. Thus Tp is isomor-
phic to a direct summand of OFp. Note that if Fp ˝ k.p/ D 0, then OFp D 0 and so
Tp D 0.

Now let p be maximal such that F ˝ k.p/ ¤ 0. Then OFp ¤ 0 and OFq D 0 if
p ¨ q. Furthermore, OFq is the completion of a free Rq-module by Lemma 6.7.4, that
is, OFq is also a Tq (not necessarily the one in PE.F /). So Hom.

Q

q¤p
OFq; Tp/ D 0

by Proposition 6.7.8. Similarly Hom.
Q

q¤p Tq; OFp/ D 0 since Tq D 0 whenever
OFq D 0 by the above.

We can now therefore construct the following commutative diagram

Q OFq D .Qq¤p
OFq/˚ OFp

f

��
F ��

�����������������

����
���

���
���

���
Q

Tq D .Qq¤p Tq/˚ Tp

s
��

Q OFq D .Qq¤p
OFq/˚ OFp
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and pass to the quotient to get a commutative diagram

OFp

��
F

$$�������

%%$
$$$

$$$
�� Tp

��
OFp

The composition OFp ! Tp ! OFp is the identity on OFp. Since OFp ! Tp has a section,
it must be an isomorphism.

Corollary 6.7.10. Let F be a flat R-module and m be a maximal ideal such that
OFm ¤ 0. Then Tm in PE.F / is isomorphic to OFm.

Proof. If OFm ¤ 0, then Fm ˝ k.m/ ¤ 0.

Proposition 6.7.11. For any set X , ORXp is the completion of a free Rp-module and

every such completion is a direct summand of ORXp for some X .

Proof. ORXp Š
Q

Tq over q 2 SpecR by Theorem 5.3.28. So if Tq ¤ 0, then

easily Hom.Tq; ORp/ ¤ 0. But then Hom.Tq ˝ E.k.p//; E.k.p/// ¤ 0. Thus
Tq ˝ E.k.p// ¤ 0 and so p � q by Lemma 6.7.7. If r … p, then r is an iso-
morphism on ORXp and thus on Tq. But Tq ¤ 0 implies r … q. Hence q D p.

That is, ORXp Š Tp. Now let Tp be the completion of a free Rp- module. Let

Tp D Hom.E.k.p//; E.k.p//.X// for some set X . Then Tp is isomorphic to a direct
summand of Hom.E.k.p//; E.k.p//X / Š ORXp sinceE.k.p//.X/ is a direct summand
of E.k.p//X .

Remark 6.7.12. PE.R/ Š Q ORm over all maximal ideals m of R by Proposi-
tion 6.7.3. So with our notation, Tp D 0 for every prime ideal p that is not maximal.
If F is free, say F D R.X/, then R.X/ � RX and RX ,! .

Q ORm/
X Š Q ORXm

are pure injections. So R.X/ ,! Q ORXm is also pure. But ORXm Š Tm by Proposi-
tion 6.7.11 above. So if F is a free or projective R-module, then PE.F / ŠQ OFm by
Corollary 6.7.10.

We now want to give a necessary and sufficient condition for a map F ! Q

Tp

to be a pure injective envelope of the flat R-module F . We start with the following
result.

Lemma 6.7.13. Let I be an ideal ofR and F be a flat pure injective R-module. Then
IF is a pure injective R-module.
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Proof. F is flat and cotorsion and so F Š Q

Tp over p 2 SpecR. Therefore, IF Š
Q

ITp. By Proposition 6.7.11 above, it suffices to show that I ORp is a pure injective
ORp-module. But I ORp is reflexive and so is pure injective by Remark 5.3.15.

Remark 6.7.14. Note that for any Tp, the natural map ': Tp ! Tp ˝ k.p/ is sur-
jective with kernel pTp D m. ORp/Tp. The lemma above implies that if F is a flat
module, then any map F ! Tp ˝ k.p/ can be lifted to a map F ! Tp. In fact, we
showed in Example 5.3.19 that ' W Tp ! Tp ˝ k.p/ is a flat cover. In particular, if
f W Tp ! Tp is such that ' ıf D ', then f is an automorphism of Tp. Furthermore,
we see that any map g W Tp ! Tp is an automorphism of Tp if and only if the induced
map Tp ˝ k.p/ ! Tp ˝ k.p/ is an isomorphism. For a vector space V over k.p/,
V Š Tp˝ k.p/ for some Tp. Hence we have a map Tp ! V which can be lifted to a
map Tp ! Tp inducing an isomorphism V Š Tp ˝ k.p/.

Lemma 6.7.15. For flat modules F andG, � W F ! G is a pure injection if and only
if F ˝ k.p/! G ˝ k.p/ is an injection for every prime p.

Proof. The condition is necessary and so suppose the condition holds. It suffices to
prove that F ! PE.F / has a factorization F ! G ! PE.F / since F ! PE.F /

is a pure injection. But PE.F / Š Q

Tp. Thus to show that there is a factorization

F ! G ! PE.F / it suffices to show that there is a factorization F
�! G

'! ORp for
any prime ideal p by Proposition 6.7.11. But the diagram

F ˝ k.p/

����
���

���
��

�� G ˝ k.p/

���
�
�

ORp=m. ORp/

can be completed to a commutative diagram since F ˝ k.p/! G˝ k.p/ is injective
and we have vector spaces. But by Remark 6.7.14 above, the map G ! ORp=m. ORp/

can be lifted to a map f0 W G ! ORp such that f0 completes the diagram

F

'

&&%
%%

%%
%%

%
� �� G

f0
���
�
�

ORp

to a commutative diagram modulo m. ORp/. That is, .' � f0 ı �/.F / � m. ORp/.
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We repeat the procedure using Lemma 6.7.13 where I D m. ORp/
2 with the diagram

F

'�f0ı� ''&
&&

&&
&&

&
� �� G

f1
���
�
�

m. ORp/

finding f1 so that .' � � ı f0 � � ı f1/.F / � m. ORp/
2. If by induction we have

f0; f1; : : : ; fn so that

F

'�Pn�1
iD0 fiı� ''$

$$
$$

$$
$

�� G

fn
���
�
�

m. ORp/
n

is commutative modulo m. ORp/
nC1 for each n, let f D P1

iD0 fk W G ! ORp. Then
f ı � D '.

Remark 6.7.16. Since F and G are flat, F=pF and G=pG are also flat. Thus F=pF ,
G=pG are torsion free R=p-modules. That is, F ˝ R=p! G ˝ R=p is an injection
if and only if F ˝ k.p/! G ˝ k.p/ is an injection.

Theorem 6.7.17. Let F be a flat R-module. Then F ! Q

Tp, over p 2 SpecR, is a
pure injective envelope if and only if for each q 2 SpecR

(a) F ˝ k.q/! .
Q

Tp/˝ k.q/ is an injection;

(b) the image of F ˝ k.q/ in .
Q

Tp/˝ k.q/ D .Tq˝ k.q//˚ .Qp¤q Tp/˝ k.q/
contains .Tq ˝ k.q//˚ 0.

Proof. We first construct
Q

Tp and a map F !Q

Tp satisfying (a) and (b). We then
show that any pure injective envelope of F satisfies (a) and (b). Then we argue that
if f W F ! Q

Tp satisfies (a) and (b), it is in fact a pure injective envelope. This
completes the proof the Theorem.

Let X D SpecR, and X0 D mSpecR. For any ordinal ˛ > 1, define X˛ to be the
set of maximal elements of X �S

ˇ<˛ Xˇ . Then well order each X˛. Using these
orders, well order X so that if p 2 X˛ and q 2 Xˇ and ˛ < ˇ, then p � q. Thus
the p 2 X can be indexed by ˛ < � for some ordinal � so that if ˇ < ˛ < �, then
p˛ 6� pˇ .

We now construct Tpˇ
and the map F ! Tpˇ

by transfinite induction. By Lemma

6.7.4, let Tp0
Š OFp0

and let F ! Tp0
Š OFp0

be the natural map. Having constructed
Tpˇ

and F ! Tpˇ
for all ˇ < ˛ < �, we consider F ˝k.p˛/!Q

ˇ<˛ Tpˇ
˝k.p˛/.

Let V be its kernel and let Tp˛
be such that there is a surjection Tp˛

! V inducing
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an isomorphism Tp˛
˝ k.p˛/! V . Composing F ! F ˝ k.p˛/ with a projection

F ˝ k.p˛/ ! V Š Tp˛
˝ k.p˛/, we get a map F ! V which can be lifted to a

map F ! Tp˛
as noted in Remark 6.7.14. Then the construction F ! Q

ˇ	˛ Tpˇ
is

such that F ˝ k.p˛/! .
Q

ˇ	˛ Tpˇ
/˝ k.p˛/ is an injection and its image contains

.Tp˛
˝ k.p˛//˚ 0.

F ! Q

˛<� Tp˛
clearly satisfies (a). For ˇ < �, .

Q

˛>ˇ Tp˛
/ ˝ k.pˇ / D 0 (by

Lemma 6.7.7 and the proof of Proposition 6.7.8) since p˛ 6� pˇ for ˇ < ˛. Thus
.
Q

˛<� Tp˛
/˝ k.pˇ / Š .

Q

˛	ˇ Tp˛
/˝ k.pˇ / and so (b) is satisfied by the above.

Now let F ! Q

Up˛
be a pure injective envelope where each Up˛

is the comple-
tion of a free Rp˛

-module. Since F ! Q

Tp˛
satisfies (a) by Lemma 6.7.15 we get

a map f WQTp˛
!Q

Up˛
making the diagram

F

'''
''

''
''

''
��
Q

Tp˛

f

��
Q

Up˛

commutative. Similarly we get a map g W Q

U˛ ! Q

Tp˛
making the obvious

diagram commutative. For a fixed ˇ, we have
Q

˛<� Tp˛
˝ k.pˇ / D

Q

˛	ˇ Tp˛
˝

k.pˇ /. Hence we have the commutative diagram

Tpˇ
˝ k.pˇ /˚ .

Q

˛<ˇ Tp˛
/˝ k.pˇ /

��
F ˝ k.pˇ /

  (((((((((((((((((

��)))
))))

))))
))))

)))
�� Upˇ

˝ k.pˇ /˚ .
Q

˛<ˇ Up˛
/˝ k.pˇ /

��
Tpˇ
˝ k.pˇ /˚ .

Q

˛<ˇ Tp˛
/˝ k.pˇ /

Since Hom.Tpˇ
;
Q

˛<ˇ Up˛
/ D 0 and Hom.Upˇ

;
Q

˛<ˇ Tp˛
/ D 0 by Proposition

6.7.8 the vertical maps above map Tpˇ
˝k.pˇ / intoUpˇ

˝k.pˇ / andUpˇ
˝k.pˇ / into

Tpˇ
˝k.pˇ /. Since by (b), there is a subspace V of F˝k.pˇ /mapped isomorphically

onto Tpˇ
˝ k.pˇ /, we see that the composition Tpˇ

˝ k.pˇ / ! Upˇ
˝ k.pˇ / !

Tpˇ
˝ k.pˇ / is the identity map.

Now reversing the roles of T and U in the diagram above and using the fact that
F ! Q

Up˛
is a pure injective envelope, a similar argument gives that Upˇ

˝
k.pˇ /! Tpˇ

˝ k.pˇ /! Upˇ
˝ k.pˇ / is an automorphism of Upˇ

˝ k.pˇ /. Thus
Tpˇ
˝ k.pˇ /! Upˇ

˝ k.pˇ / is an isomorphism and so V � F ˝ k.pˇ / is mapped
isomorphically onto Upˇ

˝ k.pˇ / in .
Q

˛<� Up˛
/ ˝ k.pˇ /. Hence (b) is satisfied.

Clearly, F !Q

Up˛
satisfies (a).
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We finally argue that if F ! Q

Tp˛
satisfies (a) and (b), then it is an injective

envelope. By (a) and Lemma 6.7.15, F !Q

Tp˛
is a pure injection. Thus, it suffices

to show that if f WQTp˛
!Q

Tp˛
makes the diagram

F

��'
''

''
''

''
��
Q

Tp˛

f

��
Q

Tp˛

commutative, then it is an automorphism of
Q

Tp˛
. But since

Q

˛<� Tp˛
D

lim �.
Q

˛	ˇ Tp˛
/, it suffices to show inductively that when we pass to the quotients

Q

˛<ˇ Tp˛
for each ˇ, we get an automorphism of

Q

˛<ˇ Tp˛
. But Tp0

D OFp0
.

Hence f induces the identity map on the quotient Tp0
. Now suppose ˇ < � is a limit

ordinal and that f induces an automorphism of
Q

˛	� Tp�
for all � < ˇ. Taking a

projective limit, we get that f induces an isomorphism
Q

˛<ˇ Tp˛
!Q

˛<ˇ Tp˛
. But

Q

˛<ˇ Tp˛
! Q

˛<ˇ Tp˛
maps Tpˇ

into Tpˇ
. So to show it is an isomorphism, we

only need to argue that it maps Tpˇ
onto Tpˇ

. But by (b), Tpˇ
˝k.pˇ / Š Tpˇ

˝k.pˇ /.
Thus Tpˇ

! Tpˇ
is an isomorphism.

If ˇ is not an ordinal, say ˇD�C1, then a similar argument shows that
Q

˛<�Tp˛
!

Q

˛	� Tp˛
is an isomorphism and so is

Q

˛	ˇ Tp˛
!Q

˛	ˇ Tp˛
. This completes the

proof.

Exercises

1. Let M D R in Proposition 6.7.3. Show that OR is isomorphic to EndR. OR/.
Hint: use Proposition 6.7.8.

2. If 0! F 0 ! F ! F 00 ! 0 is a short exact sequence of flat modules, show that
PE.F / is isomorphic to a direct summand of PE.F 0/˚ PE.F 00/.

3. Find an example as in Problem 2 where PE.F / is not isomorphic to PE.F 0/˚
PE.F 00/.
Hint: Let R D Z, F 00 D Q and let F be free.

4. Use Theorem 6.7.17 to show that if R D Z and if F D Q1
iD0Zi with Zi D Z

for all i � 0, then
Q1
iD0Zi !

Q1
iD0 PE.Zi / is a pure injective envelope.

5. Let S � R be a multiplicative set. LetM � PE.M/ be a pure injective envelope
of the S�1R-module M (as an S�1R-module). Explain why M � PE.M/ is
also a pure injective envelope of M as an R-module.



Chapter 7

Covers, Envelopes, and Cotorsion Theories

In this chapter we introduce the notion of cotorsion theory. We prove Eklof and
Trlifaj’s theorem that under certain conditions cotorsion theories have enough injec-
tives and projectives in which case precovers and preenvelopes exist. As an applica-
tion of this theory, we prove that every module has a flat cover.

7.1 Definitions and Basic Results

Definition 7.1.1. Given a class C ofR-modules, we let ?C be the class ofR-modules
F such that Ext1R.F; C / D 0 for all C 2 C . We let C? be the class of modules G
such that Ext1R.C;G/ D 0 for all C 2 C . ?C and C? are called orthogonal classes
of C .

We note that for any C , C � ?.C?/ and C � .?C/?. Also C1 � C2 im-
plies ?C2 � ?C1 and C?2 � C?1 . From this it follows that .?.C?//? D C? and
?..?C/?/ D ?C for all C .

Definition 7.1.2. A pair .F ;C/ of classes of R-modules is called a cotorsion theory
(for the category of R-modules) if F ? D C and ?C D F .

A class D is said to generate the cotorsion theory if ?D D F (and so D � C )
and a class G is said to cogenerate .F ;C/ if G? D C (and so G � F ).

Example 7.1.3. .M; Inj / and .Proj;M/ are cotorsion theories where M denotes
the class of left R-modules and Inj and Proj denote the classes of injective and
projective modules respectively. The cotorsion theory .M; Inj / is cogenerated by the
set of modules R=I where I is a left ideal, and is generated by the class of injective
modules.

We note that if .F ;C/ is a cotorsion theory, then F and C are both closed under
extensions and summands, and F contains all the projective modules while C con-
tains all the injective modules. Also, F is closed under arbitrary direct sums and C is
closed under arbitrary direct products. If .F ;C/ is generated (cogenerated) by a set
X (so not just a class), then .F ;C/ is generated (cogenerated) by the single module
Q

M2X M (
L

M2X M ).
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Lemma 7.1.4. If F is the class of flat R-modules and if F ? D C (so C is the class
of cotorsion modules, see Definition 5.3.22), then .F ;C/ is a cotorsion theory.

Proof. We only need to prove that F 2 ?C is flat. But pure injective modules are co-
torsion. And for any right R-module M , MC is pure injective. But Ext1R.F;M

C/ Š
.TorR1 .M;F //

C. So if Ext1R.F;M
C/ D 0, then TorR1 .M;F / D 0. Hence if F 2 ?C ,

then F is flat.

Definition 7.1.5. A cotorsion theory .F ;C/ is said to have enough injectives if for
every module M there is an exact sequence 0 ! M ! C ! F ! 0 with C 2 C

and F 2 F . We say that .F ;C/ has enough projectives if for every M there is an
exact sequence 0! C ! F !M ! 0 with F 2 F and C 2 C .

We note that if 0 ! C ! F ! M ! 0 is as in the definition, then F ! M

is an F -precover for every M . For if G 2 F then Hom.G; F / ! Hom.G;M/ !
Ext1.G; C / D 0 is exact. Similarly, if 0!M ! C ! F ! 0 is as in the definition
then M ! C is a C -preenvelope. The cotorsion theories .M; Inj / and .Proj;M/

as in Example 7.1.3 have enough projectives and injectives. For example, the exact

sequence 0 ! 0 ! M
id! M ! 0 for any M shows that .M; Inj / has enough

projectives.

Definition 7.1.6. Given a class F , a module M is said to have a special F -precover
if there is an exact sequence 0! C ! F !M ! 0 with F 2 F and C 2 F ?. M
is said to have a special preenvelope if there is an exact sequence 0 ! M ! F !
D ! 0 with F 2 F and D 2 ?F .

So if a cotorsion theory .F ;C/ has enough injectives and projectives, every module
M has a special F -precover and a special C -preenvelope.

Proposition 7.1.7. If .F ;C/ is a cotorsion theory on the category of R-modules hav-
ing enough injectives (projectives), then it also has enough projectives (injectives).

Proof. Assume that .F ;C/ has enough injectives and let M be a module. Let 0 !
S ! P ! M ! 0 be exact with P projective. Since there are enough injectives
let 0 ! S ! C ! F ! 0 be exact with C 2 C and F 2 F . Using a pushout
construction for

S ��

��

P

C
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we have a commutative diagram

0

��

0

��
0 �� S ��

��

P ��

��

M �� 0

0 �� C

��

�� G ��

��

M �� 0

F

��

F

��
0 0

with exact rows and columns. Since F is closed under extensions, we see by the
middle column that G 2 F . Hence the middle row gives the desired exact sequence.

A completely dual proof gives that if .F ;C/ has enough projectives then it has
enough injectives.

Exercises

1. Let .F ;C/ be a cotorsion theory for the category of R-modules. Argue that the
following are equivalent:

(a) Exti .F; C / D 0 for all i � 1, F 2 F , C 2 C .

(b) If 0! F 0 ! F ! F 00 ! 0 is exact with F , F 00 2 F then F 0 2 F .

(c) If 0! C 0 ! C ! C 00 ! 0 is exact with C 0, C 2 C then C 00 2 C .

2. If .Fi ;Ci / are cotorsion theories for the category of R-modules for i 2 I , prove
that there is a cotorsion theory .F ;C/ with F D T

i2I Fi and that there is one
.F 0;C 0/ with C 0 DT

i2I Ci .

3. Let .F ;C/ be the cotorsion theory of the category of Z-modules cogenerated by
Z=.n/ for n � 2. Show that C 2 C if and only if nC D C .

4. Argue that the cotorsion theory .M;D/ of the category of Z-modules where
D is the class of divisible Z-modules is not cogenerated by any single finitely
generated Z-module.

7.2 Fibrations, Cofibrations and Wakamatsu Lemmas

In the last section, we showed that when a cotorsion theory .F ;C/ has enough pro-
jectives, then every module has a special F -precover and a special F -preenvelope. In
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this section we show that if F is any class closed under extensions, then any surjective
F -cover is special and, dually, any injective F -envelope is special.

Definition 7.2.1. Given a class F of modules, a linear map f W M ! N is said to
be an F -fibration if given a submodule S of some module P where P=S 2 F any
commutative diagram

S
i ��

��

P

��








��
M

f
�� N

can be completed to a commutative diagram where i denotes the canonical injection.
An F -cofibration is defined dually, that is, f is an F -cofibration if any commutative
diagram

M ��

��

N

��*
*
*
*
*

��
P �� P=S

with S 2 F can be completed to a commutative diagram.

Proposition 7.2.2. If ' W F ! M is an F -cover for some class F closed under
extensions, then ' is an F -fibration.

Proof. Given the following commutative diagram where S �P is such that P=S 2F

S
i ��

��

P

��
F

'
�� M

we form the pushout diagram

S ��

��

P

��
F �� G

Then F ! G is an injection and Coker.F ! G/ Š P=S 2 F . But F is closed
under extensions. So G 2 F . We can suppose F � G. By the properties of the
pushout diagram, we have a linear h W G ! M which agrees with ' on F . Since
' W F ! M is a cover, we have a linear g W G ! F so that ' ı g D h. Then since
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' ı .gjF / D ', we have that gjF is an automorphism of F . If we then replace g by
.gjF /�1 ı g, we see that we can assume gjF D idF . So g makes the diagram

S ��

��

P

��	
	
	
	
	
	

��
F �� G

commutative and hence makes commutative the diagram

S ��

��

P

���
�
�
�
�
�

��
F �� M

The following result is usually called Wakamatsu’s Lemma.

Corollary 7.2.3. If F is a class of modules closed under extensions and if ' W F !
M is an F -cover, then Ker' 2 F ?.

Proof. Let G 2 F . We want to argue that Exti .G;Ker'/ D 0. Let 0! S ! P !
G ! 0 be exact with P projective. Then we need that any f W S ! Ker' can be
extended to a linear P ! Ker'. But if we consider the commutative diagram

S ��

��

P

g

���
�
�
�
�
�

0

��
F �� M

where S ! F agrees with f we see that any g W P ! F that makes the diagram
commutative has its image in Ker ' and so gives the desired extension.

Dually, we have the following

Proposition 7.2.4. If C is a class of modules closed under extensions and if ' WM !
C is a C -envelope, then ' is a C -cofibration and Coker' 2 ?C .

The argument in the following lemma is another Wakamatsu Lemma type of result.

Lemma 7.2.5. Let .F ;C/ be a cotorsion theory for the category of R-modules with
enough injectives and projectives. Suppose 0 ! M ! D ! F ! 0 is an exact
sequence with F 2 F such that
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(1) any diagram

0 �� M �� G ��

���
�
� F 0 ��

���
�
� 0

0 �� M �� D �� F �� 0

with F 0 2 F can be completed to a commutative diagram, and

(2) the diagram

0 �� M �� D ��

���
�
� F ��

���
�
� 0

0 �� M �� D �� F �� 0

can only be completed by automorphisms.

Then D 2 C .

Proof. Let 0 ! D ! U ! G ! 0 be an exact sequence with U 2 C and G 2 F .
We want to prove that the sequence splits. We use the pushout of the diagram

D ��

��

F

U

to get a commutative diagram

0

��

0

��
0 �� M �� D ��

��

F ��

��

0

0 �� M �� U ��

��

P ��

��

0

G

��

G

��
0 0
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with exact rows and columns. Since F , G 2 F , we get that P 2 F . But by hypothe-
sis (1), there is a commutative diagram

0 �� M �� U ��

��

P ��

��

0

0 �� M �� D �� F �� 0

By hypothesis (2), D ! U ! D is an automorphism of D. Hence 0! D ! U !
G ! 0 is split exact and thus D 2 C .

Theorem 7.2.6. Let .F ;C/ be a cotorsion theory for the category of R-modules with
enough injectives and projectives such that F is closed under well ordered inductive
limits. Then every R-module has an F -cover and a C -envelope.

Proof. The fact that M has an F -cover is a consequence of Theorem 5.2.3.
To prove thatM has a C -envelope we first note that we have an exact sequence 0!

M ! C ! F ! 0 with C 2 C and F 2 F . So we consider the category of such
short exact sequences. A morphism in this category will be given by a commutative
diagram

0 �� M �� C1 ��

��

F1 ��

��

0

0 �� M �� C2 �� F2 �� 0

Given an inductive system in this category, we can take the limit. That is, we get
0 ! M ! lim�!Ci ! lim�!Fi ! 0 which will also be an exact sequence. If 0 !
M ! C ! F ! 0 is in the category, we argue that the diagram

0 �� M �� lim�!Ci ��

���
�
�

lim�!Fi ��

���
�
�

0

0 �� M �� C �� F �� 0

can be completed to a commutative diagram. But we have the exact sequence

Hom.lim�!Ci ; C /! Hom.M;C /! Ext1.lim�!Fi ; C / D 0

since F is closed under direct limits. This gives us our map lim�!Ci ! C and then
lim�!Fi ! F is induced by this map.

So now we get a version of Lemma 5.2.4 which says that given a short exact se-
quence 0 ! M ! C ! F ! 0 in our category, there is another exact sequence
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0!M ! C 0 ! F 0 ! 0 with F 0 2 F and a commutative diagram

0 �� M �� C ��

��

F ��

��

0

0 �� M �� C 0 �� F 0 �� 0

such that if
0 �� M �� G ��

f
��

F ��

��

0

0 �� M �� C 0 ��

g
��

F 0 ��

��

0

0 �� M �� C 00 �� F 00 �� 0

is a commutative diagram with F 00 2 F , then Ker.g ı f / D Ker f . Then modifica-
tions of proofs of Lemmas 5.2.5 and 5.2.6 give an exact sequence 0 ! M ! D !
F ! 0 with F 2 F satisfying hypotheses (1) and (2) of the lemma above. But then
D 2 C by the lemma and so M ! D is a C -envelope. We note that this envelope is
a special C -envelope.

Exercises

1. Suppose that for some class F of modules we have an F -fibration fi WMi ! Ni
for each i 2 I . Prove that

Q

i2I fi W
Q

i2I Mi !Q

i2I Ni is an F -fibration.

2. Show that M ! 0 is an F -fibration if and only if Ext1.F;M/ D 0 for all
F 2 F .

3. Argue that if f W M ! N and g W N ! P are F -fibrations, then so is g ı f W
M ! P .

4. Argue that f W M ! N is an F -fibration for every class F if and only if f is
surjective with Ker f injective.

5. If Proj is the class of projective modules, argue that f W M1 ! M2 is a Proj-
fibration if and only if f is surjective.

6. Show that .Inj; Inj?/ is a cotorsion theory for the category ofR-modules if and
only if R 2 Inj and R is left Noetherian. In this case show that .Inj; Inj?/ has
enough injectives and projectives.

7. Let F be a class of modules closed under extensions, under taking summands
and such that every module has a surjective F -cover. Argue that .F ;F ?/ is a
cotorsion theory with enough injectives and projectives.
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8. Let .F ;C/ be a cotorsion theory of R-modules. Let F ! M be an F -cover of
the module M and suppose F ! C is a C -envelope of F . Let

F ��

��

M

��
C �� D

be a pushout diagram. Prove that M ! D is a C -envelope and that C ! D is
an F -cover.

7.3 Set Theoretic Homological Algebra

In this section, we consider ordinal numbers to give results about finding extensions
of linear maps and get splitting results.

Lemma 7.3.1. Given a set X , there exists a limit ordinal � such that if .˛x/x2X is a
family of ordinals such that ˛x < � for all x 2 X , then there exists an ordinal �0 < �
such that ˛x � �0 for all x 2 X .

Proof. Let CardX � @ˇ and let � be the least ordinal such that Card.�/ D @ˇC1.
Then � is a limit ordinal and if ˛ < �, Card.˛/ � @ˇ . Now let .˛x/x2X be any family
of ordinals such that ˛x < � for all x 2 X . Well order X and let �0 D P

x2X ˛x .
Then ˛x � �0 for each x 2 X (see Exercises 8 and 9 of Section 1.1) and

Card.�0/ D
X

x2X
Card.˛x/ � CardX:@ˇ � @2ˇ D @ˇ :

So �0 < �.

Corollary 7.3.2. If X and � are as in the lemma above and if .Y˛/˛<� is a family of
subsets of a set Y such that Y˛ � Yˇ when ˛ � ˇ < � and such that Y DS

˛<� Y˛,
then for any function f W X ! Y there is an ˛ < � such that f .X/ � Y˛.

Proof. For any x 2 X , let ˛x < � be any ordinal such that f .x/ 2 Y˛x
. Then if

˛x � �0 < � for all x we have f .X/ � Y�0 .

We note that this lemma says that any function f W X ! Y has a decomposition
X ! Y˛ ! Y with ˛ < � and Y˛ ! Y the canonical injection. We will apply this
lemma when X and Y are modules, f is linear, and all Y˛ � Y are submodules.

Definition 7.3.3. Given an ordinal number � and a family .M˛/˛<� of submodules of
a module M , we say that the family is a continuous (well ordered) chain of submod-
ules if M˛ � Mˇ whenever ˛ � ˇ < � and if Mˇ D

S

˛<ˇ M˛ whenever ˇ < �
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is a limit ordinal. A family .M˛/˛	� is called a continuous chain if .M˛/˛<�C1 is
such.

Theorem 7.3.4. Let M and N be modules and suppose M is the union of a continu-
ous chain of submodules .M˛/˛<�. Then if

Ext1.M0; N / D 0 and Ext1.M˛C1=M˛; N / D 0
whenever ˛ C 1 < �, then Ext1.M;N / D 0.

Proof. We use the principle of transfinite induction in Proposition 1.1.18. So sup-
pose ˇ < � and that Ext1.M˛; N / D 0 for all ˛ < ˇ. Then we must argue that
Ext1.Mˇ ; N / D 0. If ˇ is not a limit ordinal, let ˇ D ˛ C 1. We have the exact
sequence

0!M˛ !M˛C1 !M˛C1=M˛ ! 0

where Ext1.M˛; N / D 0 by the induction hypothesis and Ext1.M˛C1=M˛; N / D 0

by assumption. So we get that Ext1.M˛C1; N / D 0.
So now assume ˇ < � is a limit ordinal such that Ext1.M˛; N / D 0 for all ˛ < ˇ.

To argue that Ext1.Mˇ ; N / D 0 we let

0! N
f! G

g!Mˇ ! 0

be an exact sequence. We must prove that this sequence splits, that is, we should prove
that there is a section s WMˇ ! G for g. For ˛ < ˇ we have the exact sequence

0! N
f! g�1.M˛/!M˛ ! 0

By hypothesis, each of these sequences splits and so has a section s˛. We use transfi-
nite induction again to argue that we can find compatible such sections, that is, such
that if ˛ � ˛0 < ˇ then s˛0 jM˛ agrees with s˛. If we have compatible sections for all
˛ < � � ˇ where � is a limit ordinal, we can let s� agree with all s˛ for ˛ < � and
we get compatible sections s˛ for all ˛ � � .

So the problem reduces to arguing that given a section s˛ (for any ˛C 1 < �) there
is a section s˛C1 that agrees with s˛ on M˛. Since by hypothesis Ext1.M˛C1; N / D
0 there is a section t W M˛C1 ! g�1.M˛C1/. But then g is 0 on the image of
s˛ � .t jM˛/ and so s˛ � .t jM˛/ maps M˛ into f .N / Š N . But

Ext1.M˛C1=M˛; f .N // Š Ext1.M˛C1=M˛; N / D 0
So s˛ � .t jM˛/ can be extended to a linear map u W M˛C1 ! f .N /. But then
s˛C1 D t C u gives the desired section.

Corollary 7.3.5. Let .F ;C/ be any cotorsion theory and suppose a module F is the
union of a continuous chain .F˛/˛<� of submodules. If F0 2 F and F˛C1=F˛ 2 F

whenever ˛ C 1 < �, then F 2 F .
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Exercises

1. Prove that given any ring R there exists a limit ordinal number � such that if
a module E D S

˛<�E˛ for injective submodules E˛ � E where E˛ � Eˇ
whenever ˛ � ˇ < �, then E is injective. Argue that this holds for � D ! (recall
that Ord.N/ D !) if and only if R is left Noetherian.

2. Let L be the union of a continuous chain of submodules .L˛/˛<�. Let n � 0 and
suppose proj dimL0 � n and proj dimL˛C1=L˛ � n when ˛ C 1 < �. Then
prove that proj dimL � n.

Hint: If n D 0, then L˛C1 D L˛ ˚ S˛ for some S˛ � L˛C1 when ˛ C 1 < �.
Let S0 D L0. Prove that L is the direct sum of all the S˛ , ˛ � �. If n � 1, use
dimension shifting and Theorem 7.3.4.

3. If .F ;C/ is the cotorsion theory of the category of Z-modules cogenerated by
Z=.p/ for some prime p, argue that if the Z-module F is such that every element
has order a power of p then F 2 F .

4. Use Problem 3 above to argue that .F ;C/ of that problem has enough injectives
(and so also enough projectives).

7.4 Cotorsion Theories with Enough Injectives and
Projectives

In this section, we prove a result guaranteeing enough injectives for any cotorsion
theory cogenerated by a set.

We start with a submodule S � P , a linear S ! M , and consider the problem of
extending S !M to P . We form the pushout diagram

S ��

��

P

��
M �� G

From the construction, M ! G is an injection (so we identify M with a submodule
of G) and G=M Š P=S . But then also the map P ! G agrees with S ! M on S .
So the map S !M can be extended to a map of P into G.

With a slight generalization of this idea we can construct G with M � G so that
for every linear S !M there is a linear P ! G agreeing with S !M on S . To do
so, we consider the evaluation map S .Hom.S;M// ! M mapping .xf /f 2Hom.S;M/ to
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P

f 2Hom.S;M/ f .xf /, and then the pushout diagram

S .Hom.S;M// ��

��

P .Hom.S;M//

��
M �� G

Then we see that we haveM � G and that for any linear f W S !M there is a linear
P ! G agreeing with f on S . But we also have G=M Š .P=S/.Hom.S;M//, that is,
G=M is a direct sum of copies of P=S .

Theorem 7.4.1. If a cotorsion theory .F ;C/ is cogenerated by a set, then it has
enough injectives (and so enough projectives).

Proof. By an earlier comment, we can assume that .F ;C/ is cogenerated by a single
module A. We let 0! S ! P ! A! 0 be exact with P projective. Let M be an
R-module. For any ordinal � we use transfinite induction to construct a continuous
chain of modules .M˛/˛<� so thatM0 DM and so that for any ˛C1 < � any linear
S !M˛ has an extension P !M˛C1, and finally so thatM˛C1=M˛ is a direct sum
of copies of P=S Š A for ˛ C 1 < �.

We now use Corollary 7.3.2 with S the set X of that corollary and find a cor-
responding �. Let C D S

˛<�M˛. Then for any linear S ! C , there a fac-
torization S ! M˛ ! C for some ˛ < �. Since � is a limit ordinal, we have
˛ C 1 < � and so by construction there is a linear P ! M˛C1 agreeing with
S ! M˛ . This says that any linear S ! C has an extension P ! C . But
this is equivalent to the fact that Ext1.A; C / D 0. So C 2 C since A cogener-
ates .F ;C/. Since A 2 F , any direct sum U of copies of A is in F . Now let
F D C=M D .

S

˛<�M˛/=M . If we let F˛ D M˛=M for all ˛ < � and then use
Theorem 7.3.4 we get that Ext1.F;D/ D 0 for any D 2 C and so F 2 F . Hence we
have the desired exact sequence 0 ! M ! C ! F ! 0. So .F ;C/ has enough
injectives.

Definition 7.4.2. A cotorsion theory .F ;C/ with F the class of flat modules (and so
F ? D C the class of cotorsion modules) is called the flat cotorsion theory.

Proposition 7.4.3. Let R be any ring. The flat cotorsion theory .F ;C/ of the category
of R-modules is cogenerated by a set.

Proof. Let F be a flat R-module. By Lemma 5.3.12, if CardR � @ˇ then for each
x 2 F there is a pure submodule S � F with x 2 S such that CardS � @ˇ
(simply let N D Rx and f D idN in the lemma). So we can write F as a union
of a continuous chain .F˛/˛<� of pure submodules of F such that CardF0 � @ˇ
and CardF˛C1=F˛ � @ˇ whenever ˛ C 1 < �. But then by Theorem 7.3.4 we see
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that if C is an R-module, Ext1.F0; C / D 0, and Ext1.F˛C1=F˛; C / D 0 whenever
˛C1 < �, then Ext1.F; C / D 0. So it follows that if Y is a set of representatives of all
flat modules G with CardG � @ˇ , then C is cotorsion if and only if Ext1.G; C / D 0
for allG 2 Y . But then this just says that the given flat cotorsion theory is cogenerated
by the set Y .

We are now in a position to state the following important result.

Theorem 7.4.4. The class of flat R-modules is covering for any ring R.

Proof. This follows immediately from Proposition 7.4.3 above and Theorems 7.4.1
and 5.2.3.

Now let n � 1 be given and for a ring R let L denote the class of R-modules L
such that proj dimRL � n.

Proposition 7.4.5. Let CardR � @ˇ and L 2 L. If x 2 L, then there is a submodule
L0 � L with x 2 L0 such that CardL0 � @ˇ and L0; L=L0 2 L.

Proof. We use the Eilenberg trick, that is, if P is a projective module then there is
a free module F such that P ˚ F is free (if P ˚ P 0 is free just let F D P 0 ˚
P ˚ P 0 ˚ P ˚ � � � ). Hence if 0 ! Pn ! � � � ! P0 ! L ! 0 is a projective
resolution of L we can take the direct sum of this complex with complexes of the

form 0 ! � � � ! 0 ! F
id! F ! 0 ! � � � ! 0 with F free and get a projective

resolution 0 ! Fn
@n! � � � ! F0

@0! L ! 0 of L with each of Fn; : : : ; F0 free. If
Xn; : : : ; X0 are bases of each of these free modules our objective is to choose subsets
Yi � Xi for i D 0; : : : ; n so that if hYi i is the free submodule of Fi generated by Yi ,
then 0! hYni ! � � � ! hY0i is an exact subcomplex of 0! Fn ! � � � ! F0 which
will give the desired L0. We accomplish this by choosing certain subsets Z � Xi and
using a zig-zag procedure. At each stage of the procedure we should check that the
set Z can be chosen so that CardZ � @ˇ .

We choose a finite subset Z0 � X0 such that x 2 @0.hZ0i/. Then we choose a
subset Z1 � X1 so that @1.hZ1i/ � Ker.@0jhZ0i/. We then choose Z2 � X2 so
that @2.hZ2i/ � Ker.@1jhZ1i/. We continue this procedure until we have Zn � Xn
with @n.hZni/ � Ker.@n�1jhZn�1i/. We now enlarge Zn�1 to Z0n�1 in such a way
that @n.hZni/ � hZ0n�1i. Then we enlarge Zn�2 to Z0n�2 so that @n�1.hZ0n�1i/ �
hZ0n�2i. Continuing in this manner, we construct Z0n; Z0n�1; : : : ; Z00 satisfying the
obvious conditions. Now we start over and enlarge Z01 to Z001 in such a way that
@1.hZ001i/ � Ker.@0jhZ00i/. We then enlarge Z02 to Z002 and so on. Continuing this
zig-zag procedure and eventually letting Yi � Xi be the union of all the subsets
of Xi we chose while implementing the procedure we see that the sequence 0 !
hYni ! � � � ! hY0i is exact. By construction, each Yi is such that CardYi � @ˇ .
Then if we let L0 D @0.hY0i/ we have CardL0 � @ˇ and L0 2 L since 0 !
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hYni ! � � � ! hY0i ! L0 ! 0 is a projective resolution of L0. The quotient of
the exact complex 0 ! Fn ! � � � ! F0 ! L ! 0 by the exact subcomplex
0 ! hYni ! � � � ! hY0i ! L0 ! 0 is an exact complex which gives a projective
resolution of L=L0. This then gives that L=L0 2 L.

Using the notation above we get the following result.

Theorem 7.4.6. .L;L?/ is a cotorsion theory of the category of R-modules with
enough injectives and projectives.

Proof. By the previous result we see that any L 2 L can be written L D S

˛<�L˛
with .L˛/˛<� a continuous chain of submodules with L0 2 L and L˛C1=L˛ 2 L

when ˛ C 1 < � and with CardL0;CardL˛C1=L˛ � @ˇ . Hence if B is the direct
sum of a representative set of L 2 L with CardL � @ˇ , we see that G 2 L? if and
only if Ext1.B;G/ D 0.

Now let K be any R-module. We use the procedure of Theorem 7.4.1 to get an
exact sequence 0 ! K ! A ! L ! 0 with A 2 L? and L 2 L. We note that
L 2 L since L can be written as a continuous chain of submodules L D S

˛<�L˛
with L0 2 L and L˛C1=L˛ 2 L when ˛ C 1 < �. Then we apply Problem 2 of
Section 3 of this chapter and get that L 2 L, that is, proj dimL � n.

Now let M be a module and let 0 ! K ! P ! M ! 0 be exact with P
projective. By the above applied to K we get an exact sequence 0 ! K ! A !
L! 0 with A 2 L? and L 2 L. Using a pushout of K ! P and K ! A, we have
a commutative diagram

0

��

0

��
0 �� K ��

��

P ��

��

M �� 0

0 �� A

��

�� L0 ��

��

M �� 0

L

��

L

��
0 0

with exact rows and columns. Then we see that since P;L 2 L we have that L0 2 L.
Now suppose M 2 ?.L?/. Then since A 2 L? the middle row of the diagram splits
and so M is a direct summand of L0. Hence M 2 L. This shows that L D ?.L?/.
Hence .L;L?/ is a cotorsion theory with enough injectives and projectives.
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Exercises

1. Prove a version of Proposition 7.4.5 but with n D 0. So prove that for a ring R
there is an @ˇ so that if x 2 P where P is a projective R-module there is a direct
summand S of P with x 2 S and CardS � @ˇ .

Hint: Let F D P ˚ P 0 be a free module with a base .xi /i2I . Find finite subsets
I0 � I1 � I2 � � � � of I such that if Fn is the free submodule of F generated
by .xi /i2In

, then x 2 F0 and for n � 0, FnC1 contains the projection of Fn on
P and P 0. Then if J D S1

iD0 Ii and if G is generated by the xj with j 2 I ,
deduce that G D G \ P C G \ P 0 and G \ P is the desired summand. Then
note that G and G \ P are countably generated.

2. Let Abs be the class of absolutely pure R-modules. Use the methods of this
section to argue that .?Abs;L/ is a cotorsion theory with enough injectives and
projectives. Argue that F 2 ?Abs if and only if F is a direct summand of a
module G which can be written as the union of a continuous chain .G˛/˛<� of
submodules such that G0 and G˛C1=G˛ for ˛ C 1 < � are finitely presented
modules. (For the last part of the problem use the material in the proof of The-
orem 7.4.1 and Proposition 7.1.7 to argue that for F 2 ?Abs, there is an exact
sequence 0 ! A ! G ! F ! 0 with A 2 Abs and with G as described
above).



Chapter 8

Relative Homological Algebra and Balance

Covers and envelopes of modules were defined and studied in Chapters 5, 6 and 7.
We now redefine these notions for any Abelian category.

Let C be an Abelian category and F be a class of objects of C. Then a morphism
' W F ! M of C is called an F -precover of M if F 2 F and Hom.F 0; F / !
Hom.F 0;M/ ! 0 is exact for all F 0 2 F . If moreover, any morphism f W F ! F

such that ' D ' ıf is an automorphism of F , then ' W F !M is called an F -cover
of M (see Definition 5.1.1). An F -preenvelope and an F -envelope M ! F are
defined dually (see Definition 6.1.1). If F -covers and envelopes exist, then they are
unique up to isomorphism.

We note that an F -precover ' W F ! M in C is not necessarily an epimorphism.
But if C has enough projectives and these are in F , then ' is an epimorphism. Simi-
larly, if C contains enough injective objects and these are in F , then an F -preenvelope
M ! F , if it exists, is a monomorphism.

If every object of C has an F -(pre)cover, F is said to be (pre)covering. Similarly,
if every object has an F -(pre)envelope, we say that F is (pre)enveloping. Eilenberg–
Moore [44] consider such classes but with different terminology.

All functors in this chapter will be additive.

8.1 Left and Right F -resolutions

Definition 8.1.1. Let C;D, and E be Abelian categories and T W C � D ! E be an
additive functor contravariant in the first variable and covariant in the second. If F is
a class of objects of C, we will say that a complex

� � � ! D1 ! D0 ! D0 ! D1 ! � � �

in D is T .F ;�/ exact if for every F 2 F the complex

� � � ! T .F;D1/! T .F;D0/! T .F;D0/! T .F;D1/! � � �

is an exact sequence in E.

If F is a class of objects in D, we will say that a complex

� � � ! C1 ! C0 ! C 0 ! C 1 ! � � �
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in C is T .�;F / exact if for each F 2 F the complex

� � � ! T .C 0; F /! T .C0; F /! T .C1; F /! � � �

is an exact sequence in E.
Frequently, in place of saying the complex is T .F ;�/ exact we say that T .F;�/

makes the complex exact for all F 2 F , and we say that T .�; F /makes the complex
exact for all F 2 F when the complex is T .�;F / exact.

We will use the same terminology for finite complexes. The exactness of T .F ;�/
and T .�;F / with other choices of variances of T are defined similarly.

Definition 8.1.2. Let C be an Abelian category and F be a class of objects of C. By
a left F -resolution of an object M of C, we will mean a Hom.F ;�/ exact complex

� � � ! F1 ! F0 !M ! 0

(not necessarily exact) with each Fi 2 F .
A right F -resolution of an object M of C is a Hom.�;F / exact complex

0!M ! F 0 ! F 1 ! � � �

(not necessarily exact) with each F i 2 F . Eilenberg–Moore [44] call these resolu-
tions projective (injective) resolutions of M for the class F , respectively.

If � � � ! F1 ! F0 ! M ! 0 is a left F -resolution, then K0 D M , Ki D
Ker.Fi�1 ! Fi�2/ for i � 1, is called an i th F -syzygy of M where F�1 D M .
If 0 ! M ! F 0 ! F 1 ! � � � is a right F -resolution of M , then C 0 D M ,
C i D Coker .F i�2 ! F i�1/ for i � 1, is called an i th F -cosyzygy of M where
F�1 DM . The complex

� � � ! F1 ! F0 ! F 0 ! F 1 ! � � �

(with F0 ! F 0 the composition F0 !M ! F 0) is called a complete F -resolution
of M .

Proposition 8.1.3. Let C be an Abelian category and F be a class of objects of
C. If F is precovering (preenveloping), then every object of C has a left (right)
F -resolution. Furthermore, if F is both precovering and preenveloping, then every
object of C has a complete F -resolution.

Proof. Let M be an object of C. If F0 ! M is an F -precover, let F1 ! Ker.C0 !
M/ also be an F -precover. Proceeding in this manner, we get a complex � � � !
F1 ! F0 ! M ! 0 (not necessarily exact) which becomes exact when Hom.F;�/
is applied to it for any F 2 F . Similarly for right F -resolutions.
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If F is precovering and � � � ! F 01 ! F 00 ! M ! 0 is another left F -resolution
of M , then there exist morphisms Fi ! F 0i making

F� W � � � �� F1 ��

���
�
�

F0

���
�
�

�� M �� 0

F0� W � � � �� F 01 �� F 00 �� M �� 0

into a commutative diagram. Furthermore, any two such collection of morphisms
Fi ! F 0i give homotopic morphisms of the deleted complex F� W � � � ! F1 ! F0 !
0 to the complex F0� W � � � ! F 01 ! F 00 ! 0. Thus we get the usual uniqueness of
complexes up to homotopy. Similarly for right F -resolutions.

Definition 8.1.4. If F is covering, then the left F -resolution of M

� � � ! F1 ! F0 !M ! 0

can be constructed so that F0 ! M , F1 ! Ker.F0 ! M/, FiC1 ! Ker.Fi !
Fi�1/ for i � 1, are F -covers. In this case, the complex � � � ! F1 ! F0 !M ! 0

is called a minimal left F -resolution of M . Similarly, if F is enveloping, then a
minimal right F -resolution of M can be constructed using F -envelopes. So if F is
both covering and enveloping, thenM has a complete minimal F -resolution. Minimal
F -resolutions are unique up to isomorphism.

Exercises

1. If F is the class of projective R-modules, prove that a complex � � � ! F1 !
F0 ! M ! 0 of an R-module M with each Fi 2 F is a left F -resolution if
and only if it is exact. State and prove the dual result in the case F is the class of
injective R-modules.

2. (Comparison Theorem) Let F be precovering and F W � � � ! F1 ! F0 !M !
0, F0 W � � � ! F 01 ! F 00 !M 0 ! 0 be left F -resolutions of M;M 0 respectively.
Prove that each morphism ' W M ! M 0 induces a chain map ˆ W F� ! F0�
which is unique up to homotopy.

3. Using Problem 2 above, state and prove the Comparison Theorem for a preen-
veloping class F .

8.2 Derived Functors and Balance

Let F , G be precovering, preenveloping classes of an Abelian category C respectively,
and T be an additive functor from C to some Abelian category. Let F� be a deleted
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complex corresponding to a left F -resolution of an object of C. If T is covariant,
then the homology groups of T .F�/ give left derived functors LnT of T . Similarly,
the right derived functors RnT are the nth cohomology groups of T .G�/ where G�
corresponds to a deleted right G -resolution. If T is contravariant, then left (right)
derived functors can be computed using right G -resolutions (left F -resolutions). Fur-
thermore, for any T , there are natural transformations L0T ! T and T ! R0T .
Moreover, derived functors of T for a given object are unique up isomorphism by
Proposition 1.5.13 since F -resolutions are unique up to homotopy. We note that
L0T Š T if T is right exact and if for each M , F1 ! F0 ! M ! 0 is ex-
act where � � � ! F1 ! F0 ! M ! 0 is a left F -resolution of M . We have
R0T Š T if T is left exact and if for each M , 0! M ! G0 ! G1 is exact where
0!M ! G0 ! G1 ! � � � is a right G -resolution of M .

If F 2 F , then L0T .F / Š F and LnT .F / D 0 if n > 0. Similarly if G 2 G , then
R0T .G/ Š G and RnT .G/ D 0 if n > 0.

The following result allows us to obtain the familiar connecting homomorphisms.

Lemma 8.2.1 (Horseshoe Lemma). Let F be a precovering class closed under finite
direct sums of an Abelian category C. Suppose 0 ! M 0 ! M ! M 00 ! 0 is a
complex such that M 0;M;M 00 2 C and such that

0! Hom.F;M 0/! Hom.F;M/! Hom.F;M 00/! 0

is exact for all F 2 F . If � � � ! F 01 ! F 00 ! M 0 ! 0 and � � � ! F 001 ! F 000 !
M 00 ! 0 are left F -resolutions, then we can construct the following commutative
diagram such that the middle column is a left F -resolution of M .

:::

��

:::

��

:::

��
0 �� F 01

��

�� F 01 ˚ F 001

��

�� F 001

��

�� 0

0 �� F 00

��

�� F 00 ˚ F 000

��

�� F 000

��

�� 0

0 �� M 0

��

�� M

��

�� M 00

��

�� 0

0 0 0
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Proof. The map F 000 !M 00 has a factorization F 000 !M !M 00 since Hom.F;M/!
Hom.F;M 00/ ! 0 is exact for all F 2 F . So we get a map F 00 ˚ F 000 ! M and
hence a commutative diagram

0

��

0

��

0

��
0 �� K 0

��

�� K

��

�� K 00

��

�� 0

0 �� F 00

��

�� F 00 ˚ F 000

��

�� F 000

��

�� 0

0 �� M 0

��

�� M

��

�� M 00

��

�� 0

0 0 0

with obvious maps. But then all the rows and columns become exact if we apply
Hom.F;�/ to the diagram with F 2 F . Thus F 00 ˚ F 000 ! M is an F -precover.
Now we repeat the argument using the complex 0! K 0 ! K ! K 00 ! 0.

Remark 8.2.2. There is a dual result involving preenveloping classes of C.

Theorem 8.2.3. Let F be a precovering class closed under finite direct sums of an
Abelian category C and 0!M 0 !M !M 00 ! 0 be a Hom.F ;�/ exact complex
of objects of C. Then

(1) If T is a covariant functor, there is a long exact sequence

� � � ! LnT .M
00/! Ln�1T .M 0/! Ln�1.M/! Ln�1T .M 00/! � � �

! L0T .M
0/! L0T .M/! L0T .M

00/! 0:

(2) If T is a contravariant functor, there is a long exact sequence

0! R0T .M 00/! R0T .M/! R0T .M 0/! � � �
! Rn�1T .M 00/! Rn�1T .M/! Rn�1T .M 0/! RnT .M 00/! � � � :

Proof. If F0�, F00� denote deleted complexes associated with left F -resolutions of M 0,
M 00, respectively, then there is a deleted complex F� associated with a left F -reso-
lution of M given by the lemma above. So we have an exact sequence of complexes
0! F0� ! F� ! F00� ! 0. Then one computes the homology of the exact sequences
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0 ! T .F0�/ ! T .F�/ ! T .F00�/ ! 0 and 0 ! T .F00�/ ! T .F�/ ! T .F0�/ ! 0,
respectively, to get the desired long exact sequences by Theorem 1.5.7. We note that
it is not hard to prove that these long exact sequences are functorial (relative to the
complexes 0!M 0 !M !M 00 ! 0).

Corollary 8.2.4. If M 2 F , then

(1) If T is covariant, then LnT .M 0/ Š LnC1T .M 00/ for all n � 1.

(2) If T is contravariant, then RnT .M 0/ Š RnC1T .M 00/ for all n � 1.

Proof. We simply note that if M 2 F , then LnT .M/ D RnT .M/ D 0 for all
n � 1.

By Remark 8.2.2, we have the following dual result.

Theorem 8.2.5. Let F be a preenveloping class closed under finite direct sums of an
Abelian category C and 0!M 0 !M !M 00 ! 0 be a Hom.�;F / exact complex
of objects of C. Then

(1) If T is covariant, then there is a long exact sequence

0! R0T .M 0/! R0T .M/! R0T .M 00/! � � �
! Rn�1T .M 0/! Rn�1T .M/! Rn�1T .M 00/! RnT .M 0/! � � � :

(2) If T is contravariant, there is a long exact sequence

� � � ! LnT .M
0/! Ln�1T .M 00/! Ln�1T .M/! Ln�1T .M 0/! � � �

! L0T .M
00/! L0T .M/! L0T .M

0/! 0:

Corollary 8.2.6. If M 2 F , then

(1) If T is covariant, then RnT .M 00/ Š RnC1T .M 0/ for all n � 1.

(2) If T is contravariant, then LnT .M 00/ Š LnC1T .M 0/ for all n � 1.

Now letL0T
�! R0T be the composition of the natural transformationsL0T ! T

and T ! R0T where L0T is computed relative to some precovering class F and
where R0T is computed relative to some preenveloping class F 0. Then we will let
L0T and R0T denote the kernel and cokernel of the morphism � . We note that if
M 2 F , then L0T .M/ D T .M/ D R0T .M/ and so L0T .M/ D R0T .M/ D 0.
We are now in a position to state the following result.

Theorem 8.2.7. Let 0 ! M 0 ! M ! M 00 ! 0 be a complex of objects of an
Abelian category C. Suppose there is a precovering class F and preenveloping class
F 0 of C closed under finite direct sums such that Hom.F;�/, Hom.�; F 0/ make the
complex exact for all F 2 F , all F 0 2 F 0 respectively. Then
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(1) If T is a covariant functor, then there is a long exact sequence

� � � ! L1T .M
00/! L0T .M

0/! L0T .M/! L0T .M
00/

! R0T .M 0/! R0T .M/! R0T .M 00/! R1T .M 0/! � � � :
(2) If T is a contravariant functor, then there is a long exact sequence

� � � ! L1T .M
0/! L0T .M

00/! L0T .M/! L0T .M
0/

! R0T .M 00/! R0T .M/! R0T .M 0/! R1T .M 00/! � � � :
Proof. By Theorems 8.2.3 and 8.2.5, we have the following diagram:

� � � �� L1T .M
00/ ��

��

�� L0T .M
0/

��

�� L0T .M/

��

�� L0T .M
00/

��

�� 0

0 �� R0T .M 0/ �� R0T .M/ �� R0T .M 00/ �� R1T .M 0/

with exact rows. Chasing this diagram gives part (1) of the theorem. Part (2) follows
similarly.

Definition 8.2.8. The sequences in Theorem 8.2.7 above are called extended long
exact sequences of derived functors.

Proposition 8.2.9. Let F be a class of an Abelian category C and

� � � ! F1 ! F0 ! F 0 ! F 1 ! � � �
be a complete F -resolution of an object M of C. Then

(1) If T is a covariant functor, then the homology groups are LiT .M/, L0T .M/,
R0T .M/, and RiT .M/ at T .Fi /, T .F0/, T .F 0/, and T .F i / respectively
where i � 1.

(2) If T is a contravariant functor, then the homology groups areLiT.M/;L0T.M/,
R0T .M/, and RiT .M/ at T .F i /, T .F 0/, T .F0/, and T .Fi / respectively
where i � 1.

Proof. This follows from the definitions.

Definition 8.2.10. A sequence ¹T iº of functors is said to be covariantly right strongly
connected if every exact sequence 0! M 0 ! M ! M 00 ! 0 of R-modules has an
associated long exact sequence

� � � ! T i .M/! T i .M 00/! T iC1.M 0/! T iC1.M/! T iC1.M 00/! � � �
which is functorial in such short exact sequences.
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We say that it is contravariantly right strongly connected if there exists a long exact
sequence

� � � ! T i .M/! T i .M 0/! T iC1.M 00/! T iC1.M/! T iC1.M 0/! � � �

which is also functorial in the short exact sequences. Covariantly (contravariantly)
left strongly connected sequences ¹Tiº are similarly defined with connecting homo-
morphisms Ti .M 00/! Ti�1.M 0/ .Ti .M 0/! Ti�1.M 00//, respectively.

We note that the sequences ¹RiT º and ¹LiT º in Theorems 8.2.3 and 8.2.5 are
strongly connected.

Theorem 8.2.11. Let ¹F iº and ¹Giº be covariantly right strongly connected se-
quences such that F 0 Š G0 and F i .E/ D Gi .E/ D 0 for all injective R-modules E
and for all i � 1. Then F i Š Gi for each i � 0.

Proof. We proceed by induction on i . If i D 0, then we are done.
Suppose i D 1. Then given an R-module M , we consider a short exact sequence

0 ! M ! E ! L ! 0 where E is an injective R-module. We then have the
following commutative diagram

F 0.E/ ��

��

F 0.L/ ��

��

F 1.M/ ��

'

��

F 1.E/ D 0

G0.E/ �� G0.L/ �� G1.M/ �� G1.E/ D 0

where the first two vertical maps are isomorphisms. So ' is an isomorphism. Thus
F 1.M/ Š G1.M/ for all R-modules M . If i � 2, then F i�1.L/ Š Gi�1.L/ by
the induction hypothesis. Hence F i .M/ Š Gi .M/ since F i�1.E/ D Gi�1.E/ D
F i .E/ D Gi .E/ D 0.

We also have the following dual result.

Theorem 8.2.12. Let ¹F iº and ¹Giº be contravariantly right strongly connected se-
quences such that F 0 Š G0 and F i .P / D Gi .P / D 0 for all free R-modules P and
for all i � 1. Then F i Š Gi for each i � 0.

Proof. Same proof as in Theorem 8.2.11. One now considers an exact sequence
0 ! L ! P ! M ! 0 with P free and exact sequences F 0.P / ! F 0.L/ !
F 1.M/! F 1.P /! � � � , G0.P /! G0.L/! G1.M/! G1.P /! � � � .
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There are similar results for left strongly connected sequences.
Most useful applications of derived functors occur when T is a functor of two

variables and is balanced as defined below.

Definition 8.2.13. Let C, D, and E be Abelian categories and T W C � D ! E be
an additive functor contravariant in the first variable and covariant in the second. Let
F and G be classes of objects of C and D respectively. Then T is said to be right
balanced by F � G if for each object M of C, there is a T .�;G / exact complex

� � � ! F1 ! F0 !M ! 0

with each Fi 2 F , and if for every object N of D, there is a T .F ;�/ exact complex

0! N ! G0 ! G1 ! � � �

with Gi 2 G .

If, on the other hand, the complex � � � ! F1 ! F0 ! M ! 0 is T .G ;�/ exact
and the complex 0! N ! G0 ! G1 ! � � � is T .�;F / exact, then T is said to be
left balanced by G � F .

The definitions above are easily modified to give the definitions of a left or right
balanced functor relative to F �G with other choices of variances and complexes. For
example, if T is covariant in both variables, then we would postulate the existence of
complexes � � � ! F1 ! F0 ! M ! 0 and � � � ! G1 ! F0 ! N ! 0 or
0 ! M ! F 0 ! F 1 ! � � � and 0 ! N ! G0 ! G1 ! � � � with the obvious
properties to define left or right balanced functors relative to F � G , respectively.

The double complex .T .F�;G�// is defined by

.T .F�;G�//n D
M

iCjDn
T .Fi ; G

j /

with differentials

d W .T .F�;G�//n ! .T .F�;G�//n�1

defined by df D d 00f C .�1/nC1d 0f where d 0 and d 00 are differentials for F� and
G� respectively. We are now in a position to prove the following result.

Theorem 8.2.14. Let T be contravariant in the first variable and covariant in the
second. If T is right balanced by F � G , then the double complex .T .F�;G�// and
the complexes .T .F�; N // and .T .M;G�// have isomorphic homology.
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Proof. Since T is right balanced, we get the following first quadrant commutative
diagram with exact rows and columns

:::
:::

T .F0; G
1/ ��





T .F1; G
1/ ��





� � �

T .F0; G
0/ ��





T .F1; G
0/ ��





� � �

But ifC i DKer.T .F0; Gi /!T .F0; G
iC1//,Di DKer.T .Fi ; G0/!T .FiC1; G0//,

and C i ! C iC1, Di ! DiC1 are induced by the obvious maps, then the complexes
0 ! C 0 ! C 1 ! � � � and 0 ! D0 ! D1 ! � � � have isomorphic homology. But
C i D T .M;Gi / and Di D T .Fi ; N / and so we are done.

Remark 8.2.15. The homologies of either complexes in Theorem 8.2.14 above are
denoted by RnT .M;N /.

If T is left balanced, we get a corresponding result using a third quadrant diagram.
For example, if T is again contravariant in the first variable and covariant in the sec-
ond, then we may consider complexes

0!M ! G0 ! G1 ! � � � ; � � � ! F1 ! F0 ! N ! 0

withGi 2 G , Fi 2 F subject to required conditions. Then we get a third quadrant dia-
gram from which it follows that the complexes .T .G�;F�//, .T .G�; N //, .T .M;F�//
have isomorphic homologies. These homologies are denoted by LnT .M;N /. We get
similar results with other choices of variances.

Exercises

1. Prove that for any additive functor T , there are natural transformationsL0T ! T

and T ! R0T .

2. Suppose F is precovering and for each M , F1 ! F0 ! M ! 0 is exact where
� � � ! F1 ! F0 ! M ! 0 is a left F -resolution. If T is a right exact additive
functor, argue that L0T Š T .

3. Suppose G is preenveloping and for each M 0 ! M ! G0 ! G1 is exact
where 0 ! M ! G0 ! G1 ! � � � is a right G -resolution of M . If T is a left
exact additive functor, argue that R0T Š T .

4. Let T be an additive functor. Prove that if F is precovering and F 2 F , then
L0T .F / Š F and .LnT /.F / D 0 if n > 0. Similarly, if G is preenveloping and
G 2 G , then R0T .G/ Š G and RnT .G/ D 0 if n > 0.
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5. State and prove a result dual to Lemma 8.2.1.

6. Prove that the long exact sequences in Theorem 8.2.3 are functorial relative to the
complexes 0!M 0 !M !M 00 ! 0.

7. Prove Theorem 8.2.5.

8. Let F be a precovering class closed under finite direct sums, and Kn for n � 1
be an nth F -syzygy of M . Prove that

(a) If T is covariant, then LnC1T .M/ Š LnT .K1/ Š � � � Š L1T .Kn/.
(b) If T is contravariant, then RnC1T .M/ Š RnT .K1/ Š � � � Š R1T .Kn/.
Conclude that if Kn 2 F , then LiT .M/ D RiT .M/ D 0 for all i � nC 1.

9. Let F be a preenveloping class closed under finite direct sums, and C n for n � 1
be an nth F -cosyzygy of M . Prove that

(a) If T is covariant, then RnC1T .M/ Š RnT .C 1/ Š � � � Š R1T .C n/.
(b) If T is contravariant, then LnC1T .M/ Š LnT .C 1/ Š � � � Š L1T .C n/.
Conclude that if C n 2 F , then RiT .M/ D LiT .M/ D 0 for all i � nC 1.

10. Under the hypothesis of Theorem 8.2.3, prove that if T is covariant, then L0T is
right exact and if T is contravariant, then R0T is left exact.

11. Prove part (2) of Theorem 8.2.7.

12. Prove Proposition 8.2.9.

13. Complete the proof of Theorem 8.2.12.

14. State and prove results for left strongly connected sequences corresponding to
Theorems 8.2.11 and 8.2.12.

15. Prove that the complexes 0 ! C 0 ! C 1 ! � � � and 0 ! D0 ! D1 ! � � � in
Theorem 8.2.14 have isomorphic homology.

16. Let T be contravariant in the first variable and covariant in the second. Prove that
if T is left balanced by G � F , then the complexes .T .G�;F�//, .T .G�; N //,
.T .M;F�// have isomorphic homology.

17. Let T be covariant in either variable. Prove that if T is left balanced by F � G ,
then the complexes .T .F�;G�//, .T .F�; N //, .T .M;G�// have isomorphic ho-
mology.

18. Let T be covariant in either variable. Prove that if T is right balanced by F � G ,
then the complexes .T .F�;G�//, .T .F�; N //, .T .M;G�// have isomorphic ho-
mology.
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8.3 Applications to Modules

Let T D Hom.�;�/ be a functor from a product of Abelian categories C and D.
Then T is contravariant in the first variable and covariant in the second. If T is right
balanced by F � G , then the right derived functors Rn Hom.M;N / can be computed
using either a complex � � � ! F1 ! F0 ! M ! 0 of M with Fi 2 F or a complex
0 ! N ! G0 ! G1 ! � � � of N with Gi 2 G by Theorem 8.2.14. If T is left
balanced by G � F , then we can compute the left derived functors Ln Hom.N;M/

using either of the complexes by Remark 8.2.15.
We now apply this to categories of modules. But first, we recall and introduce some

notation. RM (MR) will denote classes of left (right)R-modules, and given a class F ,
Ffg and Ffp will denote classes of finitely generated and finitely presented modules in
F , respectively. If F consists of all flat R-modules, then F will be denoted by F lat.
We recall that Abs, Inj , and Proj denote the classes of absolutely pure, injective,
and projective R-modules, and we will let PProj ; and PInj denote the classes of
pure projective and pure injective modules, respectively. These terms will also be used
to denote the corresponding full subcategories. In particular, left Proj-resolution, right
Inj-resolution will mean the usual projective and injective resolutions, respectively.

Now let T D Hom.�;�/ be a functor from RM � RM to the category of Abelian
groups. Then we have the following:

Example 8.3.1. Hom.�;�/ is right balanced on RM � RM by Proj � Inj. This is
standard.

Example 8.3.2. From the definition of a finitely presented module M , it is not hard
to see that there is a set X � Mfp such that for every F 2 Mfp, F Š G for some

G 2 X . For each F 2 X , set XF D Hom.F;M/. If F .XF / ! M is the evaluation
map .'f /XF

! P

f .'f /, then any map F ! M factors through F .XF / ! M .
So Hom.F 0;

L

F 2X F .XF // ! Hom.F 0;M/ ! 0 is exact for all F 0 2 Mfp. Thus
L

F 2X F .XF / ! M ! 0 is exact since R 2 Mfp and so the sequence 0 ! K !
L

F 2X F .XF / !M ! 0 is pure exact.
Now recall that a left R-module P is said to be pure projective if for every pure

exact sequence 0 ! T ! N ! N=T ! 0, Hom.P;N / ! Hom.P;N=T / ! 0

is exact. Thus projective and finitely presented modules are pure projective, and in
particular Hom.P;

L

F .XF // ! Hom.P;M/ ! 0 is exact whenever P is pure
projective.

If 0 ! T ! N ! N=T ! 0 is pure exact, then Hom.
L

F .XF /; N / !
Hom.

L

F .XF /; N=T / is equivalent to
Q

Hom.F;N / ! Q

Hom.F;N=T / which
is surjective since Hom.F;N / ! Hom.F;N=T / is surjective because F 2 PProj.
Thus

L

F .XF / 2 PProj. Hence since
L

F .XF / !M ! 0 is surjective with a pure
kernel and

L

F .XF / is pure projective, we see that we have a PProj-precover. Hence
we get an exact left PProj-resolution with pure kernels for each M 2 RM. But by
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Propositions 5.3.9 and 8.1.3, right PInj-resolutions exist with pure injections for each
N 2 RM. Hence Hom.�;�/ is right balanced by PProj �PInj on RM � RM.

Example 8.3.3. If R is left coherent, then Hom.�;�/ on MR fp �MR is right bal-
anced by Projfg �Abs. For if R is left coherent, then each object MR in Mfp has a
left Projfg-resolution (see Remark 3.2.25). Furthermore, any absolutely pure preen-
velope is an injection since injectives are absolutely pure. So every module has a right
Abs-resolution by Proposition 6.2.4 and Proposition 8.1.3. Hence the result follows
as in the above examples.

Example 8.3.4. Hom.�;�/ on F lat �F lat is right balanced by Proj�PInj since
right PInj-resolutions are exact and left Proj-resolutions of flat modules are pure
exact sequences.

Example 8.3.5. If R is left Noetherian, then Hom.�;�/ is left balanced on RM �
RM by Inj � Inj since for such an R, every left R-module has a left Inj-resolution
by Theorem 5.4.1 and Proposition 8.1.3.

Example 8.3.6. If R is left coherent, then Hom.�;�/ is left balanced on MR �
MR by F latR � F latR since every right R-module has a right F lat-resolution by
Proposition 6.5.1 and a left F lat-resolution by Theorem 7.4.4.

Notation. When T D Hom.�;�/, right derived functors Rn Hom.�;�/ are de-
noted by ExtnR.�;�/ and left derived functors Ln Hom.�;�/ by ExtRn .�;�/ or
Ext�nR .�;�/. In Example 8.3.2, the derived functors are usually denoted by
PextnR.�;�/. We note that these functors depend on which classes F and G we
are using. But this will be clear from the context.

Now let T D �˝�. Then T is covariant in both variables. If T is left balanced by
F �G , then we can compute left derived functors Ln.M˝N/ using either a complex
� � � ! F1 ! F0 ! M ! 0 of M with Fi 2 F or a complex � � � ! G1 ! G0 !
N ! 0 of N with Gi 2 G . This uses a third quadrant diagram. Similarly, if T is
right balanced by F � G , then we can compute right derived functors Rn.M ˝ N/
using either a complex 0 ! M ! F 0 ! F 1 ! � � � of M with F i 2 F or
0! N ! G0 ! G1 ! � � � with Gi 2 G .

We apply this to categories of modules by again considering T D � ˝ � as a
functor from MR � RM to the category of Abelian groups.

Example 8.3.7. �˝� is left balanced by Proj�Proj on MR� RM. This is standard.

Example 8.3.8. � ˝ � is left balanced by F lat � F lat on MR � RM. Again this
is standard since every module has a flat resolution. The left derived functors of this
example coincide with those in Example 8.3.7 above. We note however that a flat
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resolution is not a left F lat-resolution in general. We will study left F lat-resolutions
in Section 8.6.

Example 8.3.9. If R is left coherent, then �˝� on MR � RM is right balanced by
F lat �Abs. We need to show that if 0 ! M ! F 0 ! F 1 ! � � � is a right F lat-
resolution, which exists by Propositions 6.5.1 and 8.1.3, and G is an absolutely pure
left R-module, then 0! M ˝G ! F 0 ˝G ! F 1 ˝G ! � � � is exact. Applying
the functor HomZ.�;Q=Z/ and using a standard identity we get the sequence 0  
Hom.M;GC/ Hom.F 0; GC/ � � � . ButGC is flat and so this sequence is exact.
This means the desired sequence is exact. Since right Abs-resolutions are exact,
0 ! F ˝ N ! F ˝ G0 ! F ˝ G1 ! � � � is exact for any right Abs-resolution
0! N ! G0 ! G1 ! � � � of N and for any F 2 F lat.

Example 8.3.10. If R is again left coherent, then � ˝ � on MR fp � RM is right
balanced by Projfg�Abs. For ifM is a finitely presented rightR-module, thenM has
a flat preenvelopeM ! F by Proposition 6.5.1. But thenM ! F has a factorization
M ! P ! F for some finitely generated rightR-moduleP . SoM ! P is a Projfg-
preenvelope of M . Thus M has a right Projfg-resolution. Hence the example follows
as in Example 8.3.9 noting that the right Projfg-resolution becomes exact if we apply
Hom.�; P / with P 2 Projfg or Hom.�; F / with F 2 F lat.

Notation. When T D �˝ �, the left derived functors Ln.� ˝ �/ are denoted by
TorRn .�;�/ and the right derived functors Rn.� ˝ �/ are denoted by TornR.�;�/.
Again these depend on the classes F and G we are using.

Example 8.3.11. Using the above, we see that ifR is left coherent, then Hom.�;�/ is
left balanced on MR fp�MR by Projfg�F lat. Here the derived functors ExtRn .M;N /
are obtained by using a right Projfg-resolution of M or a flat resolution of N .

Exercises

1. Prove Example 8.3.1.

2. Prove Examples 8.3.4 and 8.3.5.

3. Prove Example 8.3.11.

4. Let R be left Noetherian, N be an R-module, and C j a j th cosyzygy of an
R-module M . Prove that ExtRi .C

j ; N / Š ExtRiC1.M;N / for all i � 1.

5. Let R be left Noetherian and N be an R-module such that its left Inj-resolutions
are exact. Let K�i .N / denote the i th syzygy of the minimal left Inj-resolution
of N . Prove that ExtRi .M;N / Š Ext1R.M;K

�i�2.N // for all i � 1 and all
R-modules M .
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6. Let R be left Noetherian and C denote the full subcategory of all R-modules
whose left Inj-resolutions are exact. Prove that the following are equivalent for
N 2 Ob.C/.

(a) ExtRi .M;N / D 0 for all i � 1 and all M 2 Ob.C/.

(b) ExtR1 .M;N / D 0 for all M 2 Ob.C/.

(c) N is an injective R-module.

Hint: Use Problem 5 above.

7. (Stenström [171, Theorem 3.2] and Würfel [184, Satz 1.6]) Prove that the follow-
ing are equivalent for a ring R.

(a) R is left coherent.

(b) MC is a flat right R-module for each absolutely pure left R-module M .

(c) Every quotientM=S of an absolutely pure leftR-module by a pure submodule
S is absolutely pure.

(d) Every direct limit of absolutely pure left R-modules is absolutely pure.

8.4 F -dimensions

Definition 8.4.1. If F is a precovering class of an Abelian category C, then an object
M of C is said to have left F -dimension � n, denoted left F - dimM � n, if there is
a left F -resolution of the form 0 ! Fn ! Fn�1 ! � � � ! F1 ! F0 ! M ! 0

of M . If n is the least, then we set left F - dimM D n and if there is no such n, we
set left F - dimM D 1. In a similar manner, we define the right F -dimension of
objects of C, denoted right F - dim, if F is a preenveloping class of C. In particular,
left P roj-dimension, right Inj-dimension will mean the usual projective and injective
dimensions, respectively.

We note that F -dimension depends on both the category and the precovering or
preenveloping class. Also, F might be both precovering and preenveloping in which
case left and right F -dimensions of a given object of C may be different.

Definition 8.4.2. Let C be an Abelian category and F be a precovering class of C.
Then the global left F -dimension of C, denoted gl left F - dim C, is defined by

gl left F - dim C D sup¹left F - dimM WM 2 Ob.C/º
and is infinite otherwise. The global right F -dimension of C is defined similarly
when F is a preenveloping class.

Again, global dimensions depend on the category and the respective classes. If F is
both precovering and preenveloping, the two global F -dimensions may be different.
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Balanced functors are an essential tool in determining the exactness of complexes
and comparing different F -dimensions and global F -dimensions. We illustrate this
using the category of left R-modules. We start by stating the following standard
results where Extn.M;N / are the usual right derived functors obtained by using a
right Inj-resolution of N or a left Proj -resolution of M (see Example 8.3.1). We
include proofs here for completeness.

Proposition 8.4.3. The following are equivalent for a ring R, M 2 RM, and n � 0:

(1) left Proj - dimM � n.

(2) ExtnCkR .M;N / D 0 for all N 2 RM and k � 1.

(3) ExtnC1R .M;N / D 0 for all N 2 RM.

(4) Every nth P roj-syzygy of M is projective.

Proof. .1/ ) .2/. Let 0 ! Pn ! Pn�1 ! � � � ! P1 ! P0 ! M ! 0 be a left
Proj-resolution of M . Then Hom.PnCk; N / D 0 for all k � 1. So (2) follows.
.2/) .3/ and .4/) .1/ are trivial.
.3/ ) .4/. Let K D Ker.Pn ! Pn�1/. Then (3) implies that Hom.Pn; N / !

Hom.K;N / ! 0 is exact for all N . So by setting N D K, we see that 0 ! K !
Pn ! Ker.Pn�1 ! Pn�2/! 0 is split exact and so (4) follows.

Dually, we have the following

Proposition 8.4.4. The following are equivalent for a ring R, N 2 RM, and n � 0:

(1) right Inj- dimN � n.

(2) ExtnCkR .M;N / D 0 for all M 2 RM, and k � 1.

(3) ExtnC1R .M;N / D 0 for all M 2 RM.

(4) Every nth Inj-cosyzygy of M is injective.

(5) ExtnC1R .R=I;N / D 0 for all left ideals I of R.

Proof. The equivalence of (1), (2), (3), (4) follows as in the dual Proposition above.
.3/) .5/ is trivial. We now argue .5/) .4/. Let C D Im.En�1 ! En/. Then it
follows from part (1) of Corollary 8.2.6 that Ext1.R=I; C / Š ExtnC1.R=I;N / D 0.
So Hom.R; C / ! Hom.I; C / ! 0 is exact for all left ideals I of R. But then C is
injective by Baer’s Criterion (Theorem 3.1.3).

Now we get the following well-known result.

Theorem 8.4.5. The following are equivalent for a ring R and the category of left
R-modules RM:

(1) gl left Proj - dimRM � n.

(2) gl right Inj- dimRM � n.
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(3) ExtnC1R .M;N / D 0 for all M , N 2 RM.

(4) ExtnCkR .M;N / D 0 for all M , N 2 RM and k � 1.

(5) sup¹left Proj- dimR=I : I is a left ideal of Rº � n.

Proof. This easily follows from Propositions 8.4.3 and 8.4.4 above.

This gives the following result concerning the usual left injective and projective
global dimensions.

Corollary 8.4.6.

gl right Inj- dimRM D gl left Proj - dimRM

D sup¹left Proj - dimR=I W I is a left ideal of Rº:
If R is left coherent, right derived functors ExtnR.M;N / on RMfp � RM can be

computed using a left Projfg-resolution of M or a right Abs-resolution of N by Ex-
ample 8.3.3. So we have the following results that are analogous to the above.

Proposition 8.4.7. Let R be left coherent and n � 0. Then the following are equiva-
lent for M 2 RMfp:

(1) left Projfg- dimM � n
(2) ExtnCkR .M;N / D 0 for all N 2 RM and k � 1.

(3) ExtnC1R .M;N / D 0 for all N 2 RM.

(4) Every nth Projfg-syzygy of M is a finitely generated projective R-module.

Proof. Similar to Proposition 8.4.3.

Proposition 8.4.8. Let R be left coherent and n � 0. Then the following are equiva-
lent for N 2 RM:

(1) right Abs- dimN � n.

(2) ExtnCkR .M;N / D 0 for all M 2 RMfp and k � 1.

(3) ExtnC1R .M;N / D 0 for all M 2 RMfp.

(4) Every nth RAbs-cosyzygy of N is absolutely pure.

(5) ExtnC1R .R=I;N / D 0 for all finitely generated left ideals I of R.

Proof. We provide a proof here for completeness.
.1/) .2/) .3/) .5/ and .4/) .1/ are now trivial.
.3/ ) .4/. Let C D Im.An�1 ! An/. Then Ext1.F; C / Š ExtnC1.F;N / D 0

for all F 2 Mfp again by Corollary 8.2.6. Hence Hom.Rm; C / ! Hom.A; C / ! 0

is exact for every n � 1 and finitely generated A 
 Rm. Thus C 2 Abs.
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.5/) .3/. Let S be the cyclic submodule generated by one of the generators of a
finitely presented left R-module F . Then S and F=S are finitely presented since R is
left coherent. But both S and F=S have fewer generators than F , and so by induction
on the number of generators of F , ExtnC1.S;N / D ExtnC1.F=S;N / D 0. But then
ExtnC1.F;N / D 0.

Theorem 8.4.9. Let R be left coherent and n � 0. Then the following are equivalent:

(1) gl right Abs- dimRM � n.

(2) gl left Projfg- dimRMfp � n.

(3) ExtnCkR .M;N / D 0 for all M 2Mfp, N 2 RM, and all k � 1.

(4) ExtnC1R .M;N / D 0 for all M 2Mfp, N 2 RM.

(5) ExtnC1R .R=I;N / D 0 for all N 2 RM and all finitely generated left ideals I
of R.

(6) sup¹left Proj - dimR=I : I is a finitely generated left ideal of Rº � n.

Proof. This follows from the preceding two propositions.

Corollary 8.4.10.

gl left Abs- dimRM D gl left Projfg- dimRMfp

D sup¹left Proj - dimR=I W I is a finitely generated left ideal of Rº:
Let 0 ! N ! PEı.N / ! PE1.N / ! � � � denote the minimal right PInj-

resolution of anR-moduleN . Then we have the following result which easily follows
from Proposition 6.7.1.

Lemma 8.4.11. If F is a flat left R-module and R is right coherent, then PEk.F /
and Im.PEk�1.F /! PEk.F // are flat for each k � 0 where PE�1.F / D F .

Proof. We simply note that PEı.F / is flat by Proposition 6.7.1 and F � PEı.F / is
pure and so PEı.F /=F is flat. Hence PE1.F / is flat by Proposition 6.7.1 again and
thus we proceed inductively.

Now let ExtnR.M;N / denote the right derived functors of Hom.M;N / on F lat �
F lat obtained using a left Proj -resolution ofM or a right PInj-resolution of N (see
Example 8.3.4). Then we get the following result.

Theorem 8.4.12. The following are equivalent for a right coherent ring R and the
full subcategory RF lat :

(1) gl left Proj - dimRF lat � n.

(2) gl right PInj- dimRF lat � n.
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(3) ExtnC1R .M;N / D 0 for all M , N 2 RF lat.

(4) ExtnCkR .M;N / D 0 for all M , N 2 RF lat and k � 1.

Proof. .1/) .4/, .2/) .4/, and .4/) .3/ are trivial.
.3/ ) .1/. Let � � � ! P1 ! P0 ! M ! 0 be a left Proj -resolution of a flat

module M . Then K D Ker.Pn ! Pn�1/ is flat since the resolution is pure exact. So
as in the proof of Proposition 8.4.3, setting N D K yields (1).
.3/) .2/. We consider the minimal right PInj-resolution 0! N ! PEı.N /!

PE1.N / ! � � � . Then C D Im.PEn�1.N / ! PEn.N // is flat by Lemma 8.4.11
above. So (3) implies that C is a direct summand of PEn.N / and thus we are done.

Corollary 8.4.13. gl left Proj - dimRF lat D gl right PInj- dimRF lat.

We now use the fact that if R is left Noetherian, then Hom.�;�/ is left balanced
by Inj � Inj and left derived functors Extn.�;�/ can be computed using a right Inj-
resolution of M or a left Inj-resolution of N (see Example 8.3.5).

Proposition 8.4.14. Let R be left Noetherian and n � 2. Then the following are
equivalent for M 2 RM:

(1) right Inj- dimM � n.

(2) ExtR
nCk.M;N / D 0 for all N 2 RM and k � �1.

(3) ExtRn�1.M;N / D 0 for all N 2 RM.

Proof. .1/ ) .2/. Let 0 ! M ! E0 ! E1 ! � � � ! En ! 0 be a right Inj-
resolution of M . Then 0! Hom.En; N /! Hom.En�1; N /! Hom.En�2; N / is
exact and so

Extn�1.M;N / D Extn.M;N / D 0:
But clearly, ExtnCk.M;N / D 0 for all k � 1. Hence (2) follows.
.2/) .3/ is trivial.
.3/) .1/. Let 0 ! M ! E0 ! E1 ! � � � be a right Inj-resolution of M . Let

C D Im.En�2 ! En�1/. Then (3) implies Extn�1.M;En�1=C / D 0. But then
En�1=C ! En has a retract. Hence En�1=C 2 Inj and so 0 ! M ! E0 !
� � � ! En�1 ! En�1=C ! 0 is a right Inj-resolution of M .

Proposition 8.4.15. Let R be left Noetherian and n � 2. Then the following are
equivalent for N 2 RM:

(1) left Inj- dimN � n � 2.

(2) ExtR
nCk.M;N / D 0 for all M 2 RM and k � �1.

(3) ExtRn�1.M;N / D 0 for all M 2 RM.
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Proof. .1/) .2/) .3/ are trivial.
.3/ ) .1/. Let � � � ! G1 ! G0 ! N ! 0 be a left Inj-resolution and C D

Ker.Gn�1 ! Gn�2/. Then Extn�1.C;N / D 0. This implies C ,! Gn�1 can be
factored through Gn ! Gn�1. Hence C is a retract of Gn�1 and so is injective. But
then Gn�1=C ! Gn�2 is an injection with injective image D. An easy check gives
that

0! Gn�2=D ! Gn�3 ! � � � ! G0 ! N ! 0

is also a left Inj-resolution. So .3/) .1/.

Theorem 8.4.16. Let R be left Noetherian and n � 2. Then the following are equiv-
alent:

(1) gl right Inj- dimRM � n.

(2) gl left Inj- dimRM � n � 2.

(3) ExtRn�1.M;N / D 0 for all M , N 2 RM.

(4) ExtR
nCk.M;N / D 0 for all M , N 2 RM and all k � �1.

Proof. This follows from Propositions 8.4.14 and 8.4.15.

Corollary 8.4.17. gl left Inj- dimRM D gl right Inj- dimRM � 2 and is zero if
gl right Inj- dimRM � 1.

Remark 8.4.18. If n D 2 in Theorem 8.4.16, then every N has a left Inj-resolution
� � � ! 0 ! 0 ! E ! N ! 0. This means that any homomorphism G ! N

with G injective can be factored uniquely through E. In this case Inj is said to be a
coreflective subcategory of RM.

We now recall that a left R-module M is said to have flat dimension (flat dimM )
� n if there exists an exact sequence 0! Fn ! Fn�1 ! � � � ! F1 ! F0 !M !
0 with Fi flat. Then we define the global weak dimension of a full subcategory RC,
denoted gl w dimRC, by

gl w dimRC D sup¹flat dimM WM 2 Ob.RC/º:

We also recall from Example 8.3.8 that flat resolutions can be used to compute the
left derived functors Torn.M;N /. We thus have the following well-known result.

Proposition 8.4.19. The following are equivalent for a rightR-moduleM and n � 0:

(1) flat dimM � n.

(2) TorR
nCk.M;N / D 0 for all N 2 RM and k � 1.

(3) TorRnC1.M;N / D 0 for all N 2 RM.
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(4) TorRnC1.M;N / D 0 for all N 2 RMfp.

(5) Every nth F lat-syzygy of M is flat.

(6) TorRnC1.M;R=I / D 0 for all left ideals I of R.

Proof. .1/) .2/) .3/) .4/ are trivial.
.4/) .5/. LetK D Ker.Fn�1 ! Fn�2/. Then TorRnC1.M;N / Š TorR1 .K;N / D

0 for all N 2Mfp by part (1) of Corollary 8.2.4. Now let 0! L! F ! K ! 0 be
exact with F 2 F lat, then 0! L˝N ! F ˝N is exact for all N 2Mfp. So L is
a pure submodule of F and hence K is flat.
.3/) .6/, .5/) .1/ are trivial.
.6/ ) .5/. Let K D Ker.Fn�1 ! Fn�2/. Then TorRnC1.M;R=I / D 0 means

TorR1 .K;R=I / D 0 as in the above. So 0 ! K ˝ I ! K ˝ R ! K ˝ R=I ! 0

is exact for all left ideals I of R. But then 0 ! .K ˝ R=I/C ! .K ˝ R/C !
.K ˝ I /C ! 0 is exact and thus Hom.R;KC/! Hom.I;KC/! 0 is exact for all
left ideals I . Hence KC is an injective left R-module by Baer’s Criterion and so K is
a flat right R-module.

Theorem 8.4.20. The following are equivalent for any ring R and n � 0:

(1) gl w dim MR � n.

(2) TorRnC1.M;N / D 0 for all M 2MR, N 2 RM.

(3) gl w dimRM � n.

(4) TorRnC1.M;N / D 0 for all M 2MR, N 2 RMfp.

(5) TorRnC1.M;R=I / D 0 for all M 2MR and all left ideals I of R.

(6) gl w dimRMfp � n.

(7) sup¹flat dimR=I W I is a left ideal of Rº � n.

Proof. This follows from the preceding proposition.

Corollary 8.4.21.

gl w dim MR D gl w dimRM D gl w dimRMfp

D sup¹flat dimR=I W I is a left ideal of Rº:
Remark 8.4.22. If R is left coherent, then every finitely presented flat left R-module
is projective. Hence if M is a finitely presented left R-module and flat dimM � n,
then there is an exact sequence 0 ! K ! Fn�1 ! � � � ! F1 ! F0 ! M ! 0

with Fi finitely generated and free, and K flat (see Example 8.3.3). But K is finitely
presented and so K is projective. Thus left Projfg- dimM � flat dimM . But
flat dimM � left Projfg- dimM always. Hence left Projfg- dimM D flat dimM .
Consequently, the integers in Corollaries 8.4.10 and 8.4.21 are equal if R is left co-
herent.
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We will need the following easy result.

Lemma 8.4.23. If M1 ! M2 ! M3 ! M4 is an exact sequence of left R-modules
such that for every finitely presented right R-module P , P ˝M1 ! P ˝M2 !
P ˝M3 ! P ˝M4 is exact, thenK D Ker.M3 !M4/ is a pure submodule ofM3.

Proof. P ˝ M1 ! P ˝ M2 ! P ˝ M3 ! P ˝ M4 is exact and P ˝ K !
P ˝ M3 ! P ˝ M4 is a complex. Thus exactness of the first sequence means
0! P ˝K ! P ˝M3 is exact. This means K is a pure submodule of M3.

Let R be left coherent and Torn.�;�/ denote the right derived functors of � ˝ �
in Example 8.3.10. Then we have the following result.

Proposition 8.4.24. Let R be left coherent and n � 2. Then the following are equiv-
alent for N 2 RM:

(1) right Abs- dimN � n.

(2) TornCkR .M;N / D 0 for all M 2MR and all k � �1.

(3) TornR.M;N / D Torn�1R .M;N / D 0 for all M 2MR.

(4) TornR.M;N / D Torn�1R .M;N / D 0 for all M 2MR fp.

Proof. .1/) .2/. Let 0! N ! A0 ! � � � ! An ! 0 be a right Abs-resolution of
N . ThenM˝An�2 !M˝An�1 !M˝An ! 0 is exact and so Torn�1.M;N / D
Torn.M;N / D 0. But clearly TornCk.M;N / D 0 for k � 1. Hence (2) holds.
.2/) .3/) .4/ is trivial.
.4/) .1/. Let 0! N ! A0 ! A1 ! � � � be a right Abs-resolution of N . Then

for any M 2MRfp, M ˝ An�2 !M ˝ An�1 !M ˝ An !M ˝ AnC1 is exact.

So by Lemma 8.4.23, K D Ker.An ! AnC1/ is pure in An. But a pure submodule
of an absolutely pure module is absolutely pure and soK is absolutely pure. But then
0! N ! A0 ! � � � ! An�1 ! K ! 0 is a right Abs-resolution of N and so (1)
holds.

Proposition 8.4.25. Let R be left coherent and n � 2. Then the following are equiv-
alent for M 2MR:

(1) right F lat- dimM � n � 2.

(2) TornCkn .M;N / D 0 for all N 2 RM and all k � �1.

(3) TornR.M;N / D Torn�1R .M;N / for all N 2 RM.

Proof. .1/) .2/) .3/ is trivial.
.3/ ) .1/. If 0 ! M ! F 0 ! F 1 ! � � � is a right F lat-resolution of M , then

F n�2˝N ! F n�1˝N ! F n˝N ! F nC1˝N is exact for any N . By Lemma
8.4.23, K D Ker.F n ! F nC1/ is pure in F n and so is flat. But F n�2 ! F n�1 !
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K ! 0 is exact. Therefore, L D Ker.F n�2 ! F n�1/ is pure in F n�2 and so is also
flat. Thus 0 ! N ! F 0 ! � � � ! F n�3 ! L ! 0 is a right F lat-resolution of N
and so (1) holds.

Proposition 8.4.26. Let R be left coherent and n � 2. Then the following are equiv-
alent for M 2MRfp:

(1) right Projfg- dimM � n � 2.

(2) TornCkR .M;N / D 0 for all N 2 RM and k � �1.

(3) TornR.M;N / D Torn�1R .M;N / D 0 for all N 2 RM.

Proof. So .1/) .2/) .3/ is again trivial.
.3/ ) .1/. Let 0 ! M ! P 0 ! P 1 ! � � � be a right Projfg-resolution of M .

Then by Lemma 8.4.23, K D Ker.P n ! P nC1/ is pure in P n and so is flat. But
P n�2 ! P n�1 ! K ! 0 is exact by assumption since right Projfg-resolutions

are right F lat-resolutions. So if we set L D Ker.P n�2 ! P n�1/, then 0 ! L !
P n�2 ! P n�1 ! K ! 0 is exact and thus P n�2=L is flat. But P n�2=L ,!
P n�1 is a F lat-preenvelope (see Example 8.3.11). So Hom.P n�1; P n�2=L/ !
Hom.P n�2=L;P n�2=L/ ! 0 is exact and thus P n�2=L is a direct summand of
P n�1. Hence P n�2=L is projective. But then L is a summand of P n�2 and so
0 ! M ! P 0 ! P 1 ! � � � ! P n�3 ! L ! 0 is a right Projfg-resolution of
M .

Theorem 8.4.27. Let R be left coherent and n � 2. Then the following are equiva-
lent:

(1) gl right Abs- dimRM � n.

(2) gl right F lat- dim MR � n � 2.

(3) gl right Projfg- dim MR fg � n � 2.

(4) TornR.M;N / D Torn�1R .M;N / D 0 for all M 2MR fp; N 2 RM.

(5) TornR.M;N / D Torn�1R .M;N / D 0 for all M 2MR, N 2 RM.

(6) TornCkR .M;N / D 0 for all M 2MR, N 2 RM and for all k � �1.

Proof. The result follows from Propositions 8.4.24, 8.4.25 and 8.4.26 above.

Corollary 8.4.28.

gl right F lat- dim MR D gl right Projfg- dim MRfp

D gl right Abs- dimRM � 2
and are both zero if gl right Abs- dimRM � 1.
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Corollary 8.4.29. gl w dim M � 2 if and only if F lat is a reflective subcategory
of MR.

Proof. gl w dim M D gl right Abs- dimRM by Remark 8.4.22. So every object M
of MR has a right F lat-resolution 0 ! M ! F ! 0 by Corollary 8.4.28 above.
But then every homomorphism M ! F 0 with F 0 2 F lat can be factored uniquely
through F . That is, F lat is a reflective subcategory of MR. For the converse, we
simply reverse the steps above.

Example 8.4.30. If R D kŒx; y	, k a field, then the inclusion .x; y/ ! R is a rigid
flat envelope of .x; y/, that is, every homomorphism M ! F with F flat can be
factored uniquely through R.

We now characterize left coherent rings with finite self absolutely pure dimension.

Theorem 8.4.31. If R is left coherent and n � 0, then the following are equivalent:

(1) For every flat left R-module F , there is an exact sequence 0 ! F ! A0 !
� � � ! An ! 0 with each Ai 2 Abs.

(2) If 0 ! M ! F 0 ! F 1 ! � � � is a right F lat-resolution of MR, then the
sequence is exact at F k for k � n � 1 where F�1 DM .

(3) If 0 ! M ! P 0 ! P 1 ! � � � is a right Projfg-resolution of a finitely

presented right R-module M , then the sequence is exact at P k for k � n � 1
where P�1 DM .

(4) For every absolutely pure right R-module A, there is an exact sequence 0 !
Fn ! Fn�1 ! � � � ! F1 ! F0 ! A! 0 with each Fi 2 F lat.

(5) There is an exact sequence 0! R ! A0 ! � � � ! An ! 0 of left R-modules
with each Ai absolutely pure.

Proof. .1/) .5/ is immediate.
.5/ ) .2/. We recall that � ˝ � is right balanced on MR �MR by F lat �Abs

with right derived functors Tork.�;�/ (see Example 8.3.9).
If n � 2, using the exact sequence 0 ! R ! A0 ! � � � ! An ! 0, we get

Tork.M;R/ D 0 for k � n � 1. Computing using 0 ! M ! F 0 ! F 1 ! � � � as
in (2), we see that Tork.M;R/ is just the kth homology group of this complex, giving
the desired result.

For n D 1, 0 ! R ! A0 ! A1 ! 0 exact gives Tor1.M;R/ D 0 so that, as
above, F 0 ! F 1 ! F 2 is exact and M ˝R! Tor0.M;R/ is onto. Computing the
latter morphism using 0 ! M ! F 0 ! F 1 shows that 0 ! M ! F 0 ! F 1 is
exact.

If n D 0 then (4) means R is absolutely pure as a left R-module. But the balance
of � ˝ � then gives 0 ! M ˝ R ! F 0 ˝ R ! F 1 ˝ R ! � � � is exact. That is,
0!M ! F 0 ! F 1 ! � � � is exact.
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.2/) .3/ is trivial. We remark that (3) for n D 0 is equivalent to the requirement
that every finitely presented right R-module is a submodule of a free R-module.
.3/ ) .1/. Assume (3) with n � 2. Let 0 ! F ! A0 ! A1 ! � � � be exact

with F flat and each Ai absolutely pure. Then by (3), we get Tork.M;F / D 0 for
k � n � 1 since F is flat. Computing using 0 ! A0 ! A1 ! A2 ! � � � and
using Lemma 8.4.23, we get K D Ker.An ! AnC1/ is pure in An and so K is also
absolutely pure. Hence 0 ! F ! A0 ! � � � ! An�1 ! K ! 0 gives the desired
exact sequence.

Now let n D 1. Then (3) says M ! P 0 ! P 1 ! � � � is exact. So Tork.M;F / D
0 for k D 0 andM˝F ! Tor0.M;F / is onto. Hence if 0! F ! A0 ! A1 ! � � �
is exact,M˝F !M˝A0 !M˝A1 !M˝A2 is exact for all finitely presented
M . By Lemma 8.4.23, we again get the desired exact sequence 0 ! F ! A0 !
K ! 0 with K D Ker.A1 ! A2/.

If n D 0 then 0 ! M ! P 0 ! P 1 ! � � � exact means Tork.M;F / D 0 for
k > 0 andM˝F ! Tor0.M;F / is an isomorphism. This gives that 0!M˝F !
M ˝ A0 ! M ˝ A1 is exact for all M which implies F is a pure submodule of A0

and so is absolutely pure.
The proofs of .3/ ) .4/ and .4/ ) .3/ are similar but use the derived func-

tors Extn.M;A/ of Example 8.3.11 and the natural homomorphism Hom.M;A/ !
Ext0.M;A/.

Corollary 8.4.32. If R is left coherent, then

gl right Abs- dimRF lat D gl w dim AbsR D right Abs- dimRR:

If n D 0, we get the following.

Corollary 8.4.33. If R is left coherent, then the following are equivalent:

(1) Every flat left R-module is absolutely pure.

(2) Every R-module is a submodule of a flat R-module.

(3) Every finitely presented right R-module is a submodule of a free module.

(4) Every absolutely pure right R-module is flat.

(5) R is absolutely pure as a left R-module.

Lemma 8.4.34. Let R be left Noetherian and G be a left R-module. Then

right Inj- dimG � n

if and only if for any left Inj-resolution � � � ! E1 ! E0 ! M ! 0 of each
M 2 RM, Hom.G;En/ ! Hom.G;Ker.En�1 ! En�2// ! 0 is exact where
E�1 DM .
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Proof. We proceed by induction on n. For n � 1, we consider a short exact sequence
0! G ! E ! G0 ! 0 with E injective. Then we have the following commutative
diagrams

Hom.E;En/ ��

��

Hom.E;Kn/

��

�� 0

Hom.G;En/ ��

��

Hom.G;Kn/

0

and

0

��

0

��

0

��
0 �� Hom.G0; Kn/

��

�� Hom.G0; En�1/ ��

��

Hom.G0; Kn�1/

��
0 �� Hom.E;Kn/ ��

��

Hom.E;En�1/ ��

��

Hom.E;Kn�1/ ��

��

0

0 �� Hom.G;Kn/ �� Hom.G;En�1/ ��

��

Hom.G;Kn�1/

0

Hence right Inj- dimG � n if and only if right Inj- dimG0 � n � 1 if and only
if Hom.G0; En�1/ ! Hom.G0; Kn�1/ is surjective by induction if and only if
Hom.E;Kn/ ! Hom.G;Kn/ is surjective by the second diagram if and only if
Hom.G;En/! Hom.G;Kn/ is surjective by the first diagram.

For n D 0, let K0 D G in the first diagram. Then Hom.G;E0/ ! Hom.G;G/ is
surjective means Hom.E;G/ ! Hom.G;G/ is surjective. Thus 0 ! G ! E splits
and hence G is injective. The converse is trivial.

Remark 8.4.35. There is a dual result to Lemma 8.4.34 involving flat dimensions and
right Projfg-resolutions of finitely presented modules over coherent rings.

Theorem 8.4.36. IfR is left Noetherian and n � 0, then the following are equivalent:

(1) gl right Inj- dimRF lat � n.

(2) If 0! M ! F 0 ! F 1 ! � � � is a right F lat-resolution of a right R-module
M , then the sequence is exact at F k for k � n � 1 where F�1 DM .
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(3) If 0!M ! P 0 ! P 1 ! � � � is a right Projfg-resolution of M 2MR fp, then

the sequence is exact at P k for k � n � 1 where P�1 DM .

(4) gl w dim InjR � n.

(5) If � � � ! E1 ! E0 ! M ! 0 is a left Inj-resolution of a left R-module M ,
then the sequence is exact at Ek for k � n � 1 where E�1 DM .

(6) right Inj- dimRR � n.

(7) If � � � ! P1 ! P0 ! M ! 0 is a left Proj -resolution of a left R-module M ,
then the subcomplex � � � ! PnC1 ! Pn is Hom.�;F lat/ exact.

Proof. The equivalence of (1), (2), (3), (4) and (6) follows from Theorem 8.4.31 since
absolutely pure means injective in this case.
.5/ ) .6/. En ! En�1 ! En�2 is exact at En�1 by assumption. Thus En !

Ker.En�1 ! En�2/ is surjective. But then right Inj- dimRR � n by Lemma 8.4.34
above.
.6/ ) .5/. Suppose n � 2 and let 0 ! R ! E0 ! E1 ! � � � ! En ! 0 be

a right Inj-resolution of R. Then Extk.R;M/ D 0 for k � n � 1. Now computing
Extk.R;M/ using a left Inj-resolution � � � ! E1 ! E0 ! M ! 0, we see that the
sequence is exact at Ek , k � n � 1.

If n D 1 and 0 ! R ! E0 ! E1 ! 0 is a right Inj-resolution of R, then 0 !
Hom.E1;M/! Hom.E0;M/! Hom.R;M/ is exact. Thus Extk.R;M/ D 0 for
k � 1 and Ext0.R;M/!M is a monomorphism. But computing Ext0.R;M/ using
a left Inj-resolution, we see that E1 ! E0 ! M is exact at E0. So � � � ! E1 !
E0 !M ! 0 is exact at Ek , k � 0.

Now let n D 0. Then RR is injective and so every injective precover is surjective
and thus � � � ! E1 ! E0 !M ! 0 is exact.
.1/ , .7/ We simply note that gl right Inj- dimRF lat � n if and only if for

each left R-module M , ExtiR.M;F / D 0 for all F 2 RF lat and all i � n C 1.
But the latter means that 0 ! Hom.Ker.Pn�1 ! Pn�2/; F / ! Hom.Pn; F / !
Hom.PnC1; F /! � � � is exact for all F 2 RF lat and so the result follows.

Corollary 8.4.37. The following are equivalent for a left Noetherian ring R:

(1) R is an injective left R-module.

(2) Every injective precover of a left R-module is surjective.

(3) Every left R-module is a quotient of an injective module.

(4) Every flat left R-module is injective.

(5) Every projective left R-module is injective.

(6) Every F lat-preenvelope of a right R-module is a monomorphism.

(7) Every Projfg-preenvelope of a finitely generated right R-module is a mono mor-
phism.



200 Chapter 8 Relative Homological Algebra and Balance

(8) Every finitely generated right R-module is a submodule of a free R-module.

(9) Every injective right R-module is flat.

Proof. .1/ , .4/ , .6/ , .7/ , .9/ follows from Corollary 8.4.33 or Theorem
8.4.36 above.
.1/, .2/ follows Theorem 8.4.36.
.2/, .3/, .4/) .5/) .1/ and .7/, .8/ are trivial.

Exercises

1. Prove Proposition 8.4.7.

2. Let R be a commutative Noetherian ring and M be an R-module. Prove that
right Inj- dimM � n if and only if ExtnC1.R=p;M/ D 0 for all p 2 SpecR.

Hint: Use Lemma 2.4.7.

3. Prove that if R is left Noetherian then

gl right Inj- dimRM D gl left Projfg- dimRMfg D gl w dimRM:

4. Prove that if R is left Noetherian then

gl left Inj- dimRM D gl right F lat- dim MR

D gl right Projfg- dim MR fg

D gl right Inj- dimRM � 2
and zero if gl right Inj- dimRM � 1.

5. State and prove results for Example 8.3.6 corresponding to Theorem 8.4.16 and
Corollary 8.4.17.

6. Prove the equivalence of parts (3) and (4) of Theorem 8.4.31.

7. A ring R is said to be left hereditary if every left ideal of R is projective (and
hence hereditary domain means Dedekind domain). Show that the following are
equivalent.

(a) R is left hereditary.

(b) Every submodule of a projective R-module is projective.

(c) Every homomorphic image of an injective R-module is injective.

(d) gl right Inj- dimRM � 1.

(e) ExtnR.M;N / D 0 for all R-modules M , N and all n � 2.

8. Prove that the following are equivalent for a left Noetherian ring R.

(a) R is left hereditary.
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(b) Every kernel of an Inj-precover is injective.

(c) Every Inj-cover of an R-module is a monomorphism.

(d) Every cokernel of a Proj -preenvelope obtained from a F lat-preenvelope of
a finitely presented right R-module is projective.

(e) Every finitely presented right R-module has a surjective Proj -preenvelope.

9. Let R be a commutative Noetherian ring and E be an injective R-module. Prove
that for each n � 0, left F lat- dim Hom.E;M/ � n for all R-modules M if and
only if right Inj- dimM ˝E � n for all R-modules M .

10. Prove that gl left Proj - dimRM D 0 if and only if R is semisimple.

11. A ring R is said to be von Neumann regular if every right R-module is flat. Show
that the following are equivalent.

(a) R is von Neumann regular.

(b) gl w dimRM D 0.

(c) R=I is projective for each finitely generated right ideal I .

12. State and prove the result mentioned in Remark 8.4.35.

8.5 Minimal Pure Injective Resolutions of Flat Modules

Throughout this section, R will denote a commutative Noetherian ring.
If 0 ! F ! PE0.F / ! PE1.F / ! � � � is a minimal right PInj-resolution

of a flat R-module F , then for each n � 0, PEn.F / is a flat cotorsion module by
Lemmas 5.3.23 and 8.4.11. So PE0.F / ŠQ

p2SpecR Tp where Tp is the completion
of a free Rp-module by Theorem 5.3.28.

We start with the following result.

Theorem 8.5.1 (Change of Rings Theorem). Let F be a flat R-module. If � W R !
R0 is a ring homomorphism such that R0 is a finitely generated R-module, then 0 !
F ˝R0 ! PE0.F /˝R0 ! PE1.F /˝R0 ! � � � is a minimal right PInj-resolution
of the R0-module F ˝R0.
Proof. The sequence is easily pure exact. We now show that PEn.F /˝R0 is a pure
injective flat R0-module. Clearly it is flat since PEn.F / is. But PEn.F / Š Q

Tp,
over p 2 SpecR. ThusPEn.F /˝R0 Š .QTp/˝R0. But .

Q

Tp/˝R0 ŠQ

.Tp˝R0/
since R0 is finitely generated. Therefore, to show that PEn.F /˝R0 is pure injective,
it suffices to show that each Tp ˝ R0 is pure injective. By Proposition 6.7.11 this
reduces to showing that ORp ˝ R0 is pure injective. But ORp ˝ R0 Š OR0q1

˚ � � � ˚ OR0qs

where q1; : : : ;qs are the distinct primes lying over p, and is 0 if there is no such
prime.
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For minimality, it suffices to show that for any flat R-module F , F ˝ R0 !
PE.F / ˝ R0 is a pure injective envelope of F . But this will follow once we show
that F ˝ R0 ! PE.F /˝ R0 satisfies conditions (a) and (b) in Theorem 6.7.17. For
any p 2 SpecR, F ˝ k.p/ ! PE.F / ˝ k.p/ is an injection and in fact splits. So
F ˝k.p/˝R0 ! PE.F /˝k.p/˝R0 also splits. But k.p/˝R0 is the direct sum of a
finite number of local rings of dimension 0. If we go modulo the radical of k.p/˝R0,
we still get an injection, and in fact, we get a map F ˝R0˝ .k.q1/˚� � �˚k.qs//!
PE.F /˝R0˝ .k.q1/˚ � � � ˚ k.qs// where q1; : : : ;qs are prime ideals of R0 lying
over p (possibly s D 0). Thus F˝R0 ! PE.F /˝R0 satisfies (a) of Theorem 6.7.17.
The argument that (b) is satisfied is similar.

Corollary 8.5.2. right PInj- dimR0R0 � right PInj- dimRR.

Remark 8.5.3. If R � R0, then for any flat R-module F , F ˝R0 D 0 implies F D 0
and so we get equality in the corollary. Hence in this case, R is self pure injective
if and only if R0 is. It is easy to see that for any ring R, R is self pure injective if
and only if Ext1R.F;R/ D 0 for all flat R-modules F . But the latter is equivalent to
R being a direct product of a finite number of complete local rings (see Jensen [125,
Theorem 8.1]). So if we drop the Noetherian condition on R, we get the following.

Corollary 8.5.4. Let R be a subring of a ring R0 which is finitely generated over R.
Then R is a direct product of a finite number of complete local rings if and only if R0
is.

Proof. The result follows from the remark above noting that R is Noetherian if and
only if R0 is by Theorem 3.1.18.

Definition 8.5.5. For a flatR-module F , a prime ideal p ofR, and n � 0, �n.p; F / is
the cardinality of a base of a free Rp-module whose completion is the Tp in PEn.F /.

Remark 8.5.6. The Change of Rings Theorem (Theorem 8.5.1) above says that if
R! R0 is a ring homomorphism such that R0 is a finitely generated R-module, then
for any flat R-module F , PEn.F /˝R0 Š PEn.F ˝R0/ for all n � 0. This implies
that if p0 � R0 is a prime ideal lying over p � R, then �n.p0; R0/ D �n.p; R/. Hence
p appears in PEn.R/ if and only if p0 appears in PEn.R0/. We note that p appears
in PEn.R/ if and only if ORp is a summand of PEn.R/.

Theorem 8.5.7. If F is a flat R-module, n � 0, and a prime ideal p of R is maximal
such that �n.p; F / ¤ 0, then �nC1.q; F / D 0 for all primes q � p.

Proof. We give the argument for n D 0 as it is easy to see how to modify the argument
for any n > 0. Let p be maximal such that �0.p; F / ¤ 0. Let PE.F / D PE0.F / D
Q

Tq. Then Tp Š OFp by Theorem 6.7.9. By assumption, Tq D 0 if q © p. If p 6� q,
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let S � k.p/ be finitely generated and choose r 2 p, r … q. Then multiplication by
r is zero on S and is an automorphism on Tq. So Tq ˝ S D 0. Hence .

Q

p6�q Tq/˝
S D 0 and so .

Q

p 6�q Tq/ ˝ k.p/ D 0. Thus PE.F / ˝ k.p/ Š .
Q

Tq/ ˝ k.p/ Š
Tp ˝ k.p/ Š OFp ˝ k.p/. This means that PE.F /˝ k.p/ Š F ˝ k.p/.

Now let 0! F ! PE.F /! C ! 0 be exact. Then C ˝k.p/ D 0 by the above.
If q © p, a similar argument as above gives PE.F /˝k.q/ D 0 and so C˝k.q/ D 0.
But C ˝ k.q/ D 0 implies OCq D 0. Hence Tq D 0 by Theorem 6.7.9.

As a consequence, we have the following result.

Proposition 8.5.8. LetF be a flatR-module. If a prime ideal p appears inPEnC1.F /,
then there is a prime ideal q © p which appears in PEn.F /.

Proof. If p appears in PEn.F /, then there is a prime ideal q © p which appears in
PEn.F / by Theorem 8.5.7 above.

Hence suppose no prime ideal q � p appears in PEn.F / D Q

Tq. If Tq ¤ 0 and

q 6� p, then Tq ˝ R=p D 0 for if r 2 p, r … q, then Tq
r! Tq is an isomorphism

and R=p
r! R=p is zero. So PEn.F / ˝ R=p D 0. But by the change of rings

theorem above, 0 ! F ˝ R=p ! PE0.F /˝ R=p ! � � � is a minimal right PInj-
resolution of F ˝ R=p over R=p. So by minimality, if PEn.F / ˝ R=p D 0 then
PEnC1.F /˝R=p D 0. But the latter is not possible if p appears in PEnC1.F /.

Definition 8.5.9. The coheight (coht) of a prime ideal p is the supremum of the
lengths of strictly increasing chains p D p0 � p1 � � � � � ps of prime ideals. It
follows from the definitions that coht p D dimR=p and ht p C coht p � dimR (see
Definition 2.4.13).

Corollary 8.5.10. If �n.p; F / ¤ 0, then coht p � n.

Proof. �n.p; F / ¤ 0 implies that there is a prime ideal q1 © p such that �n�1.q1; F /
¤ 0 by Proposition 8.5.8. One then repeats this argument to get a chain p ¨ q1 ¨
q2 ¨ � � � ¨ qn of prime ideals.

Remark 8.5.11. If dimR D n < 1, then �n.p; F / ¤ 0 implies that p is a minimal
prime ideal of R by the Corollary above since in this case coht p D dimR D n and
so ht p D 0.

Corollary 8.5.12. If dimR <1, then gl right PInj- dim F lat � dimR.

Proof. Suppose n > dimR. Then coht p � dimR < n for each p 2 SpecR. So
if F 2 F lat, then �n.p; F / D 0 for all p 2 SpecR by Corollary 8.5.10. Thus
PEn.F / D 0. Hence right PInj- dimF � dimR.
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Proposition 8.5.13. Let d D gl left Proj - dim F lat. If d <1, then

d D sup¹left Proj - dimRp W p 2 SpecRº:
Proof. Let G 2 F lat. Then Extd .G; F / ¤ 0 for some flat R-module F by The-
orem 8.4.12 and so PEd .F / ¤ 0. But PEd .F / D Q

Tp. Now let p be the
minimal such that Tp ¤ 0. Then ORp is a direct summand of Tp and so the corre-
sponding injection in Hom. ORp; PE

d .F // gives a nonzero element of Extd . ORp; F /.
Let the map ORp ! PEd .F / be restricted to Rp. We claim this gives a nonzero
element of Extd .Rp; F /. For if Extd .Rp; F / D 0, then the map Rp ! PEd .F /

has a factorization Rp ! PEd�1.F / ! PEd .F /. Now extend the map Rp !
PEd�1.F / to ORp. But by the minimality of p, this extension is unique by Propo-
sition 6.7.8 and Remark 6.7.5 and so Extd . ORp; F / D 0, a contradiction. Hence
Extd .Rp; F / ¤ 0. But left Proj - dimRp � d since Rp is a flat R-module. Hence
sup¹left Proj - dimRpº D d .

Corollary 8.5.14. If p is minimal such that d D left Proj - dimRp, then coht p � d .

Proof. If p is minimal such that Extd .Rp; F / ¤ 0 for some flat R-module F , then
�d .p; F / ¤ 0 by the proof of Proposition 8.5.13. But then coht p � d by Corol-
lary 8.5.10.

Corollary 8.5.15. Suppose R is a domain and K is its field of fractions. If

left Proj - dimK < dimR <1;
then gl left Proj - dim F lat < dimR.

Proof. As noted in Remark 8.5.11, if n D dimR and F is flat, then �n.p; F / ¤ 0

implies p is minimal. Thus p D 0. But then left Proj - dimK � coht 0 by Corol-
lary 8.5.14 and so we are done.

By Proposition 6.7.3, PE.R/ ŠQ ORm over all maximal ideals m of R. So

�0.p; R/ D
´

1 if p D m

0 if p ¤ m:

Therefore, �1.m; R/ D 0 by Theorem 8.5.7 above. So if �1.p; R/ ¤ 0, then p ¤ m

and coht p � 1 by Corollary 8.5.10.
The following proposition characterizes which prime ideals of height 1 do not ap-

pear in PE1.R/.

Proposition 8.5.16. If p is a prime ideal of R of coheight 1, then �1.p; R/ D 0 if and
only if p is contained in a unique maximal ideal m of R such that ORm˝k.p/ Š k.p/.
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Proof. Let 0 ! R ! PE0.R/ ! C ! 0 be exact so that PE0.C / D PE1.R/.
Then �1.m; R/ D 0 for all maximal ideals m by the above. So if PE0.C / D Q

Tq,
then Tm D 0 for each m. Hence Tp Š OCp for any prime p of coheight 1 by Theo-
rem 6.7.9. But OCp D 0 if and only if C ˝ k.p/ D 0. So �1.p; R/ D 0 if and only
if C ˝ k.p/ D 0. But 0 ! R ˝ k.p/ ! .

Q ORm/ ˝ k.p/ ! C ˝ k.p/ ! 0 is
exact. So dimk.p/.

Q ORm/˝ k.p/ D 1. Thus ORm˝ k.p/ has dimension 1 for exactly
one maximal ideal m and so p � m for this m. For any other maximal ideal m,
ORm ˝ k.p/ D 0 and so p 6� m. This completes the proof.

Lemma 8.5.17. Let I be a nilpotent ideal of R and M be an R-module. If F is a
flat R-module and ' W N ! F is such that the induced map M=IM ! F=IF is an
isomorphism, then ' is an isomorphism.

Proof. Nakayama Lemma implies ' is surjective. So Ker' is a pure submodule of
M since F is flat. But Ker' � IM and so I Ker' D Ker' \ IM D Ker'. Hence
Ker' D 0.

Remark 8.5.18. Let I be an ideal of R. If I � p for a prime ideal p of R, then the
identification ORp=I ORp Š .bR=I/p=I and Proposition 6.7.11 show that Tp˝R=I is the
completion of a free .R=I /p=I -module. The identification Tp˝ k.p/ Š .Tp=ITp/˝
k.p=I / shows that the free .R=I /p=I -module in question has a base having the same
cardinality as that of the base of the free module whose completion is Tp. That is, if
F is a flatR-module and I � p, then �n.p=I; F ˝R=I/ D �n.p; F / for each n � 0.

We also note that if I 6� p, then Tp˝R=I D 0. But if I � p, then ORp is complete
in the I -adic topology. So a pure injective flat module F DQ

Tp will be complete if
Tp D 0 whenever I 6� p.

These remarks give the following result.

Proposition 8.5.19. If for each n � 1, Fn is a pure injective flat R=In-module and
FnC1 ! Fn are surjective maps with kernels InFnC1, then lim �Fn is a pure injective
flat R-module.

Proof. Let F1 D Q

Tp=I (over primes ideals p of R such that I � p) where each
Tp=I is the completion of a free .R=I /p=I -module. From the remark above, we can
construct a pure injective flat R-module F D Q

Tp (for p � I ) and an onto map
F ! F1, with kernel IF . We now consider

F=I 2F

�����
�
�
�
�

F2 �� F1

and we apply Lemma 6.7.13 to get a map F ! F2 which can be used to make
the diagram above commutative. By Lemma 8.5.17, F=InF ! F2 is an isomor-
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phism. We repeat the argument and get a map F ! lim �Fn inducing an isomorphism
F=InF ! Fn for each n. But then, F is complete with respect to the I -adic topol-
ogy. Hence F Š lim �F=I

nF and so F Š lim �F=I
nF D lim �Fn.

Remark 8.5.20. Note that ifF D lim �Fn in the above is written as
Q

Tp, then Tp D 0
if I 6� p. Moreover, if for any n, Fn D Q

Sp=In where each Sp=In is the completion
of a free .R=In/p=In-module, then Tp˝R=In Š Sp=In . Hence the bases of the free
modules whose completions are Tp and Sp=In have the same cardinality.

Theorem 8.5.21. Let I � R be an ideal such that R=I has finite Krull dimension.
If R is complete with respect to the I -adic topology, then for any prime p of R and
n � 0, �n.p; R/ ¤ 0 implies I � p (and so �n.p; R/ D �n.p=I;R=I //.
Proof. We consider the ringsR=In for n�1 and their minimal right PInj-resolutions
over themselves. By the Change of rings theorem 8.5.1, we can identify the se-
quence 0! R=InC1˝R=In ! PEı.R=InC1/˝R=In ! � � � with the sequence
0! R=In ! PEı.R=In/! � � � . Thus we have surjective mapsPEi .R=InC1/!
PEi .R=In/ with kernels InPEi .R=InC1/ making the obvious diagram commuta-
tive.

We wish to show that the sequence 0 ! lim �R=I
n.D R/ ! lim �PE

ı.R=In/ !
� � � is a minimal right PInj-resolution ofR. We first consider the short exact sequence
0 ! R=In ! PEı.R=In/ ! Cn ! 0. Since R=InC1 ! R=In is surjective
for each n, the sequence 0 ! R ! lim �PE

ı.R=In/ ! lim �Cn ! 0 is exact by
Theorem 1.6.13. But CnC1 ! Cn is also surjective for each n � 1. Hence we repeat
the argument to get that the sequence is exact. Furthermore, each lim �PE

i .R=In/ is
flat and pure injective by Proposition 8.5.19.

But if the Krull dimension is finite, say d , then �i .p=In; R=In/ D 0 for all n
and all i > d by Corollary 8.5.12. So the sequence 0 ! R ! lim �PE

ı.R=In/ !
� � � ! lim �PE

d .R=In/! 0 is exact. Hence it is pure exact since all the modules in
the sequence are flat. Finally note that each module in the sequence satisfies (a) and
(b) of Theorem 6.7.17. (a) follows from pure exactness, and for I � p, (b) follows
from k.p/ Š k.p=I / and the fact that the resolution of R=I is minimal. If I 6� p,
then Tp D 0 and so there is nothing to prove. So each module lim �PE

i .R=In/ is
a pure injective envelope by Theorem 6.7.17. Hence the sequence is minimal. This
completes the proof.

Corollary 8.5.22. right PInj- dimR=IR=I D right PInj- dimRR.

Proof. Suppose right PInj- dimRR D n, then �n.p; R/ ¤ 0. So I � p and
�n.p=I;R=I / ¤ 0 by the theorem above. Hence

right PInj- dimRR � right PInj- dimR=IR=I:

Thus the result follows from Corollary 8.5.2.
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Corollary 8.5.23. If R is complete with respect to the I -adic topology and p � R

is a prime ideal such that coht p D 1 and I 6� p, then p is contained in a unique
maximal ideal m and ORm ˝ k.p/ Š k.p/.
Proof. Since I 6� p, �1.p; R/ D 0 by the theorem. Then the result follows from
Proposition 8.5.16.

Remark 8.5.24. The first part of the conclusion of Corollary 8.5.23 holds without
assuming that R=I has finite Krull dimension. For I is contained in the radical of
R and so R is a Zariski ring with the I -adic topology. Thus p is a closed ideal and
D D R=p is a one-dimensional Noetherian domain which is complete in the NI -adic
topology where NI is the image of I . So NI is in the radical ofD. HenceD is semilocal
and complete in the topology determined by its Jacobson radical. But then D is the
product of local rings by Theorem 2.5.20. So D is local since D is a domain. Thus p

is contained in a unique maximal ideal.

Lemma 8.5.25. If F is a flat cotorsion R-module, then for each p 2 SpecR,

k.p/˝ Hom. ORp; F / Š k.p/˝ Hom.Rp; F / Š k.p/˝ Tp:

Proof. By Theorem 5.3.28, F ŠQ

Tq over q 2 SpecR. So

Hom. ORp; F / Š
Y

Hom. ORp; Tq/:

But Tq Š Hom.E.k.q//, E.k.q//.X// for some set X . So

Hom. ORp; F / Š
Y

Hom. ORp ˝E.k.q//; E.k.q//.X//:
But ORp ˝ E.k.q// Š E.k.q//.Xq/ for some set Xq by Lemma 6.7.7. So

Hom. ORp;
Q

Tq/ Š Q

T
Xq
q . But then Hom. ORp; F / Š Q

q
p T
Xq
q by Proposition

6.7.8. Now let S � k.p/ be finitely generated. Then S˝Q

q
p T
Xq
q ŠQ

.S˝Tq/
Xq .

But if q ¨ p, let r 2 p, r … q. Then multiplication by r is zero on S and is an au-

tomorphism on Tq. Hence S ˝ Tq D 0 and S ˝ Q

q
p T
Xq
q Š S ˝ TXp

p . Thus

k.p/ ˝Q

q
p T
Xq
q Š k.p/ ˝ TXp

p . But if q D p, then ORp ˝ E.k.p// Š E.k.p//

and so CardXp D 1. Thus half of the result follows.
If q ¨ p, then Rp ˝ E.k.q// D 0 as in the proof of Lemma 6.7.7. If q 
 p, then

Rp˝E.k.q// Š E.k.q//. So k.p/˝Hom.Rp; F / Š k.p/˝Q

q
p Tq Š k.p/˝Tp

as in the above.

Proposition 8.5.26. The complexes obtained from the minimal right PInj-resolution
of a flat R-module by applying the functors

k.p/˝ Hom. ORp;�/ and k.p/˝ Hom.Rp;�/
are the same and have zero differentiation.
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Proof. Let F be a flat R-module. Then PEn.F / Š Q

T nq , over q 2 SpecR, where
T nq denotes the Tq at the nth place in the minimal right PInj-resolution of F . If we
apply either of the functors to the resolution, we get the complex 0! k.p/˝ T 0p !
k.p/˝ T 1p ! � � � by Lemma 8.5.25.

As in the lemma, Hom.Rp; F / Š Q

q
p T
n
q . So applying Hom.Rp;�/ to the

minimal right PInj-resolution, we get a map
Q

q
p T
n
q !

QnC1
q
p. But by Proposi-

tion 6.7.8, Hom.
Q

q¨p T
n
q ; T

nC1
p / D 0. So passing to quotients, that is

Q

q
p T
n
q =

Q

q¨p T
n
q Š T np , we get a map T np ! T nC1p . Thus we have a commutative diagram

T np
��

��

T nC1p

��

k.p/˝ T np �� k.p/˝ T nC1p

with the bottom map the map of our complex.
If this map is not zero, let x 2 T np have a nonzero image in k.p/ ˝ T nC1p . Then

x ORp will be a direct summand of T np which is mapped isomorphically onto a direct

summand of T nC1p . So x ORp �Q

q
p T
n
q will be mapped isomorphically onto a direct

summand of
Q

q
p T
nC1
q by Proposition 6.7.8. This contradicts the minimality of the

right PInj-resolution.

We are now in a position to prove the following result.

Theorem 8.5.27. The following are equivalent for an integer n � 0:

(1) gl right PInj- dim F lat � n.

(2) gl left Proj - dim F lat � n.

(3) left Proj - dim ORp � n for all p 2 SpecR and gl right PInj- dim F lat <1.

(4) The subcomplex Hom. ORp; PE
n.F // ! Hom. ORp; PE

nC1.F // ! � � � is pure
exact for all p 2 SpecR and all F 2 F lat.

(5) left Proj - dimRp � n for all p 2 SpecR and gl left Proj - dim F lat <1.

(6) The subcomplex Hom.Rp; PE
n.F // ! Hom.Rp; PE

nC1.F // ! � � � is pure
exact for all p 2 SpecR and all F 2 F lat.

Proof. .1/, .2/ is part of Theorem 8.4.12.
.2/) .3/. ORp is flat and .2/) .1/. So (3) follows trivially.
.3/ ) .4/. Let right PInj- dimF D m. If m � n, then (4) follows trivially. If

m > n, then

Hom. ORp; PE
n.F //! Hom. ORp; PE

nC1.F //! � � � �
m�1

! Hom. ORp; PE
m.F //! 0
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is exact since left Proj - dim ORp � n recalling that Hom.�;�/ is right balanced on
F lat � F lat by Proj �PInj (see Example 8.3.4). But

Hom. ORp; PE
m�1.F //=Ker �m�1 Š Hom. ORp; PE

m.F //

is flat, being a product of Tq’s (see proof of Lemma 8.5.25). Hence Ker �m�1 is a
pure submodule and so is flat since Hom. ORp; PE

m�1.F // is likewise flat. We now
proceed in this fashion to get the result.
.4/ ) .1/. We apply k.p/ ˝ � to the pure exact subcomplex in (4). Then by

Proposition 8.5.26 above, we get an exact complex k.p/˝T np ! k.p/˝T nC1p ! � � �
with zero differentiation. Thus k.p/˝T ip D 0 for i > n and hence T ip D 0 for i > n.
This is true for each p 2 SpecR and thus PEi .F / D 0 for i > n.
.2/) .5/. Same proof as .2/) .3/ since Rp is flat.
.5/) .6/. Same proof as .3/) .4/ since Hom.Rp; PE

i .F // is also flat.
.6/) .1/ A similar proof to .4/) .1/.

Corollary 8.5.28. If R has finite Krull dimension, then the following integers are
equal:

(1) gl right PInj- dim F lat.

(2) gl left Proj - dim F lat.

(3) sup¹left Proj - dimRp W p 2 SpecRº.
(4) sup¹left Proj - dim ORp W p 2 SpecRº.
Furthermore, this common integer is at most dimR.

Proof. The result follows from Theorem 8.5.27 above and Corollary 8.5.12. It also
follows directly from Corollary 8.4.13, Corollary 8.5.12, and Proposition 8.5.13 and
its proof.

Remark 8.5.29. left Proj - dimRp D i with T ip D 0 for all flat modules can occur.
For example, when R D Z and p 2 Z is prime, left Proj - dim Z.p/ D 1 but T 1p D 0
for all torsion free groups G.

We now characterize perfect rings by letting n D 0 in Theorem 8.5.27. But first we
need the following result.

Lemma 8.5.30. Let R be local and F be a free R-module with infinite base. If F is
complete, then the maximal ideal m is nilpotent.

Proof. Suppose m is not nilpotent. Then m © m2 © � � � . Let ri 2 mi �miC1 and
.xi /, i 2 N be the base of F . Let yn DPn

iD1 rixi . Then .yn/ is a Cauchy sequence
which does not converge in F . For if y D lim yn 2 F , let y DPm

iD1 aixi . Let n be
so large that yn�y 2 mkF DP1

iD1mkxi where k D max.mC 1; nC 1/. But then
yn 2 mk which is impossible since k > n.
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Theorem 8.5.31. The following are equivalent for a ring R:

(1) Every flat R-module is pure injective.

(2) Every flat R-module is projective (R is perfect).

(3) ORP is projective for each p 2 SpecR and gl right PInj- dim F lat <1.

(4) 0 ! Hom. ORp; F / ! Hom. ORp; PE
0.F // ! Hom. ORp; PE

1.F // ! � � � is
pure exact for all p 2 SpecR and all F 2 F lat.

(5) Rp is projective for each p 2 SpecR and gl left PInj- dim F lat <1.

(6) 0 ! Hom.Rp; F / ! Hom.Rp; PE
0.F // ! � � � is pure exact for all p 2

SpecR and all F 2 F lat.

(7) The pure injective envelope of every flat module is projective.

(8) The pure injective envelope of every free module is projective.

(9) dimR D 0.

Proof. .1/ through .6/ follow from Theorem 8.5.27.
.1/) .7/ since PE.F / is flat for any flat F .
.7/) .8/ is trivial.
.8/ ) .9/. Let F D R.X/. Then PE.F / Š Q OFm, over maximal ideals m, by

Remark 6.7.12. So if PE.F / is projective, then ORm is projective and thus free for
each maximal ideal m. Now let X be infinite. Then by Lemma 8.5.30, the maximal
ideal of Rm is nilpotent for each maximal ideal m of R. Hence dimR D 0.
.9/) .1/ follows from Corollary 8.5.12.

Exercises

1. Argue that a ring R is self pure injective if and only if Ext1R.F;R/ D 0 for all
flat R-module F .

2. Let F be a flatR-module. Prove that the map F˝R0 ! PE.F /˝R0 in Theorem
8.5.1 satisfies part (b) of Theorem 6.7.17.

3. Prove that if F is a pure injective flatR-module, then F ˝R=I is a pure injective
flat R=I -module.

4. Prove Corollary 8.5.28.

5. Prove that if F is a flatR-module, then �n.p=I; F=IF / D �n.p; F / for all prime
ideals p such that I � p.

6. Prove that if left Proj - dimRp � n and dimR <1, then T ip D 0 for all i > n.
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8.6 � and �-dimensions

In this section F will be a class of R-modules, and we will assume F is closed under
finite direct sums.

We will be concerned with the question of when a module M has an F -precover
' W F ! M and also when Ker' has an F -precover G ! Ker'. When this is the
case, we see that for H 2 F , Hom.H;G/ ! Hom.H; F / ! Hom.H;M/ ! 0 is
an exact sequence.

The �-dimension of M (relative to F ) will tell us how long we can continue this
procedure. If M is a left R-module, we will define �F .M/ (or we will write �.M/

when F is understood) to be either an integer n � �1 or1.

Definition 8.6.1. A finite subcomplex Fn ! � � � ! F0 ! M ! 0 of a left F -
resolution of M is called a partial left F -resolution of M of length n. Partial right
resolutions are defined similarly.

We say �.M/ D �1 if M does not have an F -precover. If n � 0 we say that
�.M/ D n if there is a partial left F -resolution Fn ! � � � ! F1 ! F0 ! M ! 0

of M of length n and if there exists no longer such complex. We say �.M/ D 1 if
there exists a partial left F -resolution for every n � 0.

If �.M/ D 1, it is natural to ask whether there is an infinite left F -resolution
� � � ! F2 ! F1 ! F0 !M ! 0 of M . We will show that this is indeed the case.

Lemma 8.6.2. If M is a left R-module and F 2 F , then F ˚M has an F -precover
if and only if M has an F -precover.

Proof. If G !M is an F -precover, then so is F ˚G ! F ˚M .
Conversely if ' W G ! F ˚M is an F -precover, then so is �2 ı ' W G !M with

�2 W F ˚M !M the projection map.

In the language above, this result says �.F ˚M/ � 0 if and only if �.M/ � 0.
We will use this to prove that in fact �.F ˚M/ D �.M/.

The next result is called Schanuel’s Lemma when F is the class of projective mod-
ules.

Lemma 8.6.3. If F ! M and G ! M are F -precovers with kernels K and L
respectively, then K ˚G Š L˚ F .

Proof. We consider the pullback diagram

P

��

�� G

��
F �� M
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By the definition of a precover, there is a factorization G ! F ! M of the map
G ! M . This means that P ! G has a section by the property of a pullback and so
P Š K ˚G since Ker.P ! G/ Š Ker.F ! M/ D K. Similarly P Š L˚ F and
so L˚ F Š K ˚G.

Corollary 8.6.4. Let n � 0 and Fn ! � � � ! F1 ! F0 !M ! 0 andGn ! � � � !
G1 ! G0 ! M ! 0 be partial left F -resolutions. If K D Ker.Fn ! Fn�1/ (or
Ker.F0 ! M/ if n D 0) and L D Ker.Gn ! Gn�1/ (or Ker.G0 ! M/ if n D 0/,
then

K ˚Gn ˚ Fn�1 ˚ � � � Š L˚ Fn ˚Gn�1 ˚ � � �

Proof. By induction on n. If n D 0, this is the preceding result. So we assume n > 0.
Then we have the complexes Fn ! Fn�1 ! � � � ! F2 ! F1 ˚ G0 ! Ker.F0 !
M/ ˚ G0 ! 0 and Gn ! Gn�1 ! � � � ! G2 ! G1 ˚ F0 ! Ker.G0 ! M/ ˚
F0 ! 0 which are Hom.F ;�/ exact and which have Fn; Gn; : : : ; F2; G2; F1 ˚ G0,
G1 ˚ F0 2 F . Also Ker.F0 ! M/˚ G0 Š Ker.G0 ! M/˚ F0 by the previous
result. Then an appeal to an induction hypothesis gives the result.

Proposition 8.6.5. If F 2 F , then �.F ˚M/ D �.M/.

Proof. We prove that for n � �1, �.F ˚M/ � n if and only if �.M/ � n. This is
trivial if n D �1 and is true for n D 0 by Lemma 8.6.2. So we proceed by induction
and let n > 0.

Suppose �.M/ � n. If Fn ! � � � ! F0 ! M ! 0 is a partial left F -resolution,
then we see from the complex F ˚ Fn ! � � � ! F ˚ F0 ! F ˚ M ! 0 that
�.F ˚M/ � n.

Conversely suppose �.F ˚M/ � n and Gn ! � � � ! G0 ! F ˚M ! 0 is a
partial left F -resolution of F ˚M . We know �.M/ � 0 and so let F0 ! M be an
F -precover with kernelK. Let L D Ker.G0 ! F ˚M/. Then F ˚F0 ! F ˚M is
also an F -precover with kernel K. So L˚F ˚F0 Š K ˚G0 by Lemma 8.6.3. But
clearly �.L/ � n� 1 and so �.L˚ F ˚ F0/ � n� 1. But then �.K ˚G0/ � n� 1
gives �.K/ � n � 1 by induction. Hence �.M/ � n.

Proposition 8.6.6. If �.M/ � n > k � 0 and Fk ! � � � ! F0 ! M ! 0 is a
partial left F -resolution ofM , then �.K/ � n�k� 1 whereK D Ker.Fk ! Fk�1/
and F�1 DM . In particular if �.M/ D n, then �.K/ D n � k � 1.

Proof. Since �.M/ � n, there is a partial left F -resolution Gn ! � � � ! G0 !
M ! 0. Let L D Ker.Gk ! Gk�1/. Then �.L/ � n � k � 1. By Corollary
8.6.4, we have L˚ Fk ˚ Gk�1 ˚ � � � Š K ˚ Gk ˚ Fk�1 ˚ � � � and so we see that
�.L/ D �.K/ by Proposition 8.6.5. Hence �.K/ � n � k � 1.
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Corollary 8.6.7. If �.M/ D1 then there is an infinite left F -resolution

� � � ! F2 ! F1 ! F0 !M ! 0 of M:

Proof. If n > 0 and Fn ! � � � ! F0 ! M ! 0 satisfies the usual conditions and
K D Ker.Fn ! Fn�1/, then �.K/ D 1. So this complex can be extended to a
complex FnC1 ! Fn ! � � � ! F0 ! M ! 0 satisfying the conditions. Continuing
this way we get the desired complex.

Lemma 8.6.8. IfM1 !M2 is a linear map such that Hom.F;M1/! Hom.F;M2/

is an isomorphism for all F 2 F , then �.M1/ D �.M2/.

Proof. If �.M1/ � n and Fn ! � � � ! F0 ! M1 ! 0 is a partial left F -resolution,
then so is Fn ! � � � ! F0 ! M2 ! 0 with F0 ! M2 the composition F0 !
M1 !M2. Hence �.M2/ � n.

If �.M2/ � n and Fn ! � � � ! F0 ! M2 ! 0 is a partial left resolution, then
by hypothesis, F0 ! M2 has a lifting F0 ! M1 (so F0 ! M2 is the composition
F0 !M1 !M2/.

Then we see that F1!F0!M1 is a complex since Hom.F1;M1/!Hom.F1;M2/

is an isomorphism and F1 ! F0 ! M2 is 0. Hence Fn ! � � � ! F1 ! F0 !
M1 ! 0 is a complex. Our hypotheses guarantee it is Hom.F ;�/ exact. Hence
�.M1/ � n. Hence we can conclude �.M1/ D �.M2/.

In the next theorem we will consider complexes 0 ! M 0 ! M ! M 00 ! 0 of
modules which are Hom.F ;�/ exact. We note that in this case, if K D Ker.M !
M 00/ then M 0 ! K is such that Hom.F;M 0/ ! Hom.F;K/ is an isomorphism for
all F 2 F and so �.M 0/ D �.K/ by Lemma 8.6.8.

Theorem 8.6.9. Let 0! M 0 ! M ! M 00 ! 0 be a Hom.F ;�/ exact complex of
left R-modules, then

(1) �.M 00/ � min.�.M 0/C 1; �.M//

(2) �.M/ � min.�.M 0/; �.M 00//
(3) �.M 0 � min.�.M/; �.M 00/ � 1/.

Proof. We prove (1). We only need prove that if n��1 is an integer and min.�.M 0/C
1; �.M// � n, then �.M 00/ � n. If n D �1, this is trivially true. If n D 0, then
�.M/ � 0 means M has an F -precover F ! M . By hypothesis, Hom.G;M/ !
Hom.G;M 00/!0 is exact if G 2F . So Hom.G;F /!Hom.G;M/!Hom.G;M 00/
is surjective. Thus F !M 00 is an F -precover and so �.M 00/ � 0.

We now suppose n > 0. We have �.M 0/ � n � 1 � 0 and �.M/ � n. So we have
partial left F -resolutions F 0n�1 ! � � � ! F 00 ! M 0 ! 0 and Fn ! Fn�1 ! � � � !
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F0 !M ! 0. Hence we have a commutative diagram

F 0n�1 ��

��

� � � �� F 00 ��

��

M 0 ��

��

0

Fn �� Fn�1 �� � � � �� F0 �� M �� 0

This diagram gives rise to the complex Fn ˚ F 0n�1 ! Fn�1 ˚ F 0n�2 ! � � � !
F1 ˚ F 00 ! F0 ˚M 0 !M ! 0.

But then we have a commutative diagram

0 ��

��

� � � �� 0 ��

��

M 0 ��

��

M 0 ��

��

0

Fn ˚ F 0n�1 ��

��

� � � �� F1 ˚ F 00 ��

��

F0 ˚M 0 ��

��

M ��

��

0

Fn ˚ F 0n�1 �� � � � �� F1 ˚ F 00 �� F0 �� M 00 �� 0

We now apply the additive functor Hom.F;�/ with any F 2 F to all the dia-
grams above. Then by Proposition 1.5.14 and our previous remarks, we see that
Fn ˚ F 0n�1 ! Fn ˚ F 0n�2 ! � � � ! F1 ˚ F 00 ! F0 ! M 00 ! 0 is Hom.F ;�/
exact. Hence �.M 00/ � n.

The proof of (3) is similar. We need to argue that if min.�.M/; �.M 00/ � 1/ � n,
then �.M 0/ � n. We can assume n � 0. Then we get a commutative diagram

Fn ��

��

� � � �� F0 ��

��

M ��

��

0

F 00nC1 �� F 00n �� � � � �� F 000 �� M 00 �� 0

and the complex F 00nC1 ˚ Fn ! � � � ! F 001 ˚ F0 ! F 000 ˚M !M 00 ! 0. But then
we get a commutative diagram

F 00nC1 ˚ Fn ��

��

� � � �� F 001 ˚ F0 ��

��

F 000 ˚M ��

��

M 00

��

�� 0

0 �� � � � �� 0 �� M 00 �� M 00 �� 0



Section 8.6 � and �-dimensions 215

The kernel of the corresponding map of complexes is the complex F 00nC1 ˚ Fn !
� � � ! F 001 ˚ F0 ! P ! 0 where P D Ker.F 000 ˚M !M 00/. So

P ��

��

M

��
F 000 �� M 00

is a pullback diagram. Hence by our hypothesis on 0! M 0 ! M ! M 00 ! 0, we
see that the map F 000 !M 00 has a lifting F 000 !M . But by the property of a pullback
this means P ! F 000 has a section. Hence P Š F 000 ˚K whereK D Ker.M !M 00/.

But as in the argument for (1), we see that F 00nC1˚Fn ! � � � ! F 001 ˚F0 ! P ! 0

is Hom.F ;�/ exact. This means �.P / � n. But since P Š F 000 ˚ K we get that
�.K/ � n by Proposition 8.6.5. But then by Lemma 8.6.8, we get �.M 0/ � n.

We now prove (2). We assume �.M 0/, �.M 00/ � n � 0 and argue �.M/ � n.
Let F 0n ! � � � ! F 00 ! M 0 ! 0 and F 00n ! � � � ! F 000 ! M 00 ! 0 be partial left
F -resolutions of M 0 and M 00 respectively. Then by the Horseshoe Lemma 8.2.1, we
get a partial F -resolution of M of length n. Hence �.M/ � n.

Remark 8.6.10. When F is the class of finitely generated projective modules, then
a short complex 0! M 0 ! M ! M 00 ! 0 is exact if and only if it is Hom.F ;�/
exact. In this case �.M/ � 0 if and only if M is finitely generated and �.M/ � 1 if
and only if M is finitely presented. These �-dimensions are defined in Bourbaki [29,
page 41] and Theorem 8.6.9 corresponds to their Exercise 6.

Definition 8.6.11. For a module M , we define N�.M/ (or N�F .M/) to be �1 if M
does not have a special F -precover. If there is an exact sequence Fn ! � � � !
F0 ! M ! 0 where F0 ! M , Fi ! Ki�1 (where K1 D Ker.F0 ! M/ and
Ki D Ker.Fi�1 ! Fi�2/ for i > 1) are special precovers and if there is no longer
such sequence, we write N�.M/ D n. We say N�.M/ D 1 if there is such a sequence
for each n � 0.

The proofs of several results concerning N�-dimensions are straightforward modifi-
cations of the corresponding results about �-dimensions. These include Propositions
8.6.5, 8.6.6 and Corollary 8.6.7.

Proposition 8.6.12. If F is such that �.M/ � 0 implies N�.M/ � 0 for allR-modules
M , then �.M/ D N�.M/ for all M .

Proof. Clearly �.M/ � N�.M/. So we argue that �.M/ � n implies N�.M/ � n

for n � 0. By hypothesis, this is true if n D 0. So suppose �.M/ � n > 0.
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Then we have N�.M/ > 0 and so let F ! M be a special precover with kernel K.
Then by Proposition 8.6.6, �.K/ � n � 1. So N�.K/ � n � 1 by induction. Hence
N�.M/ � n.

Theorem 8.6.13. If 0!M 0 !M !M 00 ! 0 is an exact sequence, then

N�.M 00/ � min. N�.M 0/C 1; N�.M//:

Proof. The argument is a straightforward modification of the proof of (1) of Theorem
8.6.9.

Theorem 8.6.14. If 0!M 0 !M !M 00 ! 0 is exact and Hom.F ;�/ exact, then

N�.M/ � min. N�.M 0/; N�.M 00//:

Proof. This argument is like that for (2) of Theorem 8.6.9.

Definition 8.6.15. The class F is said to be resolving if F contains all the projective
modules, F is closed under extensions and if whenever 0! F 0 ! F ! F 00 ! 0 is
exact with F , F 00 2 F , F 0 is also in F .

Theorem 8.6.16. If F is resolving and 0 ! M 0 ! M ! M 00 ! 0 is an exact
sequence of modules, then

N�.M 0/ � min. N�.M/; N�.M 00/ � 1/:

Proof. We prove by induction on n that if N�.M/ � n and N�.M 00/ � n C 1 then
N�.M 0/ � n.

Let n D 0. So N�.M 00/ � 1 and N�.M/ � 0. Then let 0! K 000 ! F 000 ! M 00 ! 0,
0 ! K 001 ! F 001 ! K 000 ! 0, and 0 ! K0 ! F0 ! M ! 0 be exact sequences
with K0; K 000 ; K 001 2 F ? and F 000 ; F 001 ; F0 2 F . Then we can construct a pullback
H (with maps H ! M and H ! F 000 ) of M ! M 00 and F 000 ! M 00 and get
a commutative diagram with exact sequences 0 ! K 000 ! H ! M ! 0 and
0!M 0 ! H ! F 000 ! 0.

SinceK 000 2 F ?, the sequence 0! K 000 ! H !M ! 0 is Hom.F ;�/ exact. So
by Horseshoe Lemma 8.2.1,we get exact sequences 0! K ! F 001 ˚ F0 ! H ! 0

and 0 ! K 001 ! K ! K0 ! 0 with K 2 F ? since K 001 , K0 2 F ?. Therefore,
we can now form the pullback of M 0 ! H and F 001 ˚ F0 ! H to get the following
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commutative diagram

0

��

0

��
K

��

K

��
0 �� F 0

��

�� F 001 ˚ F0 ��

��

F 000 �� 0

0 �� M 0 ��

��

H ��

��

F 000 �� 0

0 0

with exact rows and columns. Since F 001 ˚ F0, F 000 2 F and F is resolving, F 0 2 F .
As noted above, K 2 F ?. Hence F 0 ! M 0 is a special F -precover and so
N�.M 0/ � 0.

Now assume n > 0 and use the construction above. Then by the exactness and
Hom.F ;�/ exactness of 0 ! K 001 ! K ! K0 ! 0 (K 001 2 F ? gives the
Hom.F ;�/ exactness), we get N�.K/ � min. N�.K 001 /; N�.K0// by Theorem 8.6.14. But
min. N�.K 001 /; N�.K0// � n � 1 by the N�-dimension counterpart of Proposition 8.6.6
(or we can assume we chose K 001 and K0 so that the inequality holds). But then
N�.K/ � n � 1 implies N�.M 0/ � n.

Remark 8.6.17. If F is a class of left R-modules we can define the �-dimension of
a left R-module relative to F (denoted �F .M/ or �.M/ if F is understood) with
the definition dual to the definition of the �-dimensions above. So �F .M/ D �1
means that M does not have an F -preenvelope and �F .M/ D n with 0 � n < 1
means there is a complex 0 ! M ! F 0 ! � � � ! F n with each F i 2 F such
that if G 2 F , Hom.�; G/ makes the complex exact and that there is no longer such
complex. Then �F .M/ D1 will mean there is such a complex for every n � 0.

We will not state them but only note that all of the definitions and results for �-
dimensions have their counterpart concerning �-dimensions (or N�-dimensions). For
each of these the proof is just the dual of the proof of the corresponding result.

Exercises

1. Prove that if M DM 0 ˚M 00, then �.M/ D min.�.M 0/; �.M 00//.
2. Let F D Projfg and M1;M2 be submodules of an R-module M such that
�.Mi / � 0 for i D 1; 2. Prove that �.M1 CM2/ � 0 if and only if �.M1 \
M2/ � 0.
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3. Prove that if F 2 F , then N�.F ˚M/ D N�.M/.

4. Suppose N�.M/ � n > k � 0 and Fk ! Fk�1 ! � � � ! F0 ! M ! 0 is a
partial left F -resolution where F0 ! M and Fi ! Fi�1 for i > 0 are special
F -precovers. Prove that if K D Ker.Fk ! Fk�1/, then N�.K/ � n � k � 1.

5. Prove that if N�.M/ D 1, then there is an infinite left F -resolution � � � ! F1 !
F0 ! M ! 0 of M where F0 ! M and Fi ! Fi�1 for i > 0 are special
F -precovers.

6. Prove Remark 8.6.10.

7. Prove Theorem 8.6.13.

8. Prove Theorem 8.6.14.
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Iwanaga–Gorenstein and Cohen–Macaulay Rings
and Their Modules

In this chapter we will show that the property of being Iwanaga–Gorenstein or Cohen–
Macaulay imposes nice conditions on the homological properties of modules over
such rings.

9.1 Iwanaga–Gorenstein Rings

Definition 9.1.1. A ring R is called an Iwanaga–Gorenstein ring (or simply a Goren-
stein ring) if R is both left and right Noetherian and if R has finite self-injective
dimension on both the left and the right.

We will first consider these conditions on one side only.

Proposition 9.1.2. If R is left (right) Noetherian and the left (right) self-injective
dimension of R is n < 1, then inj dimF � n for every flat left (right) R-module.
And if flat dimM <1 for a left (right) R-module M , then proj dimM � n.

Proof. We give the proof on the left. But inj dim lim�!Ni � sup¹inj dimNiº for any
inductive system of left R-modules since R is left Noetherian, and inj dimP � n for
any projective left R-module since inj dimRR D n. So the first claim follows since a
flat left R-module is the inductive limit of projective left R-modules.

Now let flat dimM < 1, m > n, and m > flat dimM . Then let 0 ! F !
Pm�1 ! � � � ! P0 ! M ! 0 be exact with P0; : : : ; Pm�1 projective. Then F
is flat. But by the above, inj dimF < m and so Extm.M;F / D 0. This means that
id W F ! F can be extended to Pm�1 ! F and so F is a summand of Pm�1. If
Pm�1 D F ˚ G, then we have a projective resolution 0 ! G ! Pm�2 ! � � � !
P0 ! M ! 0. So proj dimM < 1. If m � 1 > n, then we repeat the procedure
with G replacing F . So we see that proj dimM � n.

Corollary 9.1.3. If F is a flat left (right) R-module, then proj dimF � n.

Lemma 9.1.4. If M � N is a pure submodule of the left R-module N , then

flat dimM � flat dimN:
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Proof. If flat dimN D 1 the result is trivial. So suppose flat dimN D n < 1. Let
G be any right R-module and 0 ! S ! Pn ! � � � ! P0 ! G ! 0 be a partial
projective resolution of G.

Consider the commutative diagram

S ˝M

��

�� Pn ˝M

��
0 �� S ˝N �� Pn ˝N

The bottom row is exact since TornC1.G;N / D 0. The two vertical arrows are in-
jections since M � N is pure. Hence 0 ! S ˝ M ! Pn ˝ M is exact and so
TornC1.G;M/ D 0. Hence flat dimM � n.

The lemma above has a right counterpart. When necessary, we will appeal to such
counterparts even though the result is stated for only one side.

Lemma 9.1.5. If R is left Noetherian and M � N is a pure submodule of the left
R-module N , then

inj dimM � inj dimN

Proof. We suppose that inj dimN D n < 1. Then ExtnC1.R=I;N / D 0 for all
left ideals I of R. Let 0 ! S ! Pn ! � � � ! P0 ! R=I ! 0 be a partial
projective resolution of R=I with P0; : : : ; Pn finitely generated projective modules.
Since ExtnC1.R=I;N / D 0, we have Hom.Pn; N /! Hom.S;N /! 0 is exact. But
since M � N is pure, a linear S !M has an extension Pn ! N if and only if there
is an extension Pn ! M . Hence Hom.Pn;M/ ! Hom.S;M/ ! 0 is exact. This
means that ExtnC1.R=I;M/ D 0 for all such I and so inj dimM � n by Proposition
8.4.4.

Proposition 9.1.6. Let R be left and right Noetherian and inj dimRR D n < 1.
Then the following are equivalent:

(1) inj dimRR <1.

(2) flat dimE <1 for all injective left R-modules E.

(3) flat dimE � n for all injective left R-modules E.

Proof. Suppose (1) holds. Let E be an injective left R-module. Then the character
module EC is a flat right R-module. So by Proposition 9.1.2, EC has finite injective
dimension. But then ECC has finite flat dimension. Since E � ECC is pure by
Proposition 5.3.9, flat dimE � flat dimECC by Lemma 9.1.4. So flat dimE is finite
and so (2) holds.
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Now assume (2). Then RC is an injective left R-module and so has finite flat
dimension. Hence RCC has finite injective dimension and so RR has finite injective
dimension by Lemma 9.1.5.

Thus (1) and (2) are equivalent. Then by Proposition 9.1.2, we see that (1), (2) and
(3) are equivalent.

Proposition 9.1.7. If R is Gorenstein, then the following are equivalent for a left
R-module M :

(1) inj dimM <1.

(2) proj dimM <1.

(3) flat dimM <1.

Proof. By Proposition 9.1.2 we see that (2) and (3) are equivalent and that (3) im-
plies (1).

To argue .1/) .3/, let M have finite injective dimension. Then the right module
MC has finite flat dimension. So by .2/ ) .1/ (on the right) we get that MC has
finite injective dimension. So MCC has finite flat dimension. Then Lemma 9.1.5
gives that M has finite flat dimension.

Proposition 9.1.8. If R is left and right Noetherian and inj dimRR D m < 1 and
inj dimRR D n <1, then m D n.

Proof. Since inj dimRR D n, Extn.M;R/ ¤ 0 for some finitely generated right R-
module M . Noting that Extn.M;R/ is a left R-module, we have Hom.Extn.M;R/;
E/ ¤ 0 for some injective left R-module E. But there are natural isomorphisms

Hom.ExtnR.M;R/;E/ Š TorRn .Hom.R;E/;M/ Š TorRn .M;E/

and so TorRn .M;E/ ¤ 0. But by Proposition 9.1.6, flat dimRE � m. Hence m � n.
But the same type argument gives m � n and so m D n.

Definition 9.1.9. A Gorenstein ring with inj dimRR at most n is called n-Gorenstein.
We note that in this case inj dimRR is also at most n by the above.

Theorem 9.1.10. If R is n-Gorenstein, then the following are equivalent for a left
R-module M :

(1) inj dimM <1.

(2) proj dimM <1.

(3) flat dimM <1.

(4) inj dimM � n.

(5) proj dimM � n.

(6) flat dimM � n.
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Proof. By Proposition 9.1.7, (1), (2) and (3) are equivalent and by Proposition 9.1.2,
(3), (5) and (6) are equivalent. And .4/) .1/ trivially.

To prove .1/ ) .4/, let 0 ! M ! E0 ! � � � ! Ek ! 0 be an injective
resolution of a left R-module M . Then flat dimMC � k and so flat dimMC � n

by the equivalence of (3) and (6) on the right. But then inj dimMCC � n and so
inj dimM � n by Lemma 9.1.5. This completes the proof.

Theorem 9.1.11. The following are equivalent for a left and right Noetherian ringR:

(1) R is n-Gorenstein.

(2) The injective dimension of all left and right flat R-modules is at most n.

(3) The injective dimension of all left and right projective R-modules is at most n.

(4) The flat dimension of all left and right injective R-modules is at most n.

(5) The projective dimension of all left and right injective R-modules is at most n.

(6) If � � � ! P1 ! P0 !M ! 0 is a projective resolution of a left (right) R-mod-
ule M , then the subcomplex � � � ! PnC1 ! Pn is a right F lat-resolution.

(7) If 0 ! M ! E0 ! E1 ! � � � is an injective resolution of a left (right)
R-module M , then the subcomplex En ! EnC1 ! � � � is a left Inj-resolution.

Proof. The equivalence of (1), (2), (4), and (6) follows from Theorem 8.4.36.
.2/) .3/) .1/ and .5/) .4/ are trivial.
.4/ ) .5/. Let E be an injective left or right R-module. Then there is an exact

sequence 0! Fn ! Pn�1 ! � � � ! P1 ! P0 ! E ! 0with Pi projective and Fn
flat by assumption. But proj dimFn < 1 by Theorem 9.1.10 since (4) is equivalent
to (1). So proj dimE <1 and thus proj dimE � n again by Theorem 9.1.10.
.5/, .7/. We simply note that proj dimE � n if and only if Exti .E;M/ D 0 for

all i � nC 1.

We may now add the following to Corollary 8.4.37.

Corollary 9.1.12. Let R be left and right Noetherian. Then R is injective as a left
and rightR-module if and only if every injective left and rightR-module is projective.

Exercises

1. The copure injective dimension (cid) of an R-module M is the largest positive
integer n such that Extn.E;M/ ¤ 0 for some injective R-module E. If M is
strongly copure injective, that is, Exti .E;M/ D 0 for all injectives E and all
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i � 0, we set cidM D 0. Show that the following are equivalent for a left and
right Noetherian ring R.

(a) R is n-Gorenstein.

(b) cidM � n for all left and right R-modules M .

(c) If 0! M ! E0 ! E1 ! � � � ! En�1 ! C ! 0 is an exact sequence of
any left (right)R-moduleM with eachEi injective, then C is strongly copure
injective.

2. The copure flat dimension (cfd) of an R-module is the largest positive integer n
such that Torn.E;M/ ¤ 0 for some injective R-module E. If there is no such
n, we set cfdM D 0 and we say M is strongly copure flat. State and prove the
counterpart of the exercise above for copure flat dimension.

3. An R-module M is said to be copure flat if Tor1.E;M/ D 0 for all injective R-
modules E, and copure injective if Ext1.E;M/ D 0 for all injective R-modules
E. Prove that the following are equivalent for a left and right Noetherian ring R.

(a) R is 1-Gorenstein.

(b) An R-module (left and right)M is copure injective if and only if it is strongly
copure injective.

(c) Every copure injective R-module (left and right) is h-divisible.

(d) Every homomorphic image of a copure injective R-module (left and right) is
copure injective.

(e) Every h-divisible R-module (left and right) is copure injective.

(f) An R-module (left and right) M is copure flat if and only if it is strongly
copure flat.

(g) Every submodule of a copure flat R-module (left and right) is copure flat.

(h) Every submodule of a flat R-module (left and right) is copure flat.

4. Let R be a Noetherian local ring. Prove that if R is Gorenstein, then Rp is
Gorenstein for each p 2 SpecR.

9.2 The Minimal Injective Resolution of R

In this section, R will be a commutative Noetherian ring. We will study the injective
resolution of R when R is Gorenstein.

We recall from Section 3.3 that there is a bijective correspondence between the
prime ideals p of R and the indecomposable injective modules with p corresponding
to E.R=p/. Also, each injective module E can be written uniquely, up to isomor-
phism, as a direct sum of such E.R=p/’s. If M is an R-module, then the cardinal-
ity of the summands of Ei .M/ isomorphic to E.R=p/ in such a decomposition is
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denoted �i .p;M/. The invariants �i .p;M/ are called Bass invariants. In several
results below we will consider these invariants under various change of rings.

If S � R is a multiplicative set, then S�1E.R=p/ D 0 if S \ p ¤ ; and
S�1E.R=p/ D ES�1R.S

�1R=S�1p/ if S \ p D ; by Theorems 3.3.3 and 3.3.8.

Lemma 9.2.1. If S \ p D ; for a prime ideal p of R and a multiplicative set S � R,
then for every R-module M , �i .p;M/ D �i .S�1p; S�1M/.

Proof. This follows from the above and the fact that 0! S�1M ! S�1E0.M/!
S�1E1.M/ ! � � � is a minimal injective resolution of the S�1R-module S�1M by
Remark 3.3.4.

Lemma 9.2.2. LetM be an R-module and r 2 R be such that R
r! R andM

r!M

are both injections, and set NR D R=.r/. If 0! M ! E0.M/! E1.M/! � � � is
a minimal injective resolution ofM and 0!M ! E0.M/! C ! 0 is exact, then

0! Hom. NR;C/! Hom. NR;E1.M//! Hom. NR;E2.M//! � � �
is a minimal injective resolution of Hom. NR;C/ as an NR-module. Furthermore

Hom. NR;C/ ŠM=rM:
Proof. We note that if r is a unit of R then NR D 0 and M=rM D 0, and so the
result is trivial. So we assume r is not a unit of R. Then by the exactness of 0 !
R

r! R ! NR ! 0, we see that proj dim NR D 1. Hence Exti . NR;M/ D 0 for i � 2.
This implies the exactness of the sequence 0! Hom. NR;C/! Hom. NR;E1.M//!
Hom. NR;E2.M// ! � � � Also, each Hom. NR;E2.M// is an injective NR-module for
i � 1. Since C is essential in E1.M/, we see that Hom. NR;C/ � C is essential
in Hom. NR;E1.C // � E1.C /. Proceeding in this manner we see that in fact this
sequence is a minimal injective resolution of Hom. NR;C/ over NR.

For the last claim we consider the commutative diagram with exact rows

0 �� M ��

r

��

E0.M/ ��

r
��

C ��

r

��

0

0 �� M �� E0.M/ �� C �� 0

Since M
r! M is an injection and M � E0.M/ is essential, E0.M/

r! E0.M/

is an injection. But then the Snake Lemma gives the exact sequence 0 ! Ker.C
r!

C/! Coker .M
r!M/! 0, that is, Hom. NR;C/ ŠM=rM .

Corollary 9.2.3. If r 2 p is such that R
r! R and M

r!M are both injections, then
�i .p=.r/;M=rM/ D �iC1.p;M/.
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Proof. This follows from the fact that when NR D R=.r/, HomR. NR;E.R=p// is the
injective envelope of the NR-module NR=.p=.r/ Š R=p.

Theorem 9.2.4. If M is an R-module and p � R is a prime ideal, then �i .p;M/ D
dimk.p/ ExtiRp

.k.p/;Mp/ D dimk.p/ ExtiR.R=p;M/p. In particular, if M is finitely
generated, �i .p;M/ <1 for all i � 0.

Proof. By Lemma 9.2.1, we may assumeR D Rp. Then given 0!M ! E0.M/!
E1.M/!� � � , let Ti be the submodule ofEi .M/ annihilated by p. Then�i .p;M/D
dimk Ti with k D R=p. Minimality guarantees that Ei .M/ ! EiC1.M/ maps Ti
to 0. Hence the complex

0! Hom.k; E0.M//! Hom.k; E1.M//! � � �
has 0 differentiation. Hence ExtiR.k;M/ Š Hom.k; Ei .M// Š Ti .
Definition 9.2.5. LetM be an R-module. Then a sequence r1; r2; : : : ; rs of elements
in an ideal I of R is called an M -sequence in I if .r1; : : : ; rs/M ¤ M and xi is not
a zero divisor on M=.r1; : : : ; ri�1/M for 1 � i � s. If r1; r2; � � � is an M -sequence,
then .r1/ � .r1; r2/ � � � � is a strictly increasing ascending chain of ideals in I and
thus must stop since R is Noetherian. So each M -sequence in I can be extended to a
maximalM -sequence in I . IfM is finitely generated, then all maximalM -sequences
in I have the same length by Corollary 9.2.8 below. This length is called the depth of
M in I and is denoted by depthI M .

If R is a local ring with maximal ideal m, then the depth of M in m is called the
depth of M and is denoted by depthRM .

Proposition 9.2.6. Let R be a local ring and let r1; : : : ; rs be an R-sequence. Then
proj dimR=.r1; : : : ; rs/ D s and Exts.R=.r1; : : : ; rs/;M/ ¤ 0 for all finitely gener-
ated R-modules M ¤ 0.

Proof. By induction on s � 1. If s D 1, then the exactness of 0 ! R
r! R !

R=.r1/! 0 gives proj dimR=.r1/ � 1. But if M ¤ 0, the exactness of

Hom.R;M/
r1! Hom.R;M/! Ext1.R=.r1/;M/! 0

and Nakayama Lemma give that Ext1.R=.r1/;M/ ¤ 0. Hence in general

0! R=.r1; : : : ; rs�1/
rs! R=.r1; : : : ; rs�1/! R=.r1; : : : ; rs�1; rs/! 0

is exact and so by induction we see that proj dimR=.r1; : : : ; rs/ � s. But then for a
finitely generated M ¤ 0 we have that

Exts�1.R=.r1; : : : ; rs�1;M/
rs! Exts�1.R=.r1; : : : ; rs�1/;M/

! Exts.R=.r1; : : : ; rs/;M/! 0
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is exact. So by the induction hypothesis, Exts�1.R=.r1; : : : ; rs�1/;M/ ¤ 0 and then
by Nakayama Lemma Exts.R=.r1; : : : ; rs/;M/ ¤ 0 giving

proj dimR=.r1; : : : ; rs/ D s

and thus completing the proof.

Proposition 9.2.7. If M and N are R-modules and r1; r2; : : : ; rs is an N -sequence
contained in Ann.M/, then

Exti .M;N / Š
´

0 for 0 � i < s
Hom.M;N=.r1; : : : ; rs/N / for i D s:

In particular, Hom.M;N=.r1; : : : ; rs/N / depends only on s and not on the sequence
r1; : : : ; rs .

Proof. By induction on s � 0. If s D 0, the result is trivial. If s D 1, then

Ext0.M;N / D Hom.M;N / D 0 since r1M D 0 and N
r1! N is an injection.

The exact sequence 0! N
r1! N ! N=r1N ! 0 gives the exact sequence

Hom.M;N / D 0! Hom.M;N=r1N/! Ext1.M;N /
r1! Ext1.M;N /:

But Ext1.M;N /
r1! Ext1.M;N / is 0 since r1M D 0. Then the proof can be com-

pleted by an induction on s.

Applying this toM andN=.r1; : : : ; rs/N when r1; : : : ; rs is a maximalN -sequence
in Ann.M/, we get

Corollary 9.2.8. If N is finitely generated and IN ¤ N for an ideal I , then every
maximalN -sequence in I has length equal to the least i such that Exti .R=I;N / ¤ 0.

Remark 9.2.9. We note that if N is finitely generated and IN ¤ N for an ideal I ,
then depthI N D inf¹i W Exti .R=I;N / ¤ 0º by the above. So if R is local with
maximal ideal m and residue field k, then depthN D inf¹i W Exti .k;N / ¤ 0º D
inf¹i W �i .m; N / ¤ 0º.

Corollary 9.2.10. If M is finitely generated, then the least i such that Exti .M;R/ ¤
0 is the maximum length of an R-sequence contained in Ann.M/.

Remark 9.2.11. If M is a finitely generated R-module, then the least i such that
Exti .M;R/ ¤ 0 is called the grade of M and is denoted gradeM . By Corol-
lary 9.2.10 above, we see that gradeM D depthI M where I D Ann.M/.
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Corollary 9.2.12. For a prime ideal p � R, depthRp
Rp is the least i such that

�i .p; R/ > 0.

Proof. Apply the previous corollary when M D k.p/.

Proposition 9.2.13. If p � q are distinct prime ideals of R with no prime ideal
between them and M is finitely generated, then

�i .p;M/ ¤ 0 implies �iC1.q;M/ ¤ 0

Proof. We assume R D Rp. Let r 2 q, r … p, B D R=p and C D B=rB . Then C

has finite length and B
r! B is an injection. So the exact sequence 0! B

r! B !
C ! 0 gives rise to the exact sequence

ExtiR.B;M/
r! ExtiR.B;M/! ExtiC1.C;M/:

But Exti .B;M/ ¤ 0 by Theorem 9.2.4. Since R is local and r 2 p, we get
ExtiC1.C;M/ ¤ 0. But then since C has finite length, it is easy to argue that
ExtiC1.k;M/ ¤ 0 where k D R=p. So the result follows by Theorem 9.2.4.

Corollary 9.2.14. If R is local with residue field k and M is a finitely generated
R-module, then

inj dimM D sup¹i W Exti .k;M/ ¤ 0º:

Proof. This follows from Theorem 9.2.4 and Proposition 9.2.13.

Corollary 9.2.15. If M is finitely generated and inj dimRM D r < 1, then
dimM � r and �r.p;M/ > 0 implies p is maximal.

Proof. If p 2 Supp.M/ is a minimal prime ideal, then R=p is isomorphic to a sub-
module of M by Theorem 2.4.12. So �0.p;M/ > 0. Then if p D p0 ¨ p1 ¨
p2 ¨ � � � ¨ ps is a chain of prime ideals of Supp.M/ with no prime ideals between
successive terms, then by Proposition 9.2.13 �s.ps;M/ > 0 and so inj dimM � s.
That is, r � s. This gives the first conclusion. For the second, if �r.p;M/ > 0

and p is not maximal, by Proposition 9.2.13 we get a prime ideal p0 with p � p0 and
�rC1.p0;M/ > 0, contradicting our assumption inj dimM D r .

Theorem 9.2.16. Let .R;m; k/ be local and M;N be nonzero finitely generated R-
modules. If inj dimN <1, then

depthM C sup¹i W ExtiR.M;N / ¤ 0º D inj dimN:
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Proof. If M D k, then the result follows by Corollary 9.2.14. If depthM D 0, then
there is an embedding k �M and thus we have an exact sequence Extn.M=k;N /!
Extn.M;N / ! Extn.k;N / ! ExtnC1.M=k;N / D 0. But if inj dimN D n, then
Extn.k;N / ¤ 0 and so Extn.M;N / ¤ 0. Thus the result follows in this case.

We now proceed by induction on depthM . If depthM > 0, let r 2 m be a

nonzero divisor on M . Then it follows from the exact sequence Exti .M;N /
r!

Exti .M;N / ! ExtiC1.M=rM;N/ ! ExtiC1.M;N / and Nakayama Lemma that
if Exti .M;N / ¤ 0 then ExtiC1.M=rM;N/ ¤ 0. It also trivially follows that if
Exti .M;N / D ExtiC1.M;N / D 0 then ExtiC1.M=rM;N/ ¤ 0. Hence

sup¹i W Exti .M=rM;N/ ¤ 0º D sup¹i W Exti .M;N / ¤ 0º � 1:

Using a similar argument and Remark 9.2.9 we have depthM D depthM=rM C 1
and thus the result follows by induction.

Corollary 9.2.17. If N is a nonzero finitely generated R-module of finite injective
dimension, then inj dimN D depthR.

Proof. We simply set M D R in the theorem.

Corollary 9.2.18. If R has a nonzero finitely generated R-module of finite injective
dimension and M is a finitely generated R-module, then depthM � depthR.

Proof. We simply note that sup¹i W Exti .M;N / ¤ 0º � 0 where N is as in the
theorem above.

Remark 9.2.19. For completeness, we note that dually, if � � � ! F1 ! F0 ! M !
0 is a minimal free resolution of a finitely generatedR-module, then the minimal num-
ber of generators of Fi , called the rank of Fi , is given by ˇi .M/ D dimk Tori .M; k/
and one easily gets proj dimM D sup¹i W Tori .M; k/ ¤ 0º. If depthR > 0,
depthM > 0 and x 2 m is a nonzero divisor on R andM , then depthR=rRM=rM D
depthM�1, depthR=rR R=rRDdepthR�1, and proj dimR=rRM=rM Dproj dimM .
So an induction on depthM gives the following result which is dual to Theorem 9.2.16.

Theorem 9.2.20 (Auslander and Buchsbaum Theorem). Let .R;m; k/ be local and
M be a finitely generated R-module. If proj dimM <1, then

proj dimM C depthM D depthR:

Proposition 9.2.21. Let R be a local ring, p 2 SpecR, and M ¤ 0 be a finitely
generated R-module. If dimR=p < depthM , then ExtiR.R=p;M/ D 0 for i <
depthM � dimR=p.
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Proof. By induction on dimR=p. Let m be the maximal ideal of R. If dimR=p D 0,
then p D m and so the result follows (see Remark 9.2.9). Now suppose dimR=p > 0.
Then p ¤ m and so choose an element r in m � p. Then we consider the exact

sequence 0 ! R=p
r! R=p ! R=.rR C p/ ! 0. But by Lemma 2.4.7, there

is a chain 0 D M0 � M1 � � � � � Mn�1 � Mn D R=.rR C p/ of submodules
of R=.rR C p/ such that Mi=Mj�1 Š R=pj for some pj 2 SpecR. Moreover,
p � pj and so dimR=pj < dimR=p for each j . So by induction, for each j ,
Exti .R=pj ;M/ D 0 for i < depthM �dimR=pj � depthM �dimR=pC1. Hence
Exti .R=.rR C p/;M/ D 0 for i < depthM � dimR=p C 1. But then for each
i < depthM � dimR=p, we have an exact sequence

0! Exti .R=p;M/
r! Exti .R=p;M/! ExtiC1.R=.rRC p/;M/ D 0:

So the result follows from Nakayama Lemma.

Theorem 9.2.22. If R is local and M ¤ 0 is finitely generated, then

depthM � dimR=p for all p 2 AssM:

Proof. If p 2 AssM , then Hom.R=p;M/ ¤ 0 and so depthM � dimR=p by the
proposition above.

Corollary 9.2.23. If R is local, then depthM � dimM for all nonzero finitely gen-
erated R-modules M .

Proof. If p 2 AssM , then Ann.M/ 
 p. So dimR=p � dimR=Ann.M/ D dimM

for each p 2 Ass.M/. Hence depthM � dimM by the theorem.

Definition 9.2.24. Suppose R is local and M is a finitely generated R-module. Then
depthM � dimM � dimR from the above. If depthM D dimM , then we say
M is Cohen–Macaulay. If R is Cohen–Macaulay as an R-module, then R is said
to be a Cohen–Macaulay ring. If depthM D dimR, then M is said to be maximal
Cohen–Macaulay.

Corollary 9.2.25. If inj dimRR < 1, then inj dimRR D dimR and R is a Cohen–
Macaulay ring.

Proof. inj dimR D depthR by Corollary 9.2.17 and inj dimR � dimR by Corollary
9.2.15. But depthR � dimR by the above and so depthR D dimR and inj dimR D
dimR.

Corollary 9.2.26. If for a prime ideal p inj dimRp D 1, then �i .p; R/ > 0 for all
i � ht p.
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Proof. We can again assume R D Rp and use induction on ht p. If ht p D 0, then p is
the only prime ideal and so �i .p; R/ D 0 implies Ei .R/ D 0 which contradicts our
hypothesis.

Assume ht p D h > 0 and let q ¤ p be a prime ideal. If s D dimR=q, then
ht pC s � h. If inj dimRq

Rq D 1, then by the induction hypothesis �i .q; R/ > 0

for i � ht q. So �iCs.p; R/ > 0 for i � ht q and then by the above �j .p; R/ > 0 for
j � h D ht p.

So now assume inj dimRq
Rq < 1 for all q ¤ p. Then Ei .R/q D 0 for i > ht q

and so for i � ht p. Therefore Ei .R/ must be the direct sum of copies of E.R=p/’s
only. Since Ei .R/ ¤ 0 for i � ht p, we have �i .p; R/ > 0 for i � ht p.

Theorem 9.2.27. If .R;m; k/ is a local ring, then the following are equivalent:

(1) inj dimR <1.

(2) �i .m; R/ D 0 for all i > dimR.

(3) �i .m; R/ D 0 for some i > dimR.

(4) �i .m; R/ D
²

0 for i < dimR

1 for i D dimR:

(5) R is Cohen–Macaulay and �dimR.m; R/ D 1.

(6) �i .p; R/ D ıi ht.p/ for all prime ideals p where ıi ht.p/ is the Kronecker delta.

Proof. .1/ ) .2/ by Corollary 9.2.25, .2/ ) .3/ is trivial, and .3/ ) .1/ by
Corollary 9.2.26.
.1/ ) .4/. By Corollary 9.2.25, R is Cohen–Macaulay and by Corollary 9.2.12

this is equivalent to �i .m; R/ D 0 for i < ht m D dimR.
Now let I be generated by a maximalR-sequence r1; r2; : : : ; rd where d D dimR.

Then by several applications of Corollary 9.2.25, R=I is self-injective. But by Propo-
sition 3.4.3 this means �d .m; R/ D �0.R=I / D 1.
.4/ ) .2/. With the same notation, �0.m.R=I /; R=I / D 1 and so R=I is self

injective by Proposition 3.4.3. Hence �iCd .m; R/ D �i .m=I;R=I / D 0 for all
i > 0.
.4/, .5/ is trivial.
(2) and (4) give �i .m; R/ D ıid where d D ht m. Since inj dimR < 1 gives

inj dimRp <1 for all prime ideals p � R, we get .1/) .6/. .6/) .1/ is easy.

Corollary 9.2.28. If R is a Gorenstein local ring and I � R is generated by an
R-sequence, then R=I is Gorenstein.

Proof. This follows from the Theorem and applications of Corollary 9.2.3.

Corollary 9.2.29. If R is local, then R is Gorenstein if and only if OR is.
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Proof. If R is Gorenstein and 0 ! R ! E0.R/ ! � � � ! En.R/ ! 0 is an
injective resolution of R, then 0 ! OR D OR ˝ RR ! OR ˝ RE

0.R/ ! � � � ! OR ˝
RE

n.R/! 0 is an injective resolutions of OR as an OR-module. So OR is Gorenstein.
If OR is Gorenstein, then inj dim OR OR < 1 and so inj dimR

OR < 1 since OR is

a flat R-module. But R � OR is pure. Thus inj dimRR � inj dimR
OR < 1 by

Lemma 9.1.5.

Exercises

1. Let M be an R-module and r 2 R be such that R
r! R and M

r! M are both
injections, and set NR D R=.r/. If N is an R-module such that rN D 0, prove
that

ExtiC1R .N;M/ Š ExtiNR.N;M=rM/

for all i � 0. Conclude that inj dimRM � inj dimRM=rM C 1.

2. Let R be a Noetherian local ring with maximal ideal m and M be a finitely
generated R-module. If r 2 m is as in Problem 1 above, argue that

(a) inj dimRM D inj dim NRM=rM C 1.

(b) depthM D depth NRM=rM C 1.

(c) depthM=rM D depth NRM=rM .

3. Let R be a local ring and M a finitely generated R-module. Argue that

(a) depthM D depth OR OM .

(b) M is Cohen–Macaulay if and only if OM is Cohen–Macaulay.

4. Let .R;m; k/ be a local ring. Prove that if M is a finitely generated R-module,
then proj dimM D sup¹i W Tori .M; k/ ¤ 0º � proj dim k.

5. Let .R;m; k/ be a local ring and M be a finitely generated R-module. Prove

that if r 2 m is such that R
r! R and M

r! M are both injections, then
proj dimM D proj dimR=rRM=rM .

6. Prove Theorem 9.2.20.

7. Let .R;m; k/ be a local ring, M a finitely generated R-module, r1; : : : ; rd an
M -regular sequence in m, and NM DM=.r1; : : : ; rd /M . Prove that

(a) dim NM D dimM � d .

(b) depth NM D depthM � d .

(c) M is Cohen–Macaulay if and only if NM is.

(d) proj dim NM D proj dimM C d .
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9.3 More on Flat and Injective Modules

We now show that when a commutative Noetherian ring R is generically Gorenstein
(that is, Rp is Gorenstein for all minimal prime ideals p of R), we get nice properties
holding on modules over R.

In this section, R will again denote a commutative Noetherian ring.

Lemma 9.3.1. For a prime ideal p � R, E.R=p/ ˝ E.R=p/ ¤ 0 if and only if
depthRp D 0.

Proof. Suppose E.R=p/˝ E.R=p/ ¤ 0. Then since E.R=p/ is an injective cogen-
erator for Rp-modules,

.E.R=p/˝E.R=p//v Š Hom.E.R=p/; E.R=p/v/ Š Hom.E.R=p/; cRp/ ¤ 0:
But E.R=p/ is an Artinian Rp-module. So k.p/ � cRp. But then depth cRp D 0 (over
cRp) and thus depthRp D 0 (over Rp).

Conversely, if depthRp D 0 then, k.p/ � Rp and so k.p/ � cRp. So by Matlis
duality, we get a surjection cRp

v D E.R=p/ ! k.p/v D k.p/. But this implies
Hom.E.R=p/; cRp/ ¤ 0 and so, as above, E.R=p/˝E.R=p/ ¤ 0.

Lemma 9.3.2. For a prime ideal p � R, E.R=p/˝ E.R=p/ is a nonzero injective
module if and only if Rp is Gorenstein of Krull dimension 0.

Proof. The Matlis dual of E.R=p/ ˝ E.R=p/ is Hom.E.R=p/; cRp/. If I � cRp

is the largest ideal in cRp of finite length, then I v is the largest quotient of E.R=p/
of finite length (over cRp). Then since �.E.R=p// has finite length for any � 2
Hom.E.R=p/; cRp/, we get Hom.E.R=p/; cRp/ D Hom.I v; I /. This shows that
Hom.E.R=p/; cRp/ has finite length and so it is Matlis reflexive. But it is the dual
of E.R=p/ ˝ E.R=p/. So E.R=p/ ˝ E.R=p/ has finite length (and is also reflex-
ive).

So now assume E.R=p/˝ E.R=p/ is nonzero and injective. Then its Matlis dual
Hom.E.R=p/, cRp/ is flat. But by the preceding, it is also a finitely generated cRp-
module and so it is a nonzero free cRp-module. Thus since Hom.E.R=p/; cRp/ has
finite length, so does cRp. Thus cRp has Krull dimension 0. Hence cRp D Rp. Let
Np D pRp and Npn D 0 and Npn�1 ¤ 0 for some n � 1. Since Hom.E.R=p/;bRp/ ¤
0 is free, Npn�1 Hom.E.R=p/; cRp/ ¤ 0. If for every � 2 Hom.E.R=p/; cRp/,
�.E.R=p// � Np, then Npn�1� D 0 and so Npn�1 Hom.E.R=p/; cRp/ D 0, a con-
tradiction. This means �.E.R=p// D cRp for some � . So cRp D Rp is a direct
summand of E.R=p/ and so is injective.

Conversely, if Rp is Gorenstein of dimension 0, then Rp is self-injective and Artin-
ian and so Rp D E.Rp/ Š E.R=p/. Thus E.R=p/˝ E.R=p/ Š Rp D E.R=p/ is
a nonzero injective module.
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In the next theorem, we will use the notation F.M/ ! M for the flat cover of an
R-module M which exists by Theorem 7.4.4.

Theorem 9.3.3. The following are equivalent for a commutative Noetherian ring R:

(1) E.R/ is flat.

(2) Rp is a Gorenstein ring of Krull dimension 0 for all p 2 Ass.R/.

(3) E.F / is flat for all flat R-modules F .

(4) F.E/ is injective for all injective R-modules E.

(5) E ˝E 0 is an injective module for all injective R-modules E and E 0.
(6) S�1R is an injective R-module where S is the set of nonzero divisors of R.

Proof. .1/) .2/. Since R=p is isomorphic to a submodule of R, E.R=p/ is a sum-
mand of E.R/ and so is flat. But then cRp D HomR.E.R=p/; E.R=p// is injective as
an R-module (and so as an cRp-module) since the first E.R=p/ is flat and the second
is injective. But if cRp is self-injective, it has Krull dimension 0 and so is Artinian.
But then Rp is Artinian and Rp D cRp.
.2/ ) .1/. If p 2 Ass.R/, then depthRp D 0. So if Rp is Gorenstein, Rp has

Krull dimension 0. Thus Rp is self-injective and so E.R=p/ D Rp. So E.R=p/ is a
flat R-module. Since E.R/ is the direct sum of E.R=p/’s with p 2 Ass.R/, E.R/ is
also flat.
.3/) .1/ trivially.
.2/) .6/. If Ass.R/ D ¹p1; : : : ; ptº, then S D R � .p1 [ � � � [ pt / is the set of

nonzero divisors of R. So S�1R is a semi local ring of Krull dimension 0 with prime
ideals S�1p1; : : : ; S�1pt . Hence S�1R is isomorphic to Rp1

� � � � � Rpt
. But each

Rpi
is an injective R-module. So S�1R is injective.

.6/) .1/. This is true since Rp with p 2 Ass.R/ is a localization of S�1R.

.6/) .3/. By (6), E.R/ D S�1R and so E.Rn/ D S�1Rn for n � 1. But then
since any flat R-module F is the inductive limit of finitely generated free modules, it
is easy to see that S�1F D E.F /.
.1/) .5/. We only need show that E.R=p/˝ E.R=q/ is injective for any prime

ideals p and q of R. We note that if r 2 R is not a zero divisor on R, then E
r! E

is surjective for any injective R-module E. And if r 2 p for a prime ideal p, then

E.R=p/
r! E.R=p/ is locally nilpotent. Hence if r 2 p and r is not a zero divisor

on R, then E.R=p/ ˝ E.R=q/ D 0. For if x 2 E.R=p/, we have rnx D 0 for
some n � 1, and if y 2 E.R=q/, y D rnz for some z 2 E.R=q/. So x ˝ y D
x ˝ rnz D xrn ˝ z D 0˝ z D 0. Hence E.R=p/˝E.R=q/ D 0 if p … Ass.R/ or
q … Ass.R/. In a similar manner we see that E.R=p/˝ E.R=q/ D 0 when p 6� q.

For then if r 2 p, E.R=p/
r! E.R=p/ is locally nilpotent and E.R=q/

r! E.R=q/

is an isomorphism.
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So we are reduced to showing that E.R=p/˝ E.R=p/ is injective if p 2 Ass.R/.
But this follows from the fact that E.R=p/ D Rp (see (1)) (2)) and the fact that
Rp ˝ RRp D Rp.
.5/ ) .2/. Let p 2 Ass.R/. Then R=p � R and so depthRp is 0. So by Lem-

ma 9.3.1, E.R=p/˝E.R=p/ ¤ 0. But then by Lemma 9.3.2 and the assumption (5),
we get (2).
.3/ ) .4/. Let G be an injective R-module and let F.G/ ! G be a flat cover.

Then F.G/ ! G can be extended to E.F.G// ! G. But E.F.G// is flat by
assumption. So

E.F.G//

��((� �
�
�
�

F.G/ �� G

can be completed to a commutative diagram. But then the restriction of E.F.G//!
G to F.G/ is an automorphism of F.G/ (by the definition of a flat cover). Thus F.G/
is a direct summand of E.F.G// and so is injective.
.4/) .3/. Let L be flat. Then the diagram

L

��((+
+
+
+
+

F.E.L// �� E.L/

can be completed to a commutative diagram. By (4), F.E.L// is injective and so
L ! F.E.L// (which is an injection) can be extended to an injection E.L/ !
F.E.L//. Therefore we can assume E.L/ � F.E.L//. Then E.L/ is flat since it is
a direct summand of a flat module.

We note that when Rp is Gorenstein for p 2 Ass.R/, then ht p D 0, that is, p is
a minimal prime ideal. Since any minimal prime p is in Ass.R/, (2) of the theorem
simply says R is generically Gorenstein.

Exercises

1. Prove that if p 
 q, then E.R=p/˝E.R=q/ D 0.

2. Prove that if R is Gorenstein, then E.R/ is a flat R-module.

3. Prove that if E.R/ is flat, then Rp ˝ RRp Š Rp.
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9.4 Torsion Products of Injective Modules

R will again always be commutative and Noetherian. In the last section it was shown
that R is generically Gorenstein if and only if E ˝ E 0 is injective whenever E and
E 0 are injective R-modules. In this section, we will show that Tori .E;E 0/ is injective
for all injective E and E 0 and all i � 0 if and only if Rp is Gorenstein for all prime
ideals p. Since these two properties are local we will also assume R is a local ring
with maximal ideal m and residue field k.

Lemma 9.4.1. We have

ExtiR.E.k/; R/ Š ExtiR.E.k/; OR/ Š ExtiOR.E.k/;
OR/

for all i > 0.

Proof.

0! OR D OR˝ RR! OR˝ RE
0.R/! OR˝ RE

1.R/! � � �
gives an injective resolution of OR as an R-module. If p � R is a prime ideal, then

E.R=p/
r! E.R=p/ is locally nilpotent if r 2 p and is an isomorphism if r …

p. Hence the same holds for OR ˝ E.R=p/ r! OR ˝ E.R=p/ and so OR ˝ E.R=p/
is the direct sum of copies of E.R=p/. Hence if p ¤ m, then HomR.E.k/; OR ˝
E.R=p// D 0. If p D m, then OR˝ RE.k/ D E.k/.

From these remarks it follows that HomR.E.k/; Ei .R// Š HomR.E.k/; OR ˝
RE

i .R// and we get the first isomorphism above. For the second, we note that since
OR is a flat R-module, 0 ! OR ! E0OR.

OR/ ! E1OR.
OR/ ! � � � is also an injective

resolution of OR as an R-module.
Then note that if q � OR is a prime ideal and q ¤ Om/, then q \ R ¤ m. Hence

again arguing with scalar multiplications, we see that HomR.E.k/; E OR. OR=q// D 0

and Hom OR.E.k/; E OR. OR// D 0. Since HomR.E.k/; E.k// D Hom OR.E.k/; E.k//,
we see that HomR.E.k/; EiOR.

OR// D Hom OR.E.k/; E
i
OR.
OR//. This gives the second

isomorphism.

Remark 9.4.2. If r is not a zero divisor on R or on M and NR D R=.r/, then
TorR1 . NR;M/ D 0. Hence if S � M and r is not a zero divisor on M=S , then
TorR1 . NR;M=S/ D 0 implies that 0! NR˝ S ! NR˝M is exact.

Lemma 9.4.3. Suppose r 2 m is not a zero divisor of R and let NR D R=.r/. If r is
not a zero divisor on ExtiR.E.k/; R/ for 0 � i � n, then

Exti�1NR .E NR.k/; NR/ Š ExtiR.ER.k/; R/˝ NR
for 1 � i � n � 1.
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Proof. Apply HomR.ER.k/;�/ to 0 ! E0.R/ ! E1.R/ ! � � � and get the com-
plex

0! OR�0 ! OR�1 ! � � �
with �i D �i .m; R/. The homology of this complex gives us the modules
ExtiR.E.k/; R/. We note that since r is not a zero divisor of R, depthR � 1 and
so �0 D 0.

We now let B i ; Zi � OR�i be the images and kernels of the boundary maps in the
complex above.

Now by Lemma 9.2.2, 0! NR! HomR. NR;E1R.R//! HomR. NR;E2R.R//! � � �
is a minimal injective resolution of NR as an NR-module. So we compute ExtiNR.E NR.k/; NR/
by applying Hom NR.E NR.k/;�/ to the deleted complex 0 ! HomR. NR;E1R.R// !
HomR. NR;E2R.R//! � � � and compute homology. But HomR. NR;ER.k// Š E NR.k/.
So we get the complex

0! ONR�1 ! ONR�2 ! � � �
But then this is just the complex tensored with OR since ONR D OR˝ R

NR.
Now we note that r is neither a zero divisor on OR�i=Zi � OR�iC1 nor on OR�i=B i

since it is neither a zero divisor on Exti .E.k/; R/ D Zi=B i nor on OR�i=Zi for

0 � i � n. So by Remark 9.4.2, 0 ! B i ˝ NR ! OR�i ˝ NR D ONR�i and 0 !
Zi ˝ NR! ONR�i are exact.

These observations show thatZi˝ NR andB i˝ NR can be identified with the obvious
kernels and images in 0 ! ONR�1 ! ONR�2 ! � � � for 1 � i � n � 1. Then the exact
sequence B i ! Zi ! Exti .E.k/; NR/! 0 tensored with NR gives the isomorphism

Exti�1NR .E NR.k/; NR/ Š ExtiR.ER.k/; R/˝ NR

for 1 � i � n � 1.

Lemma 9.4.4. If A and B are Artinian modules, then Tori .A;B/ is Artinian for all
i � 0.

Proof. It suffices to show that Tori .A;B/v Š Exti .A;Bv/ is finitely generated. But
Bv is finitely generated and so�i .m; Bv/D�i is finite. But then Hom.A;Ei .Bv//D
Hom.A;E.k/�i / is finitely generated and hence so is Exti .A;Bv/.

Lemma 9.4.5. If p, q are prime ideals and p 6� q or q 6� p, then

Tori .E.R=p/; E.R=q// D 0

for all i � 0.
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Proof. Suppose p 6� q. If r 2 p, r … q, then

Tori .E.R=p/; E.R=q//
r! Tori .E.R=p/; E.R=q//

is both locally nilpotent and an isomorphism. Hence Tori .E.R=p/; E.R=q// D 0.

Theorem 9.4.6. The following are equivalent for R:

(1) R is Gorenstein.

(2) For any injective modules E and E 0 and any i � 0, Tori .E;E 0/ is injective.

(3) For any prime ideal p � R

TorRi .E.R=p/; E.R=p// D
´

0 if i ¤ ht p

E.R=p/ if i D ht p:

Proof. .1/) .3/. We have

TorRi .E.R=p/; E.R=p//
v Š ExtiR.E.R=p/; ORp/

Š ExtiRp
.E.R=p/; ORp/

Š Exti
bRp

.E.R=p/; cRp/

where the Matlis dual is with respect to Rp.
Since ORp is Gorenstein,

�i .m. ORp/; ORp/ D
´

1 if i D dim ORp D ht p

0 otherwise

by Theorem 9.2.27. This shows that ExtiORp
.E.R=p/; ORp/ is ORp for i D ht p and

0 otherwise. Then since E.R=p/v Š ORp, the claim follows by Lemma 9.4.4 since
Tori .E.R=p/; E.R=p// is then Matlis reflexive (over Rp).
.3/) .2/ is trivial.
.2/) .1/. By Lemma 9.4.5, (2) simply says that Tori .E.R=p/; E.R=p// is injec-

tive for all prime ideals p and all i � 0. Since

TorRi .E.R=p/; E.R=p// D TorRi .E.R=p/; E.R=p//p D TorRp

i .E.k.p//; E.k.p///;

we can assume p D m and that Tori .E.k/; E.k// is injective for all i � 0. Since by
Lemma 9.4.4 this module is also Artinian, it is the direct sum of finitely many copies
of E.k/.

But then Tori .E.k/; E.k//v D ExtiR.E.k/; OR/ is a finitely generated OR-mod-
ule for each i . Using Lemma 9.4.1, we see we can assume R is complete and
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so Exti .E.k/; R/ is finitely generated and free for each i . If depthR D d

and r1; : : : ; rd is an R-sequence, then letting NR D R=.r1; : : : ; rd / and making re-
peated use of Lemma 9.4.3, we see that we can also assume depthR D 0.
This implies k � R and so by Matlis duality, k is a quotient of E.k/. Therefore
Hom.E.k/; R/ D Ext0.E.k/; R/ ¤ 0 is a finitely generated free R-module. Then
Hom.E.k/˝ E.k/; E.k// Š Hom.E.k/; OR/ shows that E.k/˝ E.k/ ¤ 0. Its dual
is finitely generated and projective. Hence E.k/˝ E.k/ ¤ 0 is an injective module.
Then by Lemma 9.3.2, R is Gorenstein of Krull dimension 0. This completes the
proof.

Exercises

1. Let R be a Gorenstein ring. Prove that every flat R-module F can be embedded
in

L

ht pD0E.R=p/.Xp/ for some sets Xp.

Hint: show that F ˝E.R/ ŠL

ht pD0E.R=p/.Xp/.

2. Let R be 1-Gorenstein and M be an R-module. Prove that M is cotorsion if and
only if Ext1.E.R/;M/ D 0.

3. Let R be 1-Gorenstein. Prove that every h-divisible R-module is strongly cotor-
sion, that is, Exti .F;M/ D 0 for all flat R-modules M and all i � 1.

9.5 Local Cohomology and the Dualizing Module

In this section, R will again denote a commutative Noetherian ring.

Definition 9.5.1. Let I be an ideal of R and M be an R-module. Then we set

LI .M/ D ¹x 2M W I tx D 0 for some t � 0º:
We note that HomR.R=I t ;M/ Š ¹x 2M W I tx D 0º. Thus

LI .M/ Š lim�!HomR.R=I
t ;M/:

It is clear that LI is a left exact covariant functor and so we can compute the right
derived functors RiLI of LI using an injective resolution of M (see Section 8.2).

Definition 9.5.2. The derived functors RiLI are called local cohomology functors
and are denoted by H i

I . Thus

H i
I .M/ D RiLI .M/ D Ri .lim�!Hom.R=I t ;M//

Š lim�!Ri Hom.R=I t ;M/

Š lim�!ExtiR.R=I
t ;M/:
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since lim�! commutes with homology. We note that if i > 0 and E is an injective

R-module, then H i
I .E/ D 0.

Now let 0 ! M ! E0 ! E1 ! � � � be the minimal injective resolution of M .
Then Ei ŠL

p2SpecR �
i .p;M/E.R=p/. But if m is a maximal ideal, then

lim�!Hom.R=mt ; E.R=p// Š
²

0 if p ¤ m

E.R=m/ if p D m:

So Lm.E
i / Š ˚�i .m;M/E.R=m/. Thus if M is finitely generated, then

�i .m;M/ < 1 for each i by Theorem 9.2.4 and so Lm.E
i / is Artinian. Hence

H i
m.M/ is Artinian for each i . Furthermore if R is local, then depthM D inf¹i W

�i .m;M/ ¤ 0º by Remark 9.2.9. So if i < depthM , then H i
m D 0. Now let

s D depthM . Then

H s
m.M/ Š Ker.Lm.E

s.M//! Lm.E
sC1.M///

D Ker.Es.M/! EsC1.M// \ Lm.E
s/:

But Ker.Es.M/! EsC1.M// is an essential submodule of Es.M/ and Lm.E
s/ is

nonzero since s D depthM . So H s
m.M/ ¤ 0.

We summarize the above in the following.

Lemma 9.5.3. LetR be local andM be a finitely generatedR-module. ThenH i
m.M/

is an Artinian R-module and depthM is the least integer s such that H s
m.M/ ¤ 0.

Proposition 9.5.4. Let R be a local ring with maximal ideal m, and M be a finitely
generated R-module. Then H i

m.M/ Š H i
m.M/˝ OR Š H i

Om. OM/.

Proof. Since H i
m.M/ is Artinian by the above, H i

m.M/ D lim�!Li where Li are

submodules of H i
m.M/ of finite length. Then

H i
m.M/ D lim�!Li Š lim�!.Li ˝ OR/ Š .lim�!Li /˝ OR

and we have the first isomorphism. But

H i
m.M/˝ OR Š lim�!Exti .R=mt ;M/˝ OR

Š lim�!Exti . OR= Omt ; OM/

Š H i
Om. OM/

since OR is a flat R-module.
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Definition 9.5.5. Let xD x1; x2; : : : ; xn be a sequence of elements of R. Then we
define a complex K�.x/ by K0.x/ D R and Kp.x/ D 0 if p > n. If 1 � p � n, then
Kp.x/ is the freeR-module of rank

�

n
p

�

with basis ¹ei1i2:::ip W 1 � i1 < � � � < ip � nº.
The differentiation dp W Kp.x/! Kp�1.x/ is defined by

dp.ei1:::ip / D
p

X

jD1
.�1/jC1xij ei1:::Oij :::ip

where Oij means that ij is deleted and we set dp.ei / D xi if p D 1. Then dp�1ıdp D 0
and we have a complex K�.x/

K�.x/ W 0! Kn.x/
dn! Kn�1.x/! � � � ! K1.x/

d1! K0.x/! 0

where each Kp.x/ is free and finitely generated.
The complex K�.x/ is called the Koszul complex. In particular, if n D 1, then

K�.x/ is the complex

0! R
x! R! 0

with K1.x/ D K0.x/ D R and Kp.x/ D 0 if p ¤ 0; 1. If n D 2, then the Koszul
complex is

0! R
d2! R2

d1! R! 0

with bases e12; ¹e1; e2º, ¹1º respectively and differentials d1.ei / D xi and d2.e12/ D
x1e2 � x2e1.

One may check that K�.x/ D K�.x1/˝K�.x2/˝ � � � ˝K�.xn/ where the tensor
product of two complexes of R-modules C� and D� is a complex C� ˝ RD� where

.C� ˝ RD�/n D
M

pCqDn
Cp ˝Dq

with differentials
d W .C� ˝ RD�/n ! .C� ˝ RD�/n�1

defined by d.x ˝ y/ D dx ˝ y C .�1/px ˝ dy.
If M is an R-module, then K�.x;M/ is the complex K�.x/˝M whose homology

groups Hp.K�.x/ ˝ M/ are denoted by Hp.x;M/. So H0.x;M/ D M=.x1M C
� � � C xnM/ and Hn.x;M/ D ¹y 2 M W xiy D 0 for 1 � i � nº. In partic-
ular, if n D 1, then H0.x;M/ D M=xM and H1.x;M/ D AnnM .x/ D ¹y 2
M W xy D 0º. K�.x;M/ denotes the complex Hom.K�.x/;M/ whose cohomology
groups Hp.Hom.K�.x/;M// are denoted by Hp.x;M/. In this case H 0.x;M/ D
Hom.R=xR;M/ D ¹y 2 M W xiy D 0 for 1 � i � nº D Hn.x;M/. More
generally Hp.x;M/ Š Hn�p.x;M/.
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Lemma 9.5.6. If C is a complex of R-modules, then there is an exact sequence

0! H0.x;Hp.C//! Hp.x;C/! H1.x;Hp�1.C//! 0:

Proof. .K�.x/ ˝ C/p D .K0.x/ ˝ Cp/ ˚ .K1.x/ ˝ Cp�1/. So we have an exact
sequence of complexes 0! .K0.x/˝C/p ! .K�.x/˝C/p ! .K1.x/˝C/p�1 ! 0

since K0.x/ D K1.x/ D R. Thus we have an associated exact sequence

K1.x/˝Hp.C/ x˝id! K0.x/˝Hp.C/! Hp.K�.x/˝ C/! K1.x/˝Hp�1.C/
x˝id! K0.x/˝Hp�1.C/:

But
Coker.x ˝ idHp.C// Š Hp.C/=xHp.C/ D H0.x;Hp.C//

and
Ker.x ˝ idHp�1.C// Š AnnHp�1.C/.x/ D H1.x;Hp�1.C//

and so we are done.

We now show that local cohomology groups H i
m.M/ can be expressed in terms of

Koszul complexes.
Let xt denote the sequence xt1; x

t
2; : : : ; x

t
n. Then for each xi , there is a natural map

K�.xtC1i /! K�.xti / given by the diagram

K�.xtC1i / W 0 �� R

xi

��

x
tC1
i �� R �� 0

K�.xti / W 0 �� R
xt

i �� R �� 0

Since K�.x/ D K�.x1/˝� � �˝K�.xn/, we can tensor these maps to get a map of com-
plexes K�.xtC1/!K�.xt /. Hence we get a map of homology groupsHi .xtC1;M/!
Hi .x;M/ and a map of cohomology groups H i .xt ;M/ ! H i .xtC1;M/. Thus we
have an inverse system ¹Hi .xt ;M/º and a directed system ¹H i .xt ;M/º. We set
H i

x .M/ D lim�!H i .xt ;M/.

Lemma 9.5.7. Let x D x1; x2; : : : ; xn be a sequence of elements of R and M be a
finitely generated R-module. Then for each t , there is an s > t such that the map
Hi .xs;M/! Hi .xt ;M/ is a zero homomorphism for each i � 1.

Proof. By induction on n. Suppose nD 1. Then i D 1 andH1.xt ;M/D AnnM .xt/.
We note that if s � t , then the map H1.xs;M/ ! H1.x

t ;M/ is multiplication by
xs�t . But the modulesH1.xt ;M/ form an increasing sequence of submodules ofM .
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Hence since M is Noetherian, there is a t0 such that AnnM .xt0/ is maximal. But
then xt0H1.xt ;M/ D 0 for each t . So if s D t C t0, then the map H1.xs;M/ !
H1.x

t ;M/ is multiplication by xs�t D xt0 and thus is zero.
Now suppose n � 1 and let y D x1; x2; : : : ; xn�1. Then by Lemma 9.5.6, we have

an exact sequence

0! H0.x
t
n;Hi .y

t ;M//! Hi .xt ;M/! H1.x
t
n;Hi�1.yt ;M//! 0:

If s > t , then we have a factorization

H0.x
s
n;Hi .y

s;M//
f! H0.x

s
n;Hi .y

t ;M//
g! H0.x

t
n;Hi .y

t ;M//:

By induction hypothesis, there is an s > t such that Hi .ys;M/ ! Hi .yt ;M/ is
zero and thus gf D 0. Hence there is an s > t such that H0.xsn;Hi .y

s;M// !
H0.x

t
n;Hi .y

t ;M// is zero. Similarly, we have a factorization

H1.x
s
n;Hi�1.ys;M//

f! H1.x
s
n;Hi�1.yt ;M//

g! H1.x
t
n;Hi�1.yt ;M//:

But Hi�1.yt ;M/ is finitely generated. So by induction, there is an s > t such that
g D 0 and hence gf D 0.

But now it easily follows that the middle term Hi .xt ;M/ has the same property
(see Problem 4 at the end of this section).

If E is an injective R-module and i > 0, then

H i .xt ; E/ D H i .Hom.K�.xt /; E//

Š H i .Hom.K�.xt /;Hom.R;E///

Š H i .Hom.K�.xt /˝R;E//
Š Hom.Hi .xt ; R/; E/:

But for each t , there is an s > t such that the map Hi .xs; R/ ! Hi .xt ; R/ is a
zero homomorphism by Lemma 9.5.7 above. Hence H i

x .E/ D lim�!H i .xt ; E/ Š
lim�!Hom.Hi .xt ; R/; E/ D 0. We are now in a position to prove the following result.

Theorem 9.5.8. Let R be a local ring, I be an ideal of R generated by the sequence
x D x1; x2; : : : ; xn, and M be an R-module. Then

H i
I .M/ Š H i

x .M/:

Proof. We first note that

H 0
I .M/ D lim�!Hom.R=I t ;M/

D lim�!Hom.R=xtR;M/

D lim�!H 0.xt ;M/

D H 0
x .M/:
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If 0 ! M 0 ! M ! M 00 ! 0 is an exact sequence of R-modules, then we have an
exact sequence of complexes

0! lim�!Hom.K�.xt /;M 0/! lim�!Hom.K�.xt /;M/! lim�!Hom.K�.xt /;M 00/! 0:

Thus we get an associated long exact sequence of the cohomology groups H i
x .�/.

But for each i > 0, H i
x .E/ D H i

I .E/ D 0 for every injective R-module E by the
above. So H i

x .M/ Š H i
I .M/ by Theorem 8.2.11.

Corollary 9.5.9. Let R be local with maximal ideal m and M be an R-module. If
the ideal generated by x D x1; x2; : : : ; xn is m-primary, thenH i

m.M/ Š H i
x .M/. In

particular, H i
m.M/ D 0 for i > n.

Proof. Let I D xR. Then for some r > 0, mr � I � m since I is m-primary by
Proposition 2.4.25. Thus

H 0
I .M/ D lim�!Hom.R=I t ;M/ D lim�!Hom.R=mt ;M/ D H 0

m.M/

and so H i
I .M/ Š H i

m.M/ as in the theorem above. So the first part of the result
follows from the theorem. But K�.x/ has length n. So H i

m.M/ D H i
x .M/ D 0 for

i > n.

Corollary 9.5.10. H i
m.M/ D 0 for all i > dimR.

Proof. Let d D dimR. Then there is a sequence x D x1; x2; : : : ; xd of elements ofR
such that

p
xR D m by Proposition 2.4.17 and Theorem 2.4.33. So xR is m-primary.

Thus the result follows from the previous corollary.

Theorem 9.5.11. Let .R;m; k/ be a local ring andM be a finitely generatedR-mod-
ule. Then the following are equivalent:

(1) M is a maximal Cohen–Macaulay module.

(2) �i .m;M/ D 0 for all i < dimR.

(3) H i
m.M/ D 0 for all i ¤ dimR.

Proof. .1/) .2/ is trivial since depthM D depthR.
.2/ ) .1/. depthM � dimR and depthM D inf¹i W �i .m;M/ ¤ 0º. So

depthM D dimR by (2).
.1/ ) .3/. Since depthM D dimR by assumption, H i

m.M/ D 0 for all i <
dimR by Lemma 9.5.3. So (3) follows from Corollary 9.5.10 above.
.3/ ) .1/. depthM D inf¹i W H i

m.M/ ¤ 0º by Lemma 9.5.3. So depthM �
dimR by assumption. So M is maximal Cohen–Macaulay.

Corollary 9.5.12. R is Cohen–Macaulay if and only if H i
m.R/ D 0 for all i ¤

dimR.
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Corollary 9.5.13. The following are equivalent for a local ring of Krull dimension d
with residue field k:

(1) R is Gorenstein.

(2) R is Cohen–Macaulay and Hd
m.R/ Š E.k/.

(3) H i
m.R/ D 0 for i ¤ d and Hd

m.R/ Š E.k/.
Proof. .1/, .2/ by Theorem 9.2.4 since Hd

m.R/ Š E.k/ means �d .m; R/ D 1.
.2/, .3/ follows from Corollary 9.5.12.

Definition 9.5.14. If R is a local Cohen–Macaulay ring with residue field k, then a
finitely generated R-module � is called a dualizing module of R if

ExtiR.k;�/ Š
´

0 if i ¤ dimR

k if i D dimR:

Remark 9.5.15. We note that a dualizing module of R is maximal Cohen–Macaulay,
and if R is a Gorenstein local ring then R is a dualizing module of R by Theorem
9.2.27.

If dimR D 0 then � D E.k/ is seen to be dualizing and in fact, if � is dualizing
then since Ext1.k;�/ D 0 for i > 0, � is injective. Since Hom.k;�/ Š k, we then
get � Š E.k/.

Now suppose � is a dualizing module of R. Then for any p 2 SpecR, �p is a
dualizing module of Rp. Also, it is easy to check that O� is a dualizing module of OR
and �=I� is a dualizing module of R=I if I is generated by an R-sequence. If the
sequence is maximal, then dimR=I D 0 and so �=I� Š ER=I .k/. It is also well
known that a dualizing module of R, if it exists, is unique up to isomorphism.

We now consider the functors T i .�/ D Hom.Hd�i
m .�/; E.k//. Then T 0.�/ is a

contravariant left exact functor which converts sums to products. So if we set � D
T 0.R/ D Hom.Hd

m.R/;E.k//, then T 0.�/ Š Hom.�; �/ by Theorem 1.4.18. We
are now in a position to prove the following local duality theorems.

Theorem 9.5.16. Let .R;m; k/ be a complete local Cohen–Macaulay ring of dimen-
sion d . Then R has a dualizing module � such that if M is a finitely generated
R-module, then

ExtiR.M;�/ Š Hom.Hd�i
m .M/;E.k//

and
H i

m.M/ Š Hom.Extd�iR .M;�/;E.k//:

Proof. We prove the existence of isomorphisms for i � 0 since if i < 0, then
Hd�i

m .M/ D 0 by Corollary 9.5.10 and ExtiR.M;�/ D 0.
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Now let T i and � be defined as above. If i D 0, then Hom.M;�/ Š T 0.R/ D
Hom.Hd

m.M/;E.k// from the above. But every exact sequence 0 ! M 0 ! M !
M 00 ! 0 has an associated long exact sequence of cohomology groups H i

m.�/ (see
the proof of Theorem 9.5.8) and so ¹T iº is a strongly connected sequence of func-
tors. Moreover, T i .R/ D Hom.Hd�i

m .R/;E.k//. So if i � 1, then d � i < d

and Hd�i
m .R/ D 0 by Corollary 9.5.12. Hence T i .R/ D 0 for all i � 1. But

if F is free, then T i .F / D 0 for all i � 1 for T i takes direct sums to prod-
ucts since Exti .N;�/ commutes with arbitrary sums if N is finitely generated (see
Lemma 3.1.16). Hence T i .�/ Š Rn.Hom.�; �// by Theorem 8.2.12. But then
Hom.Extd�iR .M;�/;E.k// Š Hom.Hom.H i

m.M/;E.k//; E.k// Š H i
m.M/ since

H i
m.M/ is Artinian and R is complete.
It now remains to show that � is a dualizing module for R. But � is finitely

generated since Hd
m.R/ is Artinian, and H i

m.R/ D 0 if i ¤ d by Corollary 9.5.12
since R is Cohen–Macaulay. So ExtiR.k;�/ D 0 if i ¤ d . But ExtdR.k;�/ Š
Hom.H 0

m.k/; E.k// Š Hom.k; E.k// Š k. Thus � is a dualizing module.

Theorem 9.5.17. Let .R;m; k/ be a local Cohen–Macaulay ring of dimension d and
M be a finitely generated R-module. If R has a dualizing module �, then

ExtiR.M;�/
^ Š HomR.H

d�i
m .M/;E.k//

and
H i

m.M/ Š HomR.Extd�iR .M;�/;E.k//:

Proof. By Theorem 9.5.16, Proposition 9.5.4 and the uniqueness of �, we have
H i

m.M/ŠH i
Om. OM/ŠHom OR.Extd�iOR . OM; O�/, E.k//ŠHomR.Extd�iR .M;�/;E.k//

since Extd�iR .M;�/ is a finitely generated R-module. So we have the second isomor-
phisms. But

HomR.H
d�i
m .M/;E.k// Š HomR.HomR.ExtiR.M;�/;E.k//; E.k//

Š ExtiR.M;�/˝ OR
and so we have the first isomorphisms.

Remark 9.5.18. By setting M D R in the theorem above, we see that if � is a
dualizing module of R, then

HomR.H
d
m.R/;E.k// Š R

O�:
Herzog–Kunz [111] show that the converse also holds.

Corollary 9.5.19.

inj dim� D flat dimHd
m.R/ D d and H i

m.M/ Š Tord�i .M;Hd
m.R//:
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Proof. If i > d , then ExtiR.M;�/
^ D 0 by the above theorem and so ExtiR.M;�/ D

0 for each finitely generated R-module M . Thus inj dim� � d by Proposition 8.4.4.
But inj dim� D d by Theorem 9.2.16. So d D inj dim� D inj dimHd

m.R/
_ D

flat dimHd
m.R/.

Finally, H i
m.M/ Š TorR

d�i .M;HomR.�;E.k/// Š TorR
d�i .M;Hd

m.R//.

Corollary 9.5.20. If R is a local Gorenstein ring and M is a finitely generated R-
module, then

ExtiR.M;R/
^ Š HomR.H

d�i
m .M/;E.k//

and

H i
m.M/ Š Hom.Extd�iR .M;R/;E.k//

Proof. As noted before, � D R in this case.

Definition 9.5.21. If .R;m; k/ is local, then a finitely generated R-module K is said
to be a canonical module of R if

HomR.H
d
m.R/;E.k// Š R

OK:

We note that if R is complete, then K D HomR.Hd
m.R/;E.k// is a canonical

module ofR. IfR is Cohen–Macaulay, thenK is a canonical module of R if and only
if K is a dualizing module of R by Remark 9.5.18. We have the following results.

Proposition 9.5.22. Let .R;m; k/ be a local ring with a canonical module. Then the
following are equivalent for an integer d � 1:

(1) R is Cohen–Macaulay of Krull dimension d .

(2) flat dimHd
m.R/ D d .

(3) proj dimHd
m.R/ D d .

Proof. .1/) .2/ by Corollary 9.5.19.
.2/ ) .1/. If flat dimHd

m.R/ D d , then flat dim ORH
d
m.R/ D d since Hd

m.R/ is

Artinian and so is an OR-module naturally. Thus Hd
m.R/

v is a nonzero finitely gener-
ated OR-module of finite injective dimension. So OR is Cohen–Macaulay (see Strooker
[174, Theorem 13.1.7]) and hence R is Cohen–Macaulay. Furthermore, dimR D d

by Corollary 9.5.12.
.2/) .3/. dimR D d since 2) 1. So proj dimHd

m.R/ � d by Corollary 8.5.28.
But then proj dimHd

m.R/ D d .
.3/) .2/ is easy.
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Proposition 9.5.23. Let .R;m;k/ be Cohen–Macaulay. Then the following are equiv-
alent for a finitely generated R-module M :

(1) M is maximal Cohen–Macaulay.

(2) ExtiR.M;L/ D 0 for all i � 1 and all finitely generated R-modules L of finite
injective dimension.

Furthermore, if R admits a canonical moduleK, then each of the above statements
is equivalent to the following:

(3) ExtiR.M;K/ D 0 for all i � 1.

(4) ExtiR.M; OK/ D 0 for all i � 1.

Proof. .1/ , .2/. If L is a finitely generated R-module with inj dimL < 1, then
inj dimL D depthR by Corollary 9.2.17. But then depthM C sup¹i W Exti .M;L/ ¤
0º D depthR by Theorem 9.2.16. So the result follows.
.1/, .3/. By the local duality (Theorem 9.5.17),

Exti .M;K/˝ R
OR Š Hom.Hd�i

m .M/;E.k//:

So M is maximal Cohen–Macaulay if and only if Hd�i
m .M/ D 0 for all i > 0 by

Theorem 9.5.11, and hence if and only if Exti .M;K/ D 0 for all i > 0.
.3/, .4/ is trivial since ExtiR.M;K/˝ R

OR Š ExtiR.M; OK/.

Exercises

1. Prove that if x D x1; x2; : : : ; xn is a sequence of elements of R, then K�.x/ D
K�.x1/˝ � � � ˝K�.xn/.

2. Let M be an R-module and x D x1; : : : ; xn be an M -sequence. Prove that
Hp.x;M/ D 0 for p > 0 and H0.x;M/ DM=xM .

3. Let M be an R-module and x D x1 : : : ; xn be a sequence of elements of R.
Prove that

(a) H0.x;M/ DM=xM .

(b) H 0.x;M/ D Hom.R=xR;M/ D ¹y 2M W xiy D 0 for i D 1; : : : ; nº.
(c) Hp.x;M/ is isomorphic to Hn�p.x;M ) for all p � 0.

4. An inverse system is said to be essentially zero if for each i > 0, there exists a
j > i such that Mj ! Mi is zero. Let 0 ! ..M 0

i /; .f
0
ij // ! ..Mi /; .fij // !

..M 00
i /; .f

00
ij // ! 0 be an exact sequence of inverse systems. Prove that if

..M 0
i /; .f

0
ij // and ..M 00

i /; .f
00
ij // are essentially zero, then so is ..Mi /; .fij //.
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5. Let � be a dualizing module of R. Prove that

(a) �p is a dualizing module of Rp for each p 2 SpecR.

(b) O� is a dualizing module of OR.

(c) If I is generated by anR-sequence, then�=I� is a dualizing module ofR=I .

6. (Herzog–Kunz [111] or Bruns–Herzog [32]) Prove that a dualizing module of R,
if it exists, is unique up to isomorphism.

7. Let R be a commutative Noetherian ring and k.p/ denote the quotient ring of
R=p. Prove that R is Gorenstein if and only if

flat dimRp
E.k.p// D proj dimRp

E.k.p// D ht p

for all p 2 SpecR.



Chapter 10

Gorenstein Modules

Auslander introduced the notion of G-dimension of finitely generated modules over
Cohen–Macaulay rings. It seems appropriate to call G-dimension 0 modules Goren-
stein projective. Our aim in this chapter is to define and study Gorenstein injective,
Gorenstein projective, and Gorenstein flat modules. The way we define Gorenstein
injective modules can be dualized and allow us to define Gorenstein projective mod-
ules (that is, modules of G-dimension 0) whether the modules are finitely generated
or not. These notions generalize the usual injective, projective, and flat modules.

10.1 Gorenstein Injective Modules

Definition 10.1.1. A module N is said to be Gorenstein injective if there exists a
Hom.Inj;�/ exact exact sequence

� � � ! E1 ! E0 ! E0 ! E1 ! � � �

of injective modules such thatN D Ker.E0 ! E1/. We note that in the above defini-
tion, the complex � � � ! E1 ! E0 ! E0 ! E1 ! � � � is a complete Inj-resolution
of N . Moreover, if N is a Gorenstein injective R-module, then Exti .E;N / D 0 for
all i � 1 and all injective R-modules E, or equivalently, every right Inj-resolution of
N is a left Inj-resolution. As a consequence, we have the following result.

Proposition 10.1.2. The injective dimension of a Gorenstein injective R-module is
either zero or infinite.

Proof. Suppose 0 ! N ! E0 ! E1 ! � � � ! En�1 ! En ! 0 is a right Inj-
resolution of a Gorenstein injective R-module N . Then it is also a left Inj-resolution
of En by the remarks above. But then the resolution is split exact since Ei 2 Inj for
each i . Thus N is injective.

If R is Noetherian, every R-module N has a (minimal) complete Inj-resolution
by Theorem 5.4.1. Furthermore, in this case we can compute left derived func-
tors Exti .M;N / of Hom.M;N / by using a right Inj-resolution of M or a left Inj-
resolution of N (see Example 8.3.5). Hence we get the following characterization of
Gorenstein injective modules where Exti .M;N / denote the standard derived functors
of Example 8.3.1.
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Proposition 10.1.3. Let R be a Noetherian ring. Then the following are equivalent
for an R-module N :

(1) N is Gorenstein injective.

(2) Exti .Q;N / D Exti .Q;N / D 0 for i � 1 and Ext0.Q;N / D Ext
0
.Q;N / D 0

for all projective or injective R-modules Q.

(3) Exti .Q;N / D Exti .Q;N / D 0 for i � 1 and Ext0.Q;N / D Ext
0
.Q;N / D 0

for all modules Q of finite projective or injective dimension.

(4) Every complete Inj-resolution of N is exact and Hom.Inj;�/ exact.

(5) Every left Inj-resolution of N is exact and Exti .E;N / D 0 for all i � 1 and
any injective R-module E.

(6) The minimal complete Inj-resolution of N is exact and Hom.Inj;�/ exact.

(7) The minimal left Inj-resolution of N is exact and Exti .E;N / D 0 for i � 1

and any injective R-module E.

Proof. .1/ ) .2/. If N is Gorenstein injective, let � � � ! E1 ! E0 ! E0 !
E1 ! � � � be as in Definition 10.1.1 above. If Q is projective, then the homology
groups vanish since the complex is exact. If Q is injective, then they vanish by defi-
nition of Gorenstein injective.
.2/ ) .3/. This follows by induction on the dimension using the extended long

exact sequences in part (1) of Theorem 8.2.7.
.2/) .4/. Let � � � ! E1 ! E0 ! E0 ! E1 ! � � � be a complete Inj-resolution

of N . Then the extension groups in the assumption can be computed by applying
Hom.Q;�/ and computing homology (see Proposition 8.2.9). If we set Q D R, we
get that the complex is exact. If Q is injective and we apply Hom.Q;�/, we again
get an exact sequence since the extension groups vanish and so (4) follows.
.3/) .2/; .4/) .5/ and .6/; .5/) .7/; and .6/) .7/ are trivial.
.7/) .1/ follows from the definitions of left Inj-resolution and Gorenstein injec-

tive.

Theorem 10.1.4. Let R be Noetherian and 0 ! N 0 ! N ! N 00 ! 0 be an exact
sequence ofR-modules. IfN 0; N 00 are Gorenstein injective, then so isN . IfN 0; N are
Gorenstein injective, then so is N 00. If N and N 00 are Gorenstein injective, then N 0 is
Gorenstein injective if and only if Ext1.E;N 0/ D 0 for all injective R-modules E.

Proof. If N 0 is Gorenstein injective, then Ext1.E;N 0/ D 0 for all injectives E. But
Ext1.E;N 0/ D 0 implies that 0! Hom.E;N 0/! Hom.E;N /! Hom.E;N 00/!
0 is exact. So we get the extended long exact sequence of part (1) of Theorem 8.2.7.
Hence if any two of N 0; N or N 00 are Gorenstein injective, then so is the third.
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Remark 10.1.5. We note that if R is Noetherian and N is Gorenstein injective, then
any complete Inj-resolution � � � ! E1 ! E0 ! E0 ! E1 ! � � � of N is exact
and each of Ki D Ker.Ei ! EiC1/, KiC2 D Ker.EiC1 ! Ei / for i � 0, K1 D
Ker.E0 ! E0/ is Gorenstein injective by Proposition 10.1.3. In particular, E0=N
and Ker.E0 ! N/ are Gorenstein injective and E0 ! N is surjective. So we have
the following result recalling that a module is said to be reduced if it has no nonzero
injective submodules.

Proposition 10.1.6. Let R be Noetherian. If N is a reduced Gorenstein injective
R-module and E ! N is its injective cover, then E ! N is surjective, K D
Ker.E ! N/ is reduced and Gorenstein injective and K � E is an injective en-
velope.

Proof. It only remains to argue that K � E is essential. But if E 0 � E is injective
and K \ E 0 D 0, then E 0 is isomorphic to a submodule of E=K Š N . So E 0 D 0

since N is reduced.

Corollary 10.1.7. If N is a nonzero reduced Gorenstein injective R-module, then N
has infinite injective and projective dimensions.

Proof. The first part is a special case of Proposition 10.1.2 or simply note that if
Ki D 0, then N D 0 and so N has infinite injective dimension.

Now let 0 ! KiC1 ! Ei .N / ! Ei�1.N / ! � � � ! E0.N / ! N ! 0 be
the minimal left Inj-resolution of N . Then this is also a minimal right Inj-resolution
of KiC1 for i � 0. So Ext1.N;K1/ Š ExtiC1.N;KiC1/. But 0 ! K1 ! E0 !
N ! 0 does not split and so Ext1.N;K1/ ¤ 0. Thus ExtiC1.N;KiC1/ ¤ 0 for any
i � 1. Hence N has infinite projective dimension.

Proposition 10.1.8. Let R be n-Gorenstein and M be an R-module. If 0 ! M !
E0 ! E1 ! � � � ! Ei�1 ! C i ! 0 is a right Inj-resolution of M , then Ei�1 !
C i is an injective precover for each i � n C 1. If furthermore the resolution is
minimal, then C i is reduced for each i � nC1, andEi�1 ! C i is an injective cover
for all i > nC 1.

Proof. En! EnC1! � � � is a left Inj-resolution by Theorem 9.1.11 and soEi�1!
C i is an injective precover for each i � nC 1.

Now suppose the resolution is minimal. If E is an injective submodule of C nC1,
then we have a factorization E ! En ! C nC1 of the inclusion E � C nC1 since
En ! C nC1 is an injective precover from the above. If E ¤ 0, then this would
contradict the minimality of the resolution. So C nC1 is reduced.

We now note that C nC1 D Ker.EnC1 ! EnC2/ and EnC1 ! C nC2 is an
injective precover. So EnC1 has a summand E (say EnC1 D E ˚ E 0) with E !
C nC2 an injective cover and E 0 in the kernel of EnC1 ! C nC2. But then E 0 �
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C nC1. So E 0 D 0 since C nC1 is reduced. Thus EnC1 ! C nC2 is a cover. The same
argument works for Ei ! C iC1 when i � nC 2.

Corollary 10.1.9. Let M , N be R-modules and

0!M ! E0 ! E1 ! � � � ! Ei ! C iC1 ! 0

and
0! N ! H 0 ! H 1 ! � � � ! H i ! DiC1 ! 0

be right Inj-resolutions ofM and N respectively where i � n. If f W C iC1 ! DiC1
is any homomorphism, then there exist maps En ! Hn; : : : ; Ei ! H i such that the
diagram

En

��

�� EnC1

��

�� � � � �� Ei

��

�� C iC1

f
��

�� 0

Hn �� HnC1 �� � � � �� H i �� DiC1 �� 0

is a commutative diagram.
Furthermore, if the resolutions are minimal and f is an isomorphism, then each of

the maps EnC1 ! HnC1; : : : ;H i ! Ei are also isomorphisms.

Proof. The result follows from the proposition above and definitions of precovers and
covers.

Corollary 10.1.10. If the minimal right Inj-resolution 0 ! M ! E0.M/ !
E1.M/ ! � � � is eventually periodic, then the complex EnC1.M/ ! EnC2.M/ !
� � � is also periodic.

Proof. Any isomorphism C i ! C iCm for i > nC 1 and m > 0 induces an isomor-
phism C nC1 ! C nC1Cm by the Corollary above.

We note that Corollary 10.1.10 above is similar to a result of Eisenbud [46] con-
cerning minimal projective resolutions over hypersurface rings.

Proposition 10.1.11. Let R be Noetherian and inj dimRR D n. If

� � � ! E2 ! E1 ! E0 !M ! 0

is a left Inj-resolution of an R-module M and Ci D Coker.EiC1 ! Ei /, then
Ci ! Ei�1 is an injection for i � n � 1. If furthermore, the resolution is minimal,
then Ci is reduced for each i � n and Ci ! Ei�1 is an injective envelope for
i � nC 1.
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Proof. � � � ! EnC1 ! En ! En�1 ! En�2 is exact by Theorem 8.4.36. So
Ci ! Ei�1 is an injection for each i � n� 1. Now suppose i � n and the resolution
is minimal. Then Ei�1 ! Ci�1 is an injective cover with kernel Ci . But the kernel
of an injective cover is reduced. So Ci is reduced for i � n.

Now if i > n and E is an injective submodule of Ei�1 such that E \Ci D 0, then
Ei�1 ! Ci�1 maps E isomorphically into Ci�1. But Ci�1 is reduced by the above.
So E D 0 and hence Ci ,! Ei�1 is an injective envelope.

Corollary 10.1.12. Let M , N be R-modules and

0! CiC1 ! Ei .M/! � � � ! E0.M/!M ! 0

and
0! DiC1 ! Ei .N /! � � � ! E0.N /! N ! 0

be left Inj-resolutions ofM andN respectively with i � n�2 and f W CiC1 ! DiC1
be any homomorphism, then there exists a commutative diagram

0 �� CiC1

f

��

�� Ei .M/

��

�� � � � �� En�2.M/

��
0 �� DiC1 �� Ei .N / �� � � � �� En�2.N /

Furthermore, if the resolutions are minimal and f is an isomorphism, then so are
each of the maps Ei .M/! Ei .N /; � � � ; En.M/! En.N /.

Proof. This follows from the proposition above and the definition of an injective en-
velope.

We are now in a position to show that there is an abundant supply of Gorenstein
injective modules.

Theorem 10.1.13. Suppose R is n-Gorenstein and M is an R-module. Then

(1) If 0 ! M ! E0 ! E1 ! � � � is a right Inj-resolution of M and C i D
Ker.Ei ! EiC1/ for i � 0, then C i is Gorenstein injective for i � n, and is
reduced for i � nC 1 if the resolution is minimal.

(2) If � � � ! E1 ! E0 ! M ! 0 is a left Inj-resolution of M and Ci D
Coker.EiC1 ! Ei / for i � 0, then Ci is Gorenstein injective for i � n � 1,
and is reduced for i � n if the resolution is minimal.

Proof. By Theorem 9.1.11, if i � n, then any right Inj-resolution 0! C i ! Ei !
EiC1 ! � � � of C i is also a left Inj-resolution. But then any left Inj-resolution of C i
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� � � ! E1 ! E0 ! C i ! 0 is exact by Theorem 8.4.36. Pasting these sequences
together, we get a Hom.Inj;�/ exact exact sequence

� � � ! E1 ! E0 ! Ei ! EiC1 ! � � �

of injective modules. So C i is Gorenstein injective. If i � n C 1 and the right Inj-
resolution of M is minimal, then C n is reduced by Proposition 10.1.8.

The proof of (2) follows similarly from Theorem 9.1.11 and Proposition 10.1.11.

Remark 10.1.14. If G is a finite group, then it is easy to see that the group ring ZG
is 1-Gorenstein for

0! ZG ! QG ! QG=ZG ! 0

is an exact sequence of left and right ZG-modules. But QG Š Q ˝Z ZG Š
HomZ.ZG;Q/ is an injective ZG-module (see Brown [31]). Similarly QG=ZG is
injective.

>rom this we can argue that a ZG-module is Gorenstein injective if and only if it
is a divisible Z-module. The condition is necessary since every injective ZG-module
is divisible and M is a quotient of an injective module. Conversely, if M is divisible,
then HomZ.ZG;M/ is injective. But HomZ.ZG;M/ Š ZG ˝Z M and there is
a surjection ZG ˝Z M ! M . So M is Gorenstein injective by Theorem 10.1.13
above.

Proposition 10.1.15. The following are equivalent for an R-module M :

(1) Ext1.M;N / D 0 for all Gorenstein injective modules N .

(2) Exti .M;N / D 0 for all i � 1 and all Gorenstein injective modules N .

(3) Ext
0
.M;N / D 0 for all Gorenstein injective modules N .

(4) Ext0.M;N / D 0 for all Gorenstein injective modules N .

(5) Ext1.M;N / D 0 for all Gorenstein injective modules N .

(6) Exti .M;N / D 0 for all i � 1 and all Gorenstein injective modules N .

If furthermore R is n-Gorenstein, then each of the above statements is equivalent to

(7) M has finite injective dimension.

(8) M has finite projective dimension.

(9) M has finite injective dimension at most n.

(10) M has finite projective dimension at most n.
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Proof. .1/) .2/. We consider the exact sequence 0 ! N ! E0.N / ! N 00 ! 0.
Then Ext1.M;N 00/ Š Ext2.M;N /. But Ext1.M;N 00/ D 0 by assumption since N 00
is Gorenstein injective. So Ext2.M;N / D 0. So .2/ follows by induction.
.2/) .1/ and .6/) .5/ are trivial.
.1/ , .3/ We now consider the exact sequences 0 ! N ! E0.N / ! N 00 ! 0

and 0 ! N 0 ! E0.N / ! N ! 0. Then Ext
0
.M;N 00/ Š Ext1.M;N / and

Ext
0
.M;N / Š Ext1.M;N 0/ by part (1) of Theorem 8.2.7. So the result follows since

N 0 and N 00 are Gorenstein injective.
.3/, .4/ and .3/, .5/ follow similarly from the extended long exact sequence

in Theorem 8.2.7.
.5/) .6/. Using the exact sequence 0! N 0 ! E0.N /! N ! 0 and Theorem

8.2.7, we get that Ext2.M;N / Š Ext1.M;N 0/ and so Ext2.M;N / D 0. The result
then follows by induction.
.6/) .9/. Let 0! M ! E0.M/! � � � ! En�1.M/! C n ! 0 be the mini-

mal right Inj-resolution of M . Then C n is Gorenstein injective by Theorem 10.1.13.
So Extn.M;C n/ D 0. But then Hom.EnC1.M/; C n/ ! Hom.En.M/; C n/ !
Hom.En�1.M/; C n/ is exact and so C n is a retract of En.M/. Thus C n is injective.
.7/, .8/, .9/, and .10/ are equivalent by Theorem 9.1.10 and .8/) .1/ by Propo-

sition 10.1.3.

Exercises

1. Prove that (2) implies (3) in Proposition 10.1.3.

2. Let N be a reduced Gorenstein injective left R-module. Prove that

(a) the kernels Ki ; Ki in the complete minimal Inj-resolution of N are reduced
and Gorenstein injective.

(b) for any i , Ki D 0 if and only if N D 0 if and only if Ki D 0.

3. Prove Corollary 10.1.9.

4. Prove Corollary 10.1.12.

5. Prove part 2 of Theorem 10.1.13.

6. Let R be an n-Gorenstein commutative ring. Prove that if G is a Gorenstein
injective R-module, then S�1G is a Gorenstein injective S�1R-module for each
multiplicative subset S of R.

7. Let R be a commutative Noetherian ring of finite Krull dimension. Prove that
an R-module M is Gorenstein injective if and only if Hom.F;M/ is Gorenstein
injective for all flat R-modules F .

Hint: proj dimF <1 in this case.

8. An R-module N is said to be mock finitely generated if for any finitely generated

R-module M , each of Exti .M;N /, Exti .M;N /, Ext
R

0 .M;N /, and Ext
0

R.M;N /



256 Chapter 10 Gorenstein Modules

are finitely generated R-modules where Exti .M;N / are the left derived functors
obtained by using a left Inj-resolution ofN or a right Inj-resolution ofM . Prove
the following

(a) If 0 ! N 0 ! N ! N 00 ! 0 is a Hom.Inj;�/ exact exact sequence of
R-modules, then if any two of N 0; N;N 00 are mock finitely generated then so
is the third.

(b) If N is mock finitely generated, and C is a cosyzygy of a finitely generated
R-module, then ExtRi .C;N / is finitely generated for all i � 1.

(c) Let R be a commutative Noetherian ring. Then every finitely generated R-
module is mock finitely generated (see Enochs–Jenda [68, Proposition 3.2]).

9. Let R be a Gorenstein commutative ring, M a Gorenstein injective R-module,
and C a cosyzygy of a finitely generated R-module. Prove that

(a) ExtRi .C;M/p Š ExtRp

i .Cp;Mp/ for all i � 1 for all p 2 SpecR.

(b) ExtiR.C;M/p Š ExtiRp
.Cp;Mp/ for all i � 1 for all p 2 SpecR.

10. LetR andM be as in the previous problem, andN be a finitely generatedR-mod-
ule. Prove that ExtRi .N;M/p Š ExtRp

i .Np;Mp/ for all i � 0 and all p 2 SpecR.

11. Let R be a local ring with maximal ideal m and residue field k. Let � � � ! E1 !
E0 !M ! 0 be the minimal left Inj-resolution of M and vi .p;M/ denote the
number of components of Ei that are isomorphic to E.R=p/ where p 2 SpecR.
Prove that

(a) vi .m;M/ D dimk ExtRi .k;M/

(b) If R is Gorenstein and M is a reduced Gorenstein injective R-module, then
for each p 2 SpecR,

vi .p;M/ D dimk.p/ ExtRp

i .k.p/;Mp/ D dimk.p/ ExtRi .R=p;M/p:

In particular, if M is mock finitely generated, then vi .p;M/ <1 for all i .

10.2 Gorenstein Projective Modules

We now dualize the notion of Gorenstein injective modules introduced in the previous
section.

Definition 10.2.1. A module M is said to be Gorenstein projective if there is a
Hom.�;Proj / exact exact sequence

� � � ! P1 ! P0 ! P 0 ! P 1 ! � � �
of projective modules such that M D Ker.P 0 ! P 1/.
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Remark 10.2.2. The complex above is a complete Proj -resolution of M . We note
that if M is Gorenstein projective, then Exti .M;P / D 0 for all i � 1 and all pro-
jective R-modules P and so by induction, Exti .M;L/ D 0 for all i � 1 and all
R-modules L of finite projective dimension. In particular, every left Proj -resolution
of M is Hom.�;Proj / exact. So we have a dual result to Proposition 10.1.2.

Proposition 10.2.3. The projective dimension of a Gorenstein projective module is
either zero or infinite.

We will be needing the following two results the first of which is a generalization
of Lemma 3.1.16.

Lemma 10.2.4. Let R be left coherent, M be a finitely presented R-module, and
lim�!Nj be a directed limit of R-modules. Then

ExtiR.M; lim�!Nj / Š lim�!ExtiR.M;Nj / for all i � 0:

Proof. This follows as in the proof of Lemma 3.1.16 by Remark 2.3.12.

Lemma 10.2.5. If R is left coherent and M is a finitely presented R-module, then a
complex 0! M ! P 0 ! P 1 ! � � � with P i finitely generated and projective is a
right F lat-resolution if and only if the dual complex � � � ! P 1� ! P 0� !M � ! 0

is exact.

Proof. If F is a flat R-module, then we can write F D lim�!Fj with each Fj finitely

generated and free. So if the dual sequence is exact, then � � � ! Hom.P 1; Fj / !
Hom.P 0; Fj / ! Hom.M;Fj / ! 0 is exact. But Hom.N;�/ commutes with direct
limits when N is finitely presented by the previous lemma and so the claim follows
since the direct limit functor preserves exactness. The converse is trivial.

Although modules M always have projective precovers, they many not have pro-
jective preenvelopes. However, if R is left coherent and M is a finitely presented
right R-module, thenM has a finitely generated projective preenvelope. Thus we can
construct a right Projfg-resolution of M . So we can compute left derived functors
Extn.M;N / by using a right Projfg-resolution of M or a flat resolution of N (see
Example 8.3.11).

If furthermore R is right coherent, then M also has a left Projfg-resolution (see
Example 8.3.3) and thus in this case the module M has a complete Projfg-resolution.

We are now in a position to state the following result which is dual to Proposi-
tion 10.1.3.

Proposition 10.2.6. Let R be left coherent and M be a finitely presented right R-
module. Then the following are equivalent:
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(1) M is Gorenstein projective.

(2) Exti .M;Q/ D Exti .M;Q/ D 0 for i � 1 and Ext0.M;Q/ D Ext
0
.M;Q/ D 0

for all projective or injective R-modules Q.

(3) Exti .M;Q/ D Exti .M;Q/ D 0 for i � 1 and Ext
0
.M;Q/ D Ext0.M;Q/ D 0

for all modules Q of finite projective or injective dimension.

(4) Every right Projfg-resolution of M is exact and Exti .M;P / D 0 for all i � 1
and all projective R-modules P .

If furthermoreR is right coherent, then each of the above statements are equivalent
to the following:

(5) Every complete Projfg-resolution of M is exact and Hom.�;Proj / exact.

(6) There exists an exact sequence � � � ! P1 ! P0 ! P 0 ! P 1 ! � � � of
projective modules such that M D Ker.P0 ! P 0/ and Hom.�; R/ leaves the
sequence exact.

(7) Exti .M;R/ D Exti .M;R/ D 0 for i � 1 and Ext0.M;R/ D Ext
0
.M;R/ D 0.

(8) Every complete Projfg-resolution of M is exact and remains exact when
Hom.�; R/ is applied to it.

(9) Every right Projfg-resolution of M is exact and Exti .M;R/ D 0 for all i � 1.

(10) M is reflexive and Exti .M;R/ D Exti .M �; R/ D 0 for all i > 0.

(11) Every complete Projfg-resolution of M is exact and Hom.�;F lat/ exact.

Proof. The equivalence of (1) through (4) and (5) through (9) follow as in Proposition
10.1.3.
.4/) .9/ and .11/) .8/ are trivial.
.9/) .4/. Let P be a projective R-module. Then P is a direct summand of a free

R-module, say F D P ˚ P 0. So ExtiR.M;F / Š ExtiR.M;P /˚ ExtiR.M;P
0/. But

ExtiR.M;F / Š lim�!ExtiR.M;R/ by Lemma 10.2.4 above. So ExtiR.M;P / D 0 and
thus we are done.
.9/ , .10/. If 0 ! M ! P 0 ! P 1 ! � � � is a right Projfg-resolution of

M , then it is exact and so 0 ! M �� ! P 0�� ! P 1�� ! � � � is also exact since
finitely generated projective modules are reflexive. In particular, M is reflexive and
Exti .M �; R/ D 0 for all i > 0. Conversely, if Exti .M �; R/ D 0 and M is reflexive,
then 0!M ! P 0 ! P 1 ! � � � is exact.
.8/ ) .11/. Let � � � ! P1 ! P0 ! P 0 ! P 1 ! � � � be a complete Projfg-

resolution of M . Then � � � ! P 1� ! P 0� ! P �0 ! P �1 ! � � � is exact and so
sequences � � � ! P1 ! P0 and P 0 ! P 1 ! � � � are right F lat-resolutions by
Lemma 10.2.5 above.
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Corollary 10.2.7. Let R be a local Cohen–Macaulay ring. Then every finitely gener-
ated Gorenstein projective R-module is maximal Cohen–Macaulay.

Proof. This follows from the Proposition above and Proposition 9.5.23.

Theorem 10.2.8. Let R be left coherent and 0 ! M 0 ! M ! M 00 ! 0 be
an exact sequence of finitely presented right R-modules. If M 0, M 00 are Gorenstein
projective, then so is M . If M;M 00 are Gorenstein projective, then so is M 0. If
M;M 0 are Gorenstein projective, then M 00 is Gorenstein projective if and only if
Ext1.M 00; P / D 0 for all finitely generated projective R-modules P .

Proof. 0 ! Hom.M 00; P / ! Hom.M;P / ! Hom.M 0; P / ! 0 is exact if
Ext1.M 00; P / D 0. So we have the extended long exact sequence of part (2) of
Theorem 8.2.7 since Projfg is a preenveloping class (see Example 8.3.10). Thus if
any two of M 0;M;M 00 are Gorenstein projective, then so is the third.

Remark 10.2.9. There are results concerning Gorenstein projective modules analo-
gous to those of Gorenstein injective modules.

Even though finitely presented right R-modules over left coherent rings R have
projective precovers and preenvelopes, they may fail to have covers and envelopes.
However, if they do have covers and envelopes, for example when R is a local ring
(see Theorem 5.3.3 and Proposition 6.6.8), then all the results in Section 7.1 have
counterparts for Gorenstein projective modules where in this setting reduced means
no nonzero projective summands. We now summarize some of these results below
omitting obvious corollaries.

We first note that if R is left and right coherent and M is a finitely presented
Gorenstein projective right R-module, then any complete Projfg-resolution � � � !
P1 ! P0 ! P 0 ! P 1 ! � � � of M is exact and each C i D Ker.P i ! P iC1/,
CiC2 D Ker.PiC1 ! Pi / for i � 0, C1 D Ker.P0 ! P 0/ are Gorenstein projec-
tive by Proposition 10.2.6. In particular, P 0=M and Ker.P0 ! M/ are Gorenstein
projective and M ! P 0 is a monomorphism. So we have the following result.

Proposition 10.2.10. Let R be a local left and right coherent ring, M be a reduced
finitely presented Gorenstein projective R-module, and M ! P be its flat envelope.
Then M ! P is a monomorphism, C D Coker.M ! P / is reduced and Gorenstein
projective, and P ! C is a projective cover.

Proof. M ! P is a monomorphism and C is Gorenstein projective from the above.
Now let P 0 be a projective summand of C . Then P D P 0 ˚ P 00 for some projective
P 00. But then M ! P 00 is a flat preenvelope of M since M is reduced. So P 0 D 0.
Thus C is reduced.
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Now let  W P0 ! C be a projective cover. Then we consider the following
commutative diagram.

P0
 

��

f
��

C �� 0

0 �� M �� P

g

��

'
�� C �� 0

P0
 

�� C �� 0

But g ı f is an automorphism. So P D Imf ˚ Kerg and  ı g D  . Therefore
Kerg 
 Ker DM . But M is reduced. So Kerg D 0 and thus P Š P0 and we are
done.

Corollary 10.2.11. IfM is a nonzero reduced finitely presented Gorenstein projective
R-module, then M has infinite projective and injective dimensions.

Proposition 10.2.12. Let R be n-Gorenstein and M be an R-module. If 0 ! Ci !
Pi�1 ! � � � ! P1 ! P0 ! M ! 0 is a projective resolution of M , then Ci ,!
Pi�1 is a flat preenvelope for i � nC 1. If furthermore, flat envelopes exist and the
resolution is minimal, then Ci is reduced for each i � n C 1, and Ci ,! Pi�1 is a
flat envelope for all i > nC 1.

Proof. The first part follows from Theorem 9.1.11. The rest follows using an argu-
ment dual to that of Proposition 10.1.8.

Lemma 10.2.13. Let R be n-Gorenstein. Then the class L of R-modules of finite
injective dimension is preenveloping.

Proof. Let M be an R-module with CardM � @˛ and let L 2 L. Let f W M ! L

be any map and let x0 2 M . By Proposition 7.4.5, there is a submodule L0 of L
with CardL0 � CardR such that f .x0/ 2 L0 and L0; L=L0 2 L. Now consider the
map M ! L ! L=L0 and choose x1 2 M . Then using Proposition 7.4.5 again,
we can find a submodule L00 of L with CardL00 � CardR such that f .x1/ 2 L00,
L0 � L00, and L00; L00=L0 2 L. So f .x0/; f .x1/ 2 L00 and L=L00 2 L. But L is
closed under direct limits. So if we well order M and proceed in this manner, we see
that we can find a submodule NL of L with Card NL � @˛ �CardR such that f .M/ � NL
and NL;L= NL 2 L. Hence the result follows by Proposition 6.2.1.

We note that the preenvelopes guaranteed by the lemma above are monomorphisms
since L contains injective modules.
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Theorem 10.2.14. Let R be n-Gorenstein, � � � ! P1 ! P0 ! M ! 0 be a projec-
tive resolution of an R-module M , and Ci D Coker.PiC1 ! Pi / for i � 0, then Ci
is Gorenstein projective for i � n, and is reduced for i � nC 1 if flat envelopes exist
and the resolution is minimal.

Proof. Let i � n. Then Extj .Ci ; P / D 0 for all j � 1 and for all projective R-
modules P by Proposition 10.2.12 above. So it suffices to show that Ci has an exact
right Proj-resolution. But by the remark above, Ci has an injective L-preenvelope
Ci ! L. Now let 0! K ! Q! L! 0 be exact with Q projective. Then K 2 L.
But Extj .Ci ; L/ D 0 for all j � 1 and for all L 2 L by induction. So in particular
Ext1.Ci ; K/ D 0. Hence Hom.Ci ;Q/ ! Hom.Ci ; L/ ! 0 is exact and so the map
Ci ! L above can be lifted to an injective projective preenvelope Ci ! Q. Then
Extj .Q=Ci ; P / D 0 for all j � 1 and all projectives P . But Q=Ci has an injective
L-preenvelope and so by the above it also has an injective projective preenvelope.
We proceed in this manner to get an exact right Proj-resolution of Ci . Hence Ci is
Gorenstein projective.

The second part follows from Proposition 10.2.12 above.

Proposition 10.2.15. Let R be a left Noetherian ring with inj dimRR D n, and M
be a finitely presented right R-module. If 0 ! M ! P 0 ! P 1 ! � � � is a right
Projfg-resolution of M and C i D Ker.P i ! P iC1/, then P i�1 ! C i is surjective
for i � n � 1. If furthermore, projective covers exist and the resolution is minimal,
then C i is reduced for each i � n and P i�1 ! C i is a projective cover for i � nC1.

Proof. The first part follows from Theorem 8.4.36. If i � n and the resolution is
minimal, then C i�1 ! P i�1 is a projective envelope with cokernel C i . But then
C i is reduced. It remains to show P i�1 ! C i is a cover. But this follows as in
Proposition 10.2.10 above since C i�1 is reduced.

Theorem 10.2.16. Let R be n-Gorenstein and M be a finitely presented left R-mod-
ule. If 0 ! M ! P 0 ! P 1 ! � � � is a right Projfg-resolution of M and C i D
Ker.P i ! P iC1/ for i � 0, then C i is Gorenstein projective for i � n � 1, and is
reduced for i � n if the resolution is minimal.

Proof. This follows from Theorem 9.1.11 and Proposition 10.2.15 above.

Proposition 10.2.17. Let R be left coherent. Then the following are equivalent for a
right R-module N :

(1) Ext1.M;N / D 0 for all finitely presented Gorenstein projective right R-mod-
ules M .

(2) Exti .M;N / D 0 for all i � 1 and all finitely presented Gorenstein projective
right R-modules M .
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(3) Ext
0
.M;N / D 0 for all finitely presented Gorenstein projective rightR-module

M .

(4) Ext0.M;N / D 0 for all finitely presented Gorenstein projective right R-mod-
ules M .

(5) Ext1.M;N / D 0 for all finitely presented Gorenstein projective right R-mod-
ules M .

(6) Exti .M;N / D 0 for all i � 1 and all finitely presented Gorenstein projective
right R-modules M .

If furthermore R is n-Gorenstein and N is a finitely presented right R-module, then
each of the above statements is equivalent to

(7) N has finite injective dimension at most n.

(8) N has finite projective dimension at most n.

Proof. This follows as in Proposition 10.1.15 using corresponding dual results.
We now provide a proof for .6/ ) .8/ for completeness. Let N be a finitely

generated right R-module and 0 ! Cn ! Pn�1 ! Pn�2 ! � � � ! P1 ! P0 !
N ! 0 be a projective resolution of N with Pi finitely generated. Then Cn is finitely
generated. But Cn is Gorenstein projective by Theorem 10.2.14. So Extn.Cn; N / D
0. Thus Hom.Cn; PnC1/ ! Hom.Cn; Pn/ ! Hom.Cn; Pn�1/ is exact. So Cn is a
summand of Pn and thus N has projective dimension at most n.

Remark 10.2.18. A similar argument to Remark 10.1.14 shows that a finitely gener-
ated ZG-module is Gorenstein projective if and only if it is a free Z-module.

Exercises

1. Prove Proposition 10.2.3.

2. Prove Corollary 10.2.7.

3. Prove Corollary 10.2.11.

4. Prove Proposition 10.2.12.

5. Prove Remark 10.2.18.

6. (Enochs–Jenda [63]). Let R be n-Gorenstein and N be a Gorenstein injective
R-module. Then prove that the following are equivalent.

(a) N is mock finitely generated.

(b) For every finitely generated Gorenstein projective R-module M , each of

ExtRi .M;N /, Ext
R

0 .M;N /, Ext
R

0 .M;N /, and ExtiR.M;N / are finitely gener-
ated for all i � 1.

(c) For every finitely generated Gorenstein projectiveR-moduleM , Ext1R.M;N /
is finitely generated.
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7. Let R be n-Gorenstein and M be a finitely generated R-module. Prove that
if 0 ! M ! E0 ! E1 ! � � � is a right Inj-resolution of M and C i D
Ker.Ei ! EiC1/, then C i is a mock finitely generated Gorenstein injective
R-module for all i � n.

8. Let R be a complete local ring. Prove that the following are equivalent for a
nonzero Artinian R-module M .

(1) M is Gorenstein injective.

(2) M v is Gorenstein projective.

(3) Hom.E.k/;M/ is a nonzero Gorenstein projective R-module.

9. (Enochs–Jenda [69]). Let R be a complete local ring. Prove that the following
are equivalent for nonzero R-module M .

(1) M is a finitely generated Gorenstein injective R- module.

(2) M is of finite length and M v is Gorenstein projective.

(3) M is of finite length and Hom.E.k/;M/ is a nonzero Gorenstein projective
R-module.

In this case, R is either 0-Gorenstein, that is quasi–Frobenius, or inj dimR D1.

10.3 Gorenstein Flat Modules

Definition 10.3.1. A moduleM is said to be Gorenstein flat if there exists an Inj˝�
exact exact sequence

� � � ! F1 ! F0 ! F 0 ! F 1 ! � � �

of flat modules such that M D Ker.F 0 ! F 1/.
It follows from this definition that Tori .E;M/ D 0 for all i � 1 and any injective

module E. We will show in Theorem 10.3.8 below that over n-Gorenstein rings, this
condition in fact characterizes Gorenstein flat modules.

If M is a finitely presented Gorenstein projective R-module over a left and right
coherent ring, then M has a complete Projfg-resolution � � � ! P1 ! P0 ! P 0 !
P 1 ! � � � . But then subcomplexes � � � ! P1 ! P0 ! M ! 0 and 0 ! M !
P 0 ! P 1 ! � � � are Hom.�;F lat/ exact by Proposition 10.2.6. Thus if E is an
injective right R-module, then

� � � ! E ˝ P1 ! E ˝ P0 ! E ˝ P 0 ! E ˝ P 1 ! � � �

is exact as in Example 8.3.9. Hence we have the following result.
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Proposition 10.3.2. Let R be left and right coherent. Then every finitely presented
Gorenstein projective R-module is Gorenstein flat.

Proposition 10.3.3. If R is Noetherian and M is a Gorenstein flat R-module, then
the character module MC is a Gorenstein injective right R-module.

Proof. If M is Gorenstein flat, then there exists an exact sequence � � � ! F1 !
F0 ! F 0 ! F 1 ! � � � of flat R-modules such that � � � ! E ˝ F1 ! E ˝ F0 !
E ˝ F 0 ! E ˝ F 1 ! � � � is exact for all injective right R-modules E where
M D Ker.F 0 ! F 1/. But then � � � ! .E ˝ F 1/C ! .E ˝ F 0/C ! .E ˝
F0/

C ! .E ˝ F1/C ! � � � is exact. So � � � ! Hom.E; F 1C/! Hom.E; F 0C/!
Hom.E; FC0 / ! Hom.E; FC1 / ! � � � is exact for all injectives E. But � � � !
F 1C ! F 0C ! FC0 ! FC1 ! � � � is an exact sequence of injective right R-
modules with MC D Ker.FC0 ! FC1 /. Hence MC Gorenstein injective.

Corollary 10.3.4. The flat dimension of a Gorenstein flat module is either zero or
infinite.

Lemma 10.3.5. Let R be right coherent, M be an R-module, and 0!M ! F 0 !
F 1 ! � � � be a right F lat-resolution. Then Tori .L;M/ D 0 for all i � 1 and all
right R-modules L of finite injective dimension if and only if the sequence � � � !
L ˝ F1 ! L ˝ F0 ! L ˝ F 0 ! L ˝ F 1 ! � � � is exact for all such L where
� � � ! F1 ! F0 !M ! 0 is a flat resolution of M .

Proof. By Example 8.3.9, the sequence 0! E ˝M ! E ˝ F 0 ! E ˝ F 1 ! � � �
is exact since E is injective. So if F denotes the complex � � � ! F1 ! F0 ! F 0 !
F 1 ! � � � , then E ˝ F is an exact complex since Tori .E;M/ D 0 for all i � 1.

We now proceed to argue that the complex L ˝ F is exact by induction on m D
inj dimL. The case m D 0 is the above. If m D 1, let 0 ! L ! E0 ! E1 ! 0

be exact with E0; E1 injective. Then we have an exact sequence 0 ! L ˝ F !
E0˝ F! E1˝ F! 0 of complexes with the last two exact. Hence L˝ F is exact.
We then argue by induction in the obvious manner. The converse is trivial.

Lemma 10.3.6. Let R be n-Gorenstein andM be an R-module. Suppose there exists
an exact sequence 0 ! M ! F 0 ! F 1 ! � � � ! F n with F i flat. Then for each
finitely generated R-module N , any map N !M has a factorization N ! C !M

where C is a finitely generated Gorenstein projective R-module.

Proof. Consider the exact sequence 0! M ! F 0 ! F 1 ! � � � ! F n�1 ! L!
0. Let 0! N ! P 0 ! P 1 ! � � � ! P n�1 ! D ! 0 be a right Projfg-resolution
of N and 0! C ! Pn�1 ! Pn�2 ! � � � ! P1 ! P0 ! D ! 0 be exact with Pi
finitely generated projective. Then C is Gorenstein projective by Theorem 10.2.16.
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Now let f W N ! M be a map. Then we can form the following commutative
diagram with obvious commutativity.

0 �� N ��

f

��

hn

��,
,,
,,
, P 0 ��

f0

��

hn�1

��,
,,
,,
, P 1 ��

��

��,
,,
,,
, � � � �� P n�1 ��

fn�1

��

h0

��,
,,
,,
, D ��

fn

��

id
,,
,,
,,

,,
,,
,,

0

0 �� C ��

gn))--
--
--

Pn�1 ��

gn�1))--
--
--

Pn�2 ��

))--
--
--

� � � �� P0 ��

g0))--
--
--

D ��

fn))--
--
--

0

0 �� M �� F 0 �� F 1 �� � � � �� F n�1 �� L �� 0

By homotopy, f �gn ıhn can be factored through P 0. So f can be factored through
C ˚ P 0. Thus the result follows since C ˚ P 0 is Gorenstein projective.

The argument in the proof of the following result is a modification of an analogous
result in Lazard’s thesis [137].

Lemma 10.3.7. Let R be any ring and M be an R-module. If for each finitely gen-
erated R-module N , any map N ! M has a factorization N ! C ! M where
C is a finitely generated Gorenstein projective R-module, then M is a direct limit of
some inductive system ..Ci /; .fj i // where each Ci is a finitely generated Gorenstein
projective R-module.

Proof. We construct a set of pairs .C; f / where C is a finitely generated Gorenstein
projective R-module and f W C ! M is a map which includes every such C ! M

up to isomorphism.
Let D D L

C , over all such pairs .C; f /, and let g W D ! M be given by the
maps in the pairs .C; f /. Now set D DL1

iD1Di where Di D D for each i and let
D ! M agree with g on each Di . Consider the directed set .S; U / where U is the
sum of a finite number of summands C (for various pairs .C; f / and various i ) and S
is a finitely generated submodule of U with S � Ker.D ! M/. Order the pairs by
.S; U / � .S 0; U 0/ if and only if S � S 0, U � U 0. Then easily lim�!U=S ŠM .

But U=S is finitely generated. So by the hypothesis, the map U=S ! M has a

factorization U=S
Nh! C

Nf!M where we can suppose .C ; f / is in our original set of
pairs. We now note that each of the summands C in U is a summand of some Di . So
let n0 be a nonnegative integer such that n0 ¤ i for all such i , and U be the sum of
U and C as a summand of Dn0

. We write U D U ˚ C .

Now let h be the map U ! U=S
Nh! C and define S D ¹.u;�h.u// W u 2 U º.

Then U=S Š C and S � Ker.D ! M/. If u 2 S , then h.u/ D 0 and so S � S .
Hence .U; S/ � .U ; S/. Note that U=S is Gorenstein projective since C is. Thus
we have constructed a cofinal subset of the pairs .S; U / such that U=S is finitely
generated and Gorenstein projective. This completes the proof.
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We are now in a position to prove the main result of this section.

Theorem 10.3.8. Let R be n-Gorenstein andM be an R-module. Then the following
are equivalent:

(1) M is Gorenstein flat.

(2) There exists an exact sequence 0 ! M ! F 0 ! F 1 ! � � � ! F n with each
F i flat.

(3) IfN is any finitely generated R-module, then any mapN !M can be factored
through a finitely generated Gorenstein projective R-module.

(4) M Š lim�!Ci for some inductive system ..Ci /; .fj i // where each Ci is a finitely
generated Gorenstein projective R-module.

(5) Tori .E;M/ D 0 for all i � 1 and all injective right R-modules E.

(6) Tori .E;M/ D 0 for 1 � i � n and all injective right R-modules E.

(7) MC is a Gorenstein injective right R-module.

(8) Tor1.L;M/ D 0 for all right R-modules L with inj dimL <1.

(9) Tori .L;M/ D 0 for all i � 1 and all right R-modules L with inj dimL <1.

Proof. .1/) .2/, .5/) .6/, and .9/) .8/ are trivial, .2/) .3/ is Lemma 10.3.6,
.3/) .4/ is Lemma 10.3.7, and .1/) .7/ follows from Proposition 10.3.3.
.4/ ) .5/. Every finitely generated Gorenstein projective is Gorenstein flat by

Proposition 10.3.2 and so (5) follows since Tor commutes with direct limits.
.6/) .5/. proj dimE � n for each right injectiveR-moduleE by Theorem 9.1.10

since R is n-Gorenstein. So Tori .E;M/ D 0 for i � nC 1 and so (5) follows.
.5/ ) .9/. Let 0 ! L ! E0 ! E1 ! � � � ! Em ! 0 be exact with each Ei

injective. Then Tori .L;M/ Š TormCi .Em;M/ and so (9) follows.
.9/ ) .1/. Let F be as in Lemma 10.3.5. Then E ˝ F is exact for each injec-

tive right R-module E. Furthermore, inj dimR � n (as a right R-module). So the
complex F Š R˝ F is exact by Lemma 10.3.5 and so M is Gorenstein flat.
.8/) .9/. Suppose inj dimL <1 and 0! L0 ! P ! L! 0 is exact with P

projective. Then inj dimL0 <1 by Theorem 9.1.10 and so (9) follows by dimension
shifting.
.7/) .8/. Suppose MC is Gorenstein injective. Then there is an exact sequence

En ! En�1 ! � � � ! E1 ! E0 ! MC ! 0 where each Ei is injective. So we
have an exact sequence

0!MCC ! EC0 ! EC1 ! � � � ! ECn
with each ECi flat. But MCC satisfies (2) and hence (9) by the above. So
Tori .L;MCC/ D 0 for all i � 1 and for all right R-modules L such that inj dimL <

1. But 0!M !MCC !MCC=M ! 0 is pure exact. So Tor1.L;MCC=M/ D
0 for all such L. But then Tori .L;MCC=M/ D 0 for all i � 1 and all such L since
(8) is equivalent to (9). Hence (8) follows.
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Corollary 10.3.9. If R is n-Gorenstein and G is a Gorenstein injective left (right)
R-module, then GC is a Gorenstein flat right (left) R-module.

Proof. LetG be a Gorenstein injective leftR-module. Then there is an exact sequence
En ! � � � ! E1 ! E0 ! G ! 0 with the Ei ’s injective. Then 0 ! GC !
EC0 ! EC1 ! � � � ! ECn is exact with each ECi flat. So by Theorem 10.3.8, GC is
Gorenstein flat.

Corollary 10.3.10. If R is Gorenstein, then every Gorenstein projective R-module is
Gorenstein flat.

Proof. This is trivial since Gorenstein projective modules satisfy part (2) of the theo-
rem.

Corollary 10.3.11. If R is Gorenstein, then a finitely generated R-module is Goren-
stein flat if and only if it is Gorenstein projective.

Proof. Let M be a finitely generated Gorenstein flat R-module. Then the identity
map M ! M has a factorization M ! C ! M where C is a finitely generated
Gorenstein projective R-module by the theorem above. So M is isomorphic to a
direct summand of C and so is Gorenstein projective. The converse follows from
Proposition 10.3.2 or Corollary 10.3.10 above.

Corollary 10.3.12. If R is Gorenstein, then arbitrary products and sums and any
inductive limit of Gorenstein flat modules are Gorenstein flat.

Proof. (5) of the theorem shows that any inductive limit and arbitrary sums are Goren-
stein flat. The products are Gorenstein flat by (2).

Corollary 10.3.13. Let R be n-Gorenstein and M be an R-module. Then

(1) If � � � ! F1 ! F0 ! M ! 0 is a flat resolution of M and Ci D
Coker.FiC1 ! Fi / for i � 0, then Ci is Gorenstein flat for i � n.

(2) If 0 ! M ! F 0 ! F 1 ! � � � is a right F lat-resolution of M and C i D
Ker.F i ! F iC1/ for i � 0, then C i is Gorenstein flat for i � n � 1.

Proof. 1) Torj .L; Ci / Š ToriCj .L;M/. But if inj dimL < 1, then flat dimL � n
since R is n-Gorenstein and so ToriCj .L;M/ D 0 for all j � 1 and all i � n. Thus
if i � n, then Torj .L; Ci / D 0 for all i � 1. Hence Ci is Gorenstein flat for each
i � n by Theorem 10.3.8. (2) follows from (1) and Theorem 8.4.36.

Theorem 10.3.14. Suppose R is Gorenstein and 0 ! M 0 ! M ! M 00 ! 0 is an
exact sequence of R-modules. Then if M 0 and M 00 are Gorenstein flat, so is M . If
M and M 00 are Gorenstein flat, so is M 0. If M 0 and M are Gorenstein flat, then M 00
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is Gorenstein flat if and only if 0 ! E ˝M 0 ! E ˝M is exact for any injective
module E.

Proof. This follows from (5) and (8) of the theorem.

Exercises

1. Prove Corollary 10.3.4.

2. Prove part (2) of Corollary 10.3.13.

3. Prove Theorem 10.3.14.

4. Prove that if G is a finite group, then a ZG-module is Gorenstein flat if and only
if it is torsion free as a Z-module.

5. Prove that the following are equivalent for an n-Gorenstein ring R.

(a) R is quasi–Frobenius.

(b) Every R-module is Gorenstein injective.

(c) Every R-module is Gorenstein projective.

(d) Every R-module is Gorenstein flat.

6. Prove that the following are equivalent for an n-Gorenstein ring R.

(a) gl right Inj- dimRM <1.

(b) Every Gorenstein injective R-module is injective.

(c) Every Gorenstein projective R-module is projective.

(d) Every Gorenstein flat R-module is flat.

10.4 Foxby Classes

Throughout this section, R will denote a local Cohen–Macaulay ring of Krull dimen-
sion d admitting a dualizing module � and with residue field k.

Definition 10.4.1. G0.R/ will denote the class of R-modules M such that
Tori .�;M/ D Exti .�;� ˝M/ D 0 for all i � 1 and such that the natural map
M ! Hom.�;�˝M/ is an isomorphism. J0.R/ will denote the class of R-mod-
ules N such that Exti .�;N / D Tori .�;Hom.�;N // D 0 for all i � 1 and such
that the natural map � ˝ Hom.�;N / ! N is an isomorphism. G0.R/ and J0.R/

are called Foxby classes. This notation will also be used to denote the corresponding
full subcategories.
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Remark 10.4.2. The functor�˝� W G0.R/! J0.R/ gives an equivalence between
the two categories. Similarly, Hom.�;�/ W J0.R/! G0.R/ gives an equivalence. It
follows, for example, that if M1;M2 2 G0.R/, then

Hom.M1;M2/ Š Hom.M1;Hom.�;�˝M2// Š Hom.�˝M1; �˝M2/;

and if M1;M2 2 J0.R/, then

Hom.M1;M2/ Š Hom.Hom.�;M1/;Hom.�;M2//:

We state the following result for completeness.

Proposition 10.4.3. The following are equivalent for a ring R:

(1) R is Gorenstein.

(2) M 2 G0.R/ for all R-modules M .

(3) M 2 J0.R/ for all R-modules M .

Proof. .1/) .2/; .3/ trivially since � D R if R is Gorenstein.
.2/; .3/) .1/. If M 2 G0.R/ (or M 2 J0.R// for all M , then Tori .�;M/ D 0

(or Exti .�;M/ D 0/ for all R-modules M and all i � 1. Thus � is projective and
so finitely generated and free. But inj dim� D d . So R is Gorenstein.

Lemma 10.4.4. ExtiR.�;�/
^ Š

´

0 if i ¤ 0
OR if i D 0:

Proof. Since � is maximal Cohen–Macaulay, H i
m.R/

.�/ D 0 for all i ¤ d by

Theorem 9.5.11 and so ExtiR.�;�/
^ Š Hom.Hd�i

m.R/
.�/;E.k// D 0 for all i � 1

by Theorem 9.5.17. Thus the case i ¤ 0 follows.
Now let 0 ! � ! E0 ! E1 ! � � � be the minimal injective resolution of

�. Then Hd
m.R/

.�/ Š Ker.Lm.R/.Ed .�// ! Lm.R/.E
dC1.�/// (see Defini-

tion 9.5.2). But Ed .�/ Š E.k/ and EdC1.�/ D 0. So Hd
m.R/

.�/ Š E.k/. Thus

HomR.�;�/^ Š HomR.E.k/; E.k//^ Š OR.

Proposition 10.4.5. If P is projective, then P 2 G0.R/.

Proof. Since Exti .�;�/ D 0 for i � 1 by the lemma above, Exti .�;�˝ P / D 0

for all projective R-modules P and all i � 1. Moreover, P ! Hom.�;� ˝ P / is
an isomorphism for any projective P since it is an isomorphism when P D R. Hence
the result follows.

Proposition 10.4.6. If E is injective, then E 2 J0.R/.
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Proof. Let I be an ideal generated by a maximal R-sequence r1; r2; : : : ; rd . Then
Hom.R=I t ; ER.k// D ER=I t .k/. But �=I t� Š ER=I t .k/ (see Remark 9.5.15).
So Hom.�=I t�;ER=I t .k// Š R=I t by Matlis duality. Hence

�˝ R HomR.�;ER=I t .k// Š HomR. OR;ER=I t .k//

by Lemma 10.4.4. But HomR. OR;ER=I t .k// Š ER=I t .k/. So

�˝ R HomR.�;ER=I t .k// Š ER=I t .k/:

Now taking inductive limits, we get that �˝ Hom.�;E.k// Š E.k/.
Now if E D E.R=p/ for an arbitrary prime ideal p, then�˝Hom.�;E/! E is

an isomorphism by localizing at p and appealing to the case E D E.k/ above. Thus
� ˝ Hom.�;E/ ! E is an isomorphism for any injective R-module E. But if E
is injective, Exti .�;E/ D 0 and Tori .�;Hom.�;E// Š Hom.Exti .�;�/;E/ D 0
for all i � 1 by Lemma 10.4.4, and so we are done.

Notation. We will let W denote the class of all modules W such that W Š � ˝
P for some projective P , and let V be the class of all modules V such that V Š
Hom.�;E/ for some injective module E.

Proposition 10.4.7. V is a preenveloping class and W is a precovering class.

Proof. LetM be an R-module and embed�˝M in an injective R-module E. Then
the composition of the maps M ! Hom.�;� ˝ M/ and Hom.�;� ˝ M/ �
Hom.�;E/ is a V -preenvelope. For if V 2 V , and M ! V is a map, then we
have a map � ˝ M ! � ˝ V Š � ˝ Hom.�;E 0/ for some injective E 0. But
�˝ Hom.�;E 0/ Š E 0 since E 0 2 J0.R/ by Proposition 10.4.6 above. So the map
�˝M ! E 0 can be extended to a map E ! E 0. This gives a map Hom.�;E/!
Hom.�;E 0/ such that the composition M ! Hom.�;E/ ! Hom.�;E 0/ is the
map M ! Hom.�;E 0/ Š V .

Now note that for any M , if W 2 W , then W ! M is a W -precover if and
only if Hom.�;W / ! Hom.�;M/ ! 0 is exact. So �.Hom.�;M// ! M is a
W -precover.

Proposition 10.4.8. The following are equivalent for an R-module M :

(1) M 2 G0.R/

(2) There exists an exact sequence

� � � ! P1 ! P0 ! V 0 ! V 1 ! � � �
of R-modules with each Pi 2 Proj , V i 2 V , such that M D Ker.V 0 ! V 1/

and �˝� leaves the sequence exact.

(3) M has an exact right V -resolution and the functor�˝� leaves any projective
resolution of M exact.
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Proof. .1/) .2/. Let � � � ! P1 ! P0 ! M ! 0 be a projective resolution of M .
Then � � � ! �˝ P1 ! �˝ P0 ! �˝M ! 0 is exact since Tori .�;M/ D 0 for
all i � 1 and �˝� is right exact. Now let 0! �˝M ! E0 ! E1 ! � � � be an
injective resolution of �˝M and set V i D Hom.�;Ei /. Then we get a complex

0! Hom.�;�˝M/! V 0 ! V 1 ! � � �
which is exact since Exti .�;�˝M/ D 0 for all i � 1 and Hom.�;�/ is left exact.
So the result follows since M Š Hom.�;�˝M/.
.2/, .3/ We note that 0!M ! V 0 ! V 1 ! � � � is a right V -resolution if and

only if � � � ! Hom.V 0;Hom.�;E// ! Hom.M;Hom.�;E// ! 0 is exact for all
injectiveR-modulesE if and only if � � � ! Hom.�˝V 1; E/! Hom.�˝V 0; E/!
Hom.�˝ E;E/ ! 0 is exact for all injective modules E and if and only if �˝ �
makes the complex 0 ! M ! V 0 ! V 1 ! � � � exact. Finally, it is easy to see
that � ˝ � leaves � � � ! P1 ! P0 ! M ! 0 exact if and only if it leaves every
projective resolution exact.
.2/) .1/. �˝� leaves � � � ! P1 ! P0 !M ! 0 exact means Tori .�;M/ D

0 for all i � 1. But V i Š Hom.�;Ei / for some injective Ei . So � ˝ V i Š � ˝
Hom.�;Ei / Š Ei by Proposition 10.4.6. Thus the natural map V i ! Hom.�;�˝
V i / is an isomorphism, and 0 ! � ˝ M ! � ˝ V 0 ! � ˝ V 1 ! � � � is an
injective resolution of �˝M since it is exact by assumption. But then the complex
0 ! Hom.�;� ˝ M/ ! Hom.�;� ˝ V 0/ ! Hom.�;� ˝ V 1/ ! � � � is
equivalent to the exact sequence 0 ! M ! V 0 ! V 1 ! � � � . So the natural
map M ! Hom.�;� ˝M/ is an isomorphism and Exti .�;� ˝M/ D 0 for all
i � 1.

Similarly, we have the following result noting that a complex � � � ! W1 ! W0 !
M ! 0 with each Wi 2 W is a left W -resolution of M if and only if Hom.�;�/
makes the complex exact.

Proposition 10.4.9. The following are equivalent for an R-module M :

(1) M 2 J0.R/.

(2) There exists an exact sequence

� � � ! W1 ! W0 ! E0 ! E1 ! � � �
of R-modules with each Ei injective, Wi 2 W , such that M D Ker.E0 ! E1/

and Hom.�;�/ leaves the sequence exact.

(3) M has an exact left W -resolution and the functor Hom.�;�/ leaves every in-
jective resolution of M exact.

Theorem 10.4.10. Let 0 ! M 0 ! M ! M 00 ! 0 be an exact sequence of R-
modules. Then if any two of M 0;M;M 00 are in G0.R/ (or J0.R//, then so is the
third.
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Proof. If M 00 2 G0.R/, then Tor1.�;M 00/ D 0 and so 0 ! � ˝ M 0 ! � ˝
M ! � ˝ M 00 ! 0 is exact. If M 2 G0.R/, then Tor1.�;M/ D 0 and we
have an exact sequence 0 ! Tor1.�;M 00/ ! � ˝ M 0 ! � ˝ M . So 0 !
Hom.�;Tor1.�;M 00// ! Hom.�;� ˝ M 0/ ! Hom.�;� ˝ M/ is exact. But
then if M;M 0 2 G0.R/, then 0 ! Hom.�;Tor1.�;M 00// ! M 0 ! M is exact
and so Tor1.�;M 00/ D 0. Hence if any two of M 0;M;M 00 are in G0.R/, then 0 !
� ˝ M 0 ! � ˝ M ! � ˝ M 00 ! 0 is exact. But this is equivalent to 0 !
Hom.M 00;Hom.�;E// ! Hom.M;Hom.�;E// ! Hom.M 0;Hom.�;E// ! 0

is exact for all injective R-modules E. Thus 0 ! Hom.M 00; V / ! Hom.M; V / !
Hom.M 0; V / ! 0 is exact for all V 2 V . So by the Horseshoe Lemma (8.2.1),
right V -resolutions of M 0 and M 00 can be combined to form a right V -resolution of
M . Similarly for projective resolutions of M 0 and M 00. Then we can paste these
resolutions together along 0! M 0 ! M ! M 00 ! 0 to get a short exact sequence
of complexes which remains exact when we apply �˝ � to it. So if any two of the
complexes are exact, then so is the third. But then the result follows by Proposition
10.4.8. An analogous proof gives the result for J0.R/.

Corollary 10.4.11. If proj dimM < 1, then M 2 G0.R/, and if inj dimM < 1,
then M 2 J0.R/.

Proof. This follows from the theorem and Propositions 10.4.5 and 10.4.6.

Lemma 10.4.12. If M 2 G0.R/, then Exti .M; V / D 0 for all i � 1 and all V 2 V .

Proof. We first note that M Š Hom.�;�˝M/. Now let V Š Hom.�;E/ with E
injective. Then

Exti .M; V / Š Exti .M;Hom.�;E// Š Hom.Tori .�;Hom.�˝M//;E/ D 0
for all i � 1 since �˝M 2 J0.R/.

Theorem 10.4.13. Every R-module M 2 G0.R/ has a V -envelope.

Proof. If M 2 G0.R/, then M Š Hom.�;� ˝ M/ and so M has a one to one
V -preenvelope by the proof of Proposition 10.4.7. Thus V -preenvelopes of M are
injections. Now let ..V˛/; .'ˇ˛// be an inductive system of V -preenvelopes of M .
Then we have an exact sequence 0 ! M ! lim�!V˛. But lim�!V˛ 2 V � G0.R/.
So .lim�!V˛/=M 2 G0.R/ by Theorem 10.4.10 and hence for any map M ! V with
V 2 V , we have a factorization M ! lim�!V˛ ! V by the Lemma above. Thus M
has a V -envelope by Lemma 6.6.1.

We now need the following result which holds for any local ring.

Proposition 10.4.14. If R is any local ring, then the class L of modules of finite
projective dimension is preenveloping.
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Proof. If proj dimL < 1, then proj dimL � dimR (see Raynaud–Gruson [160,
Theorem 3.2.6]). Moreover, every flat module has projective dimension at most dimR

by Corollary 8.5.28. So the class of modules of finite projective dimension is closed
under products.

Now for any R-module M , there is an infinite cardinal @˛ (depending on M ) such
that if L 2 L and S � L is a submodule with CardS � CardM , then there is
a pure submodule L0 of L (hence L0 2 L) containing S with CardL0 � @˛ by
Lemma 5.3.12. So M has an L-preenvelope by Corollary 6.2.2.

We note that an L-preenvelope need not be a monomorphism.
We are now in a position to prove the following result.

Lemma 10.4.15. If M 2 G0.R/ and 0 ! C ! Pd�1 ! � � � ! P1 ! P0 !
M ! 0 is exact with each Pi projective, then C is Gorenstein projective.

Proof. We first note that any projective resolution ofM remains exact when we apply
�˝� by Proposition 10.4.8 since M 2 G0.R/. But if P and Q are projective, then
Exti .� ˝ Q;� ˝ P / D 0 for all i � 1 since Exti .�;�/ D 0 for all i � 1 by
Lemma 10.4.4. Furthermore, inj dim� D d and so inj dim� ˝ P � d . Hence
ExtdCi .� ˝ M;� ˝ P / D 0 for all i � 1 and all projective P . Thus the exact
sequence

� � � ! �˝ PdC1 ! �˝ Pd ! �˝ Pd�1 ! � � � ! �˝ P0 ! �˝M ! 0

remains exact beginning with the term Hom.�˝Pd ; �˝P / when Hom.�; �˝P /
is applied to it with P projective. But Hom.� ˝ Pi ; � ˝ P / Š Hom.Pi ; P / for
each i . So 0 ! Hom.C; P /! Hom.Pd ; P / ! Hom.PdC1; P / ! � � � is exact for
all projective R-modules P .

Now it remains to show that C has an exact right Proj-resolution. But by Propo-
sition 10.4.14, C has an L-preenvelope C ! L which is a monomorphism since
C � Pd�1. Now let Q ! L be a projective precover, and K D Ker.Q ! L/.
Then K 2 L. But Exti .C; P / D 0 for all i � 1 and all projectives P from the
above. So Exti .C;L/ D 0 for all i � 1 and for all L 2 L by induction. In partic-
ular, Ext1.C;K/ D 0. Hence C ! L can be lifted to a monomorphism C ! Q

which is still an L-preenvelope. We now need to argue that Q=C has a projective
preenvelope that is a monomorphism. But Exti .Q=C;P / D 0 for all projective P
for all i � 1. Thus Exti .Q=C;L/ D 0 for all L 2 L and all i � 1. But by The-
orem 10.4.10, Q=C 2 G0.R/. Now embed � ˝ Q=C into an injective E. Then
Q=C Š Hom.�;�˝Q=C/ � Hom.�;E/. But flat dim Hom.�;E/ <1 and so
Hom.�;E/ 2 L. Thus any L-preenvelope ofQ=C is a monomorphism. So we have
an L-preenvelope Q=C ! Q1 which is a monomorphism with Q1 projective by the
argument above. Now let Q0 D Q. Then we have an exact right Proj-resolution
0 ! C ! Q0 ! Q1. We now proceed in this manner to construct an exact right
Proj-resolution 0! C ! Q0 ! Q1 ! Q2 ! � � � .
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Lemma 10.4.16. If M is a Gorenstein projective R-module, then M 2 G0.R/.

Proof. Let � � � ! P1 ! P0 ! P 0 ! P 1 ! � � � be a complete Proj-resolution of
M . This exact sequence is left exact by Hom.�; L/ whenever L is a module of finite
projective dimension. In particular, Hom.�;Hom.�;E// leaves the sequence exact
for any injective R-module E. Hence so does Hom.�˝ �; E/. Thus �˝ � leaves
the sequence exact since E is arbitrary. So Tori .�;M/ D 0 for all i � 1.

We note that 0! �˝M ! �˝P 0 ! �˝P 1 is exact and so 0! Hom.�;�˝
M/! Hom.�;�˝P 0/! Hom.�;�˝P 1/ is exact. But Hom.�;�˝P i / Š P i
since P i 2 G0.R/ by Proposition 10.4.5. So the natural mapM ! Hom.�;�˝M/

is an isomorphism.
Now consider the short exact sequence 0 ! M ! P 0 ! N ! 0. Then N is

also Gorenstein projective and so N ! Hom.�;�˝N/ is an isomorphism from the
above. But 0! �˝M ! �˝P 0 ! �˝N ! 0 is exact. So applying Hom.�;�/
we get that 0!M ! P 0 ! N ! Ext1.�;�˝M/! Ext1.�;�˝P 0/ is exact.
But Ext1.�;� ˝ P 0/ D 0 since Ext1.�;�/ D 0. Thus Ext1.�;� ˝ M/ D 0

and hence likewise Ext1.�;� ˝ N/ D 0. But Ext2.�;� ˝ P 0/ D 0. So we get
Ext2.�;� ˝ M/ D 0 and by induction we get that Exti .�;� ˝ M/ D 0 for all
i � 1.

Proposition 10.4.17. M 2 G0.R/ if and only if for some n � 0, there exists an exact
sequence 0! Cn ! Cn�1 ! � � � ! C1 ! C0 !M ! 0 with each Ci Gorenstein
projective. If there is such a sequence, then there is one with n � d .

Proof. This follows from Theorem 10.4.10, Lemmas 10.4.15 and 10.4.16.

Theorem 10.4.18. The following are equivalent for an R-module C :

(1) C is Gorenstein projective.

(2) C 2 G0.R/ and Exti .C;L/ D 0 for all i � 1 and all L such that proj dimL <

1.

(3) C has an exact right Proj-resolution and Exti .C;L/ D 0 for all i � 1 and all
L such that proj dimL <1.

(4) There exists an exact sequence 0! C ! P 0 ! P 1 ! � � � ! P d�1 ! B !
0 with each P i projective and B 2 G0.R/.

(5) There exists an exact sequence 0! Cn ! Cn�1 ! � � � ! C1 ! C0 ! C !
0 with each Ci Gorenstein projective for some n � 0 and Exti .C;L/ D 0 for
all i � 1 and all L such that proj dimL <1.

Proof. .1/) .2/. C 2 G0.R/ by Lemma 10.4.16 and the second part is standard.
.2/ ) .3/. We apply the arguments we used concerning the C in the proof of

Lemma 10.4.15 to get that C has an exact right Proj -resolution.
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.3/ ) .1/ by definition and .1/ ) .4/ is trivial since if � � � ! P1 ! P0 !
P 0 ! P 1 ! � � � ! P d ! P dC1 ! � � � is a complete Proj -resolution of C , then
B D Ker.P d ! P dC1/ is Gorenstein projective and so is in G0.R/.
.4/) .1/ by Lemma 10.4.15 and .2/, .5/ follows from Proposition 10.4.17.

Corollary 10.4.19. If C D C1 ˚ C2, then C is Gorenstein injective if and only if C1
and C2 are.

Similar arguments give the following results.

Lemma 10.4.20. If M 2 J0.R/ and 0 ! M ! E0 ! � � � ! Ed�1 ! G ! 0 is
exact with Ei injective, then G is Gorenstein injective.

Proposition 10.4.21. If inj dimL <1 for an R-module L, then inj dimL � d .

Proof. Since inj dimL <1, we have that L 2 J0.R/ by Corollary 10.4.11. Then if
0 ! L ! E0 ! E1 ! � � � ! Ed�1 ! G ! 0 is exact with E0; E1; : : : ; Ed�1
injective, G is Gorenstein injective by Lemma 10.4.20. But inj dimG < 1. So G is
injective by Proposition 10.1.2. Hence inj dimL � d .

Lemma 10.4.22. If M is Gorenstein injective, then M 2 J0.R/.

Proposition 10.4.23. M 2 J0.R/ if and only if for some n � 0, there exists an exact
sequence 0 ! M ! G0 ! G1 ! � � � ! Gn ! 0 with each Gi Gorenstein
injective. If there is such a sequence, then there is one with n � d .

Theorem 10.4.24. The following are equivalent for an R-module G:

(1) G is Gorenstein injective.

(2) G 2 J0.R/ and Exti .L;G/ D 0 for all i � 1 and all R-modules L such that
inj dimL <1.

(3) G has an exact left Inj-resolution and Exti .L;G/ D 0 for all i � 1 and all L
such that inj dimL <1.

(4) There exists an exact sequence 0! K ! Ed�1 ! � � � ! E0 ! G ! 0 with
each Ei injective and K 2 J0.R/.

(5) There exists an exact sequence 0 ! G ! G0 ! G1 ! � � � ! Gn ! 0 with
each Gi Gorenstein injective for some n � 0 and Exti .L;G/ D 0 for all i � 1
and all L such that inj dimL <1.

Corollary 10.4.25. If G D G1˚G2, then G is Gorenstein injective if and only if G1
and G2 are.
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We now need the following result which holds for any commutative Noetherian
ring.

Lemma 10.4.26. Let R be a commutative Noetherian ring. If � � � ! F�1 ! F 0 !
F 1 ! � � � is an exact sequence of flatR-modules such thatE˝� leaves the sequence
exact when E is an injective R-module, then Hom.�; K/ leaves the sequence exact
when K is cotorsion and of finite flat dimension.

Proof. If K is flat and cotorsion, then K is a summand of an R-module Hom.E;E 0/
whereE;E 0 are injectiveR-modules by Lemma 5.3.27. But Hom.�;Hom.E;E1//Š
Hom.E ˝ �; E1/. So Hom.�;Hom.E;E1// leaves the sequence exact. Hence
Hom.�; K/ for such a K leaves the sequence exact.

Now suppose 0! K 0 ! K ! K 00 ! 0 is an exact sequence such that Hom.F;�/
leaves the sequence exact whenever F is flat. Then applying each of Hom.�; K 0/,
Hom.�; K/ and Hom.�; K 00/ to the exact sequence F W � � � ! F�1 ! F 0 !
F 1 ! � � � , we get the short exact sequence 0 ! Hom.F; K 0/ ! Hom.F; K/ !
Hom.F; K 00/ ! 0 of complexes. Hence if any two of Hom.�; K 0/, Hom.�; K/ and
Hom.�; K 00/ leave F exact, so does the third. Now if K has finite flat dimension,
then K has a minimal left F lat-resolution 0 ! Fn ! Fn�1 ! � � � ! F0 !
K ! 0 by Theorem 7.4.4. If furthermoreK is cotorsion, then each Fi is cotorsion by
Corollary 5.3.26. So each Hom.�; Fi / leaves the sequence F exact and hence we get
by induction that Hom.�; K/ leaves the sequence exact.

Corollary 10.4.27. If M is a Gorenstein flat R-module and K is cotorsion and of
finite flat dimension, then Exti .M;K/ D 0 for all i � 1.

Theorem 10.4.28. Let L be the class ofR-modules of finite injective dimension. Then
an R-moduleM is Gorenstein flat if and only ifM 2 G0.R/ and Tori .L;M/ D 0 for
all i � 1 and all L 2 L.

Proof. Suppose M is Gorenstein flat. Then there is an Inj ˝ � exact exact se-
quence � � � ! F1 ! F0 ! F 0 ! F 1 ! � � � with each Fi ; F i flat such that
M D Ker.F 0 ! F 1/. Hence L˝ � leaves the sequence exact for each L 2 L. So
Tori .L;M/ D 0 for all i � 1 and all L 2 L. In particular, Tori .�;M/ D 0 for all
i � 1. Thus we have an exact sequence

0! Hom.�;�˝M/! Hom.�;�˝ F 0/
! Hom.�;�˝ F 1/! Hom.�;�˝ F 2/

where F i Š Hom.�;�˝F i / since F i is in G0.R/. HenceM Š Hom.�;�˝M/.
It now remains to show that Exti .�;�˝M/ D 0 for each i � 1. We consider the
exact sequence 0 ! M ! F 0 ! Y ! 0. Then clearly Y is Gorenstein flat. So
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Tori .�; Y / D 0 for all i � 1 and Y Š Hom.�;�˝ Y / by the above. Thus we have
an exact sequence

0! Hom.�;�˝M/! Hom.�;�˝ F 0/
! Hom.�;�˝ Y /! Ext1.�;�˝M/! 0:

So Ext1.�;� ˝M/ D 0. Similarly Ext1.�;� ˝ Y / D 0. But then Ext2.�;� ˝
M/ D 0. So repeating the argument gives Exti .�;�˝M/ D 0 for all i � 1. Hence
M 2 G0.R/.

Conversely, suppose � � � ! F1 ! F0 ! M ! 0 is a flat resolution of M . Then
E ˝ � leaves the resolution exact for all injectives E since Tori .E;M/ D 0 for all
i � 1 and all such E by assumption. To show thatM is Gorenstein flat, we only need
to construct the other half of the complete flat resolution of M .

Let Y D �˝M . Then Exti .�; Y / D Exti .�;�˝M/ D 0 for all i � 1 since
M 2 G0.R/ by assumption. Now let 0 ! Y ! E ! X ! 0 be exact with E
the injective envelope of Y . Then we have an exact sequence 0 ! Hom.�; Y / !
Hom.�;E/ ! Hom.�;X/ ! 0. But M Š Hom.�;� ˝ M/ Š Hom.�; Y /
and L D Hom.�;E/ has finite flat dimension. So we consider the exact sequence
0 ! M ! L ! W ! 0. Since F lat is covering by Theorem 7.4.4, we have an
exact sequence 0 ! K ! F ! L ! 0 where F ! L is a flat cover. Thus we can
form the following pullback diagram

0

��

0

��
0 �� K �� P ��

��

M ��

��

0

0 �� K �� F ��

��

L ��

��

0

W

��

W

��
0 0

But K is cotorsion and flat dimK < 1. So Hom.�; K/ leaves � � � ! F2 ! F1 !
F0 exact by Lemma 10.4.26. Hence Ext1.M;K/ D 0 and thusM is a direct summand
of P . So M can be embedded into a flat R-module F . But then M can be embed-
ded into a flat preenvelope M ! F giving an exact sequence 0 ! M ! F !
C ! 0. So we get that 0 ! Hom.C; F 1/ ! Hom.F; F 1/ ! Hom.M;F 1/ ! 0

is exact for all flat R-modules F . In particular, 0 ! Hom.C;Hom.E;E.k/// !
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Hom.F;Hom.E;E.k/// ! Hom.M;Hom.E;E.k/// ! 0 is exact. Thus E ˝ �
leaves 0 ! M ! F ! C ! 0 exact. But M , F 2 G0.R/. So C 2 G0.R/ by
Theorem 10.4.10. Furthermore, it is now easy to check that Tori .L; C / D 0 for all
L 2 L and all i � 1. We then repeat the argument above to get the desired complete
flat resolution of M . Hence M is Gorenstein flat.

Corollary 10.4.29. Any Gorenstein projective R-module is Gorenstein flat.

Proof. Let M be Gorenstein projective. Then M 2 G0.R/ by Lemma 10.4.16. If
L 2 L, then Hom.L;E.k// has finite projective dimension since it has finite flat di-
mension and so Hom.Tori .L;M/;E.k// Š Exti .M;Hom.L;E.k/// D 0 for i � 1.
Thus Tori .L;M/ D 0 for all i � 1 and all L 2 L. Hence M is Gorenstein flat by the
theorem.

Corollary 10.4.30. Any direct limit of a family of Gorenstein flat modules is Goren-
stein flat.

Proof. This also follows from the theorem since G0.R/ is closed under direct limits.

We are now in a position to state the Cohen–Macaulay version of Theorem 10.3.8.

Theorem 10.4.31. Let L be the class ofR-modules of finite injective dimension. Then
the following are equivalent for an R-module M :

(1) M is Gorenstein flat.

(2) M 2 G0.R/ and there exists an exact sequence 0 ! M ! F 0 ! � � � !
F d�1 ! F d with each F i flat.

(3) M 2 G0.R/ and ifN is any finitely generatedR-module, then any mapN !M

can be factored through a finitely generated Gorenstein projective R-module.

(4) M 2 G0.R/ and M Š lim�!Ci for some inductive system ..Ci /; .fj i // where
each Ci is a finitely generated Gorenstein projective R-module.

(5) M 2 G0.R/ and Tori .E;M/ D 0 for all i � 1 and all injective R-modules E.

(6) M 2 G0.R/ and Tori .L;M/ D 0 for all i � 1 and all L 2 L.

(7) M 2 G0.R/ and Tor1.L;M/ D 0 for all L 2 L.

(8) MC is Gorenstein injective.

Proof. .1/) .2/ and .6/) .7/ are trivial.
.2/) .3/ follows as in Lemma 10.3.6 using Lemma 10.4.15.
.3/) .4/ by Lemma 10.3.7.
.4/) .5/, .5/) .6/ follow as in .4/) .5/, .5/) .9/ of Theorem 10.3.8.
.6/, .1/ is Theorem 10.4.28.
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.7/ ) .6/. L 2 J0.R/ since L 2 L. So there is an exact sequence 0 ! L0 !
W ! L! 0 by Proposition 10.4.9 where W Š �˝ P with P projective. Further-
more, Tori .�;M/ D 0 for all i � 1 since M 2 G0.R/. Hence Tori .W;M/ D 0 for
all i � 1. But L0 2 L since W 2 L. So (6) follows by dimension shifting.
.8/ , .1/. If MC is Gorenstein injective, then there exists an exact sequence

Ed ! Ed�1 ! � � � ! E1 ! E0 ! MC ! 0 with each Ei injective. So MCC is
Gorenstein flat and thus the result follows as in Theorem 10.3.8. The converse follows
by Proposition 10.3.3.

Corollary 10.4.32. If M is Gorenstein injective, then MC is Gorenstein flat.

Corollary 10.4.33. A finitely generated R-module is Gorenstein flat if and only if it
is Gorenstein projective.

Exercises

1. Prove that the functor � ˝ � W G0.R/ ! J0.R/ gives an equivalence between
the two categories and so does Hom.�;�/ W J0.R/! G0.R/.

2. Prove Proposition 10.4.9.

3. Prove the second part of Theorem 10.4.10.

4. Let X denote the class of R-modules X such that X Š � ˝ F for some flat
R-module F . Prove that X � J0.R/.

5. Prove that G0.R/ contains flat R-modules. Conclude that if flat dimM < 1,
then M 2 G0.R/.

6. Prove that the class V is precovering.

7. Prove Lemma 10.4.20.

8. Prove Lemma 10.4.22.

9. Prove Proposition 10.4.23.

10. Prove Theorem 10.4.24.

11. Prove Corollaries 10.4.32 and 10.4.33.



Chapter 11

Gorenstein Covers and Envelopes

In this chapter we consider the existence of precovers, covers, preenvelopes and en-
velopes for the various Gorenstein related classes of modules.

11.1 Gorenstein Injective Precovers and Covers

We now show that over n-Gorenstein rings, Gorenstein injective modules are precov-
ering and covering.

We start with the following result.

Theorem 11.1.1. If R is n-Gorenstein, then every R-module has a Gorenstein injec-
tive precover.

Proof. LetM be an R-module and � � � ! En�1 ! � � � ! E1 ! E0 !M ! 0 be a
left Inj-resolution of M . Now let 0! K ! E0 ! E1 ! � � � ! En�1 ! � � � be a
right Inj-resolution ofK. Then C D Coker .En�2 ! En�1/ is Gorenstein injective
by Theorem 10.1.13. So if G is Gorenstein injective and � � � ! Hn�1 ! � � � !
H1 ! H0 ! G ! 0 is a left Inj-resolution of G with L D Ker.Hn�1 ! Hn�2/,
then given a map f W G !M we can construct the following commutative diagram

0 �� L ��

g

��

g

**..
..
..

Hn�1 ��

��

g0++//
//
//

� � � �� H1 ��

��

++//
//
//

H0 ��

��

++//
//
//

G ��

f

��

gn

**00
00
00

0

0 �� K ��

11
11
11

11
11
11

E0 ��

h0 ,,2
22

22
22

� � � �� En�2 ��

,,2
22

22
22

En�1 ��

,,2
22

22
22

C ��

hn --3
33
33
3 0

0 �� K �� En�1 �� � � � �� E1 �� E0 �� M �� 0

By homotopy, f � hn ı gn can be factored through E0. So f W G ! M can be
factored through the Gorenstein injective module C ˚ E0. Thus C ˚ E0 ! M is a
Gorenstein injective precover.

Lemma 11.1.2. Let R be n-Gorenstein. Then every inductive limit of Gorenstein
injective modules is Gorenstein injective.

Proof. If M is Gorenstein injective, then M has an exact left Inj-resolution � � � !
E1.M/ ! E0.M/ ! M ! 0. So if ..Gi /; .'j i // is an inductive system with
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Gi Gorenstein injective, then we get an inductive system .E`.Gi /; E`.'j i // for any
` � 1. Hence we have an exact sequence

� � � ! lim�!E1.Gi /! lim�!E0.Gi /! lim�!Gi ! 0:

But lim�!E`.Gi / is injective for each ` since R is Noetherian. So lim�!Gi is Gorenstein
injective by Theorem 10.1.13.

Theorem 11.1.3. Let R be n-Gorenstein. Then every R-module has a Gorenstein
injective cover.

Proof. This follows from Theorem 11.1.1, Lemma 11.1.2 and Corollary 5.2.7.

Exercises

1. Prove that ifR is n-Gorenstein, thenR is Gorenstein injective if and only if every
Gorenstein injective cover is surjective.

2. Let R be a local Cohen–Macaulay ring of Krull dimension d admitting a dualiz-
ing module, M be an R-module, and 0 ! K ! Ed�1 ! � � � ! E1 ! E0 !
M ! 0 be a left Inj-resolution of M . Prove that if K 2 J0.R/, then M has a
Gorenstein injective cover.

11.2 Gorenstein Injective Preenvelopes

We first consider the existence of a Gorenstein injective preenvelope M ! G of a
module M . Since injective modules are Gorenstein injective, such a preenvelope is
necessarily an injection. We can find such a preenvelope if we can exhibit an exact
sequence 0!M ! G ! L! 0 with G Gorenstein injective and with inj dimL <

1. For then by Proposition 10.1.3, Ext1.L;H/ D 0 when H is Gorenstein injective.
So Hom.G;H/! Hom.M;H/! Ext1.L;H/ D 0 is exact, showing that M ! G

is a preenvelope.
We now recall from Proposition 1.5.14 that if

0 �� C 0

f 0

��

ı0

�� C 1
ı1

��

f 1

��

C 2 ��

f 2

��

� � � �� C n ��

f n

��

0

0 �� B0
ı0

�� B1
ı1

�� B2 �� � � � �� Bn �� 0

is a commutative diagram of R-modules with exact rows, then 0 ! C 0 ! B0 ˚
C 1 ! B1 ˚ C 2 ! � � � ! Bn�1 ˚ C n ! Bn ! 0 is an exact sequence where
the map B i�1 ˚ C i ! B i ˚ C iC1 is .x; y/ 7! .ı.x/C .�1/if i .y/; ı.y// (where
B i D C i D 0 for i < 0 and i > n).
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Theorem 11.2.1. If R is an n-Gorenstein ring, then every R-moduleM has a Goren-
stein injective preenvelope M ! G such that if 0 ! M ! G ! L ! 0 is exact,
then inj dimL � n � 1 whenever n � 1.

Proof. Let 0 ! M ! E0 ! � � � ! En�1 ! H ! 0 be a partial injective
resolution of M . By Theorem 10.1.13, H is Gorenstein injective. Hence by the
definition of a Gorenstein injective module, there exists a Hom.Inj;�/ exact exact
sequence 0 ! G ! En�1 ! � � � ! E0 ! H ! 0 where G is also Gorenstein
injective by Theorem 10.1.4. But then the diagram

0 �� M

���
�
�

�� E0

���
�
�

�� � � � �� En�1

���
�
�

�� H �� 0

0 �� G �� En�1 �� � � � �� E0 �� H �� 0

can be completed to a commutative diagram. So by the remark above, we get an exact
sequence 0 ! M ! G ˚ E0 ! En�1 ˚ E1 ! � � � ! E0 ˚H ! H ! 0. This

exact sequence has the exact subcomplex 0 ! 0 ! 0 ! � � � ! H
˙id! H ! 0.

Forming the quotient complex, we get an exact sequence 0 ! M ! G ˚ E0 !
En�1˚E1 ! � � � ! E0 ! 0 by Remark 1.5.15. But then if 0!M ! G˚E0 !
L! 0 is exact, we see that inj dimL � n� 1. Since G ˚E0 is Gorenstein injective
by Theorem 10.1.4, we see that M ! G ˚ E0 is the desired Gorenstein injective
preenvelope.

Corollary 11.2.2. If R is n-Gorenstein, then the following are equivalent for any
R-module M :

(1) M is Gorenstein injective.

(2) Exti .L;M/ D 0 for all R-modules L with proj dimL <1 and all i � 1.

(3) Ext1.L;M/ D 0 for all R-modules L with proj dimL <1.

(4) Exti .E;M/ D 0 for all injective R-modules E and all i � 1.

Proof. .1/) .2/ by Proposition 10.1.3 and .2/) .3/; .4/ are trivial.
.3/ ) .1/. By the theorem above, there is an exact sequence 0 ! M ! G !

L ! 0 with G Gorenstein injective and inj dimL < 1. So proj dimL < 1 by
Theorem 9.1.10. But then the exact sequence splits and so M is Gorenstein injective.
.4/) .1/ (4) means that any right Inj-resolution of M is a left Inj-resolution. So

M is Gorenstein injective by Theorem 10.1.13.

Remark 11.2.3. It follows from Proposition 10.1.15 and Corollary 11.2.2 above that
.L;GorInj/ is a cotorsion theory over any Iwanaga–Gorenstein ring R where L con-
sists of all L with inj dimL < 1 (or equivalently, proj dimL < 1) and GorInj
denotes the class of all Gorenstein injective R-modules.
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Corollary 11.2.4. The following are equivalent for a Gorenstein injective preenve-
lope M ! G of Theorem 11.2.1:

(1) inj dimM <1.

(2) G is injective.

(3) M ! G is an injective preenvelope.

Proof. .1/ , .2/. Let 0 ! M ! G ! L ! 0 be an exact sequence with G
Gorenstein injective and inj dimL < 1 (see Theorem 11.2.1). If inj dimM < 1,
then inj dimG < 1 and thus G is injective by Proposition 10.1.2. Conversely, if G
is injective, then inj dimM <1 since inj dimL <1.
.2/ ) .3/ is trivial since injectives are Gorenstein injective. .3/ ) .2/ is also

trivial.

If R is Gorenstein, then the class GorInj is preenveloping by the above and hence
by Proposition 8.1.3 every R-module has a right GorInj-resolution. This resolution
is exact and is usually called a Gorenstein injective resolution.

Proposition 11.2.5. Let R be an n-Gorenstein ring and L be the class of R-modules
of finite projective dimension. Then the following are equivalent for an R-module M
and integer r � 0:

(1) right GorInj- dimM � r .

(2) There exists an exact sequence 0!M ! G0 ! � � � ! Gr ! 0 with each Gi

Gorenstein injective.

(3) Exti .L;M/ D 0 for all i � r C 1 and all L 2 L.

(4) ExtrC1.L;M/ D 0 for all L 2 L.

(5) Exti .E;M/ D 0 for all i � r C 1 and all injective R-modules E.

(6) Every r th Inj-cosyzygy of M is Gorenstein injective.

(7) Every r th GorInj-cosyzygy of M is Gorenstein injective.

Proof. .1/) .2/; .3/) .4/ and .5/; and .7/) .6/ are trivial.
.2/ ) .3/. Exti .L;M/ Š Exti�r .L;Gr/ D 0 for all i > r by Corollary 11.2.2.

So (3) follows.
.4/ ) .1/ Let 0 ! M ! G0 ! G1 ! � � � be a right GorInj-resolution and

G D Ker.Gr ! GrC1/. Then Ext1.L;G/ Š ExtrC1.L;M/ for all L 2 L. So G is
Gorenstein injective by Corollary 11.2.2. .5/) .1/ is similar.
.5/) .7/ If G is an r th GorInj-cosyzygy, then Exti�r .E;G/ Š Exti .E;M/ for

all i > 1. So G is Gorenstein injective again by Corollary 11.2.2.
.6/) .5/ If G is an r th Inj-cosyzygy, then Exti .E;M/ Š Exti�r .E;G/ D 0 for

all injectives E and all i > r since G is Gorenstein injective.
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Over Cohen–Macaulay rings, we have the following result.

Theorem 11.2.6. Let R be a local Cohen–Macaulay ring of Krull dimension d ad-
mitting a dualizing module. Then every R-module M 2 J0.R/ has a Gorenstein
injective preenvelope M ! G such that if 0 ! M ! G ! L ! 0 is exact, then
inj dimL � d � 1.

Proof. The follows as in Theorem 11.2.1 using Lemma 10.4.20 instead of Theorem
10.1.13.

Corollary 11.2.7. An R-module M is Gorenstein injective if and only if M 2 J0.R/

and Ext1.L;M/ D 0 for all R-modules L with inj dimL <1.

Proof. If M 2 J0.R/, then M has a Gorenstein injective preenvelope  W M ! G

with inj dim Coker  � d�1. So Ext1.L;M/ D 0 for allL such that inj dimL <1
means M is a summand of G and hence M is Gorenstein injective. The converse
follows from Theorem 10.4.24.

Proposition 11.2.8. LetR be as in Theorem 11.2.6. Then the following are equivalent
for an R-module M 2 J0.R/:

(1) Exti .M;N / D 0 for all i � 1 and all Gorenstein injective R-modules N .

(2) Ext1.M;N / D 0 for all Gorenstein injective R-modules N .

(3) M has finite injective dimension.

(4) M has injective dimension at most d .

Proof. .1/, .2/ is part of Proposition 10.1.15.
.1/) .4/. Let 0 ! M ! E0 ! E1 ! � � � be an injective resolution of M and

K be a d th Inj-cosyzygy of M . Then K is Gorenstein injective by Lemma 10.4.20.
So Extd .M;K/ D 0 by assumption. Thus Hom.EdC1; K/ ! Hom.Ed ; K/ !
Hom.Ed�1; K/ is exact and so K is a summand of Ed and hence inj dimM � d .
.4/) .3/ is trivial, and .3/) .1/ by Proposition 10.1.3.

Exercises

1. Prove that if R is n-Gorenstein, then right GorInj- dimM � inj dimM for each
R-module M .

2. Prove that if R is n-Gorenstein and M is an R-module, then

right GorInj- dimM � n and right GorInj- dimM D inj dimM

if and only if inj dimM <1.
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3. Let R be a local Cohen–Macaulay ring of finite Krull dimension and L be the
class of R-modules of finite injective dimension. State and prove a result corre-
sponding to Proposition 11.2.5.

4. Let R and L be as in Problem 3 above. State and prove a result corresponding to
Problem 2 above.

5. Prove Theorem 11.2.6.

11.3 Gorenstein Injective Envelopes

We now want to show the existence of Gorenstein injective envelopes.

Lemma 11.3.1. If R is n-Gorenstein and L is the class of R-modules L such that
inj dimL <1, then L is closed under inductive limits.

Proof. By Theorem 9.1.10 we have inj dimL � n for all L 2 L. Since R is left
Noetherian we have inj dim lim�!Li � supi inj dimLi for any inductive system .Li / of
left R-modules. Hence inj dim lim�!Li � n if all Li 2 L.

Theorem 11.3.2. If R is n-Gorenstein, then every R-module M has a Gorenstein
injective envelope M ! G such that if 0 ! M ! G ! L ! 0 is exact, then
inj dimL � n � 1 whenever n � 1.

Proof. By Remark 11.2.3, .L;GorInj/ is a cotorsion theory which has enough in-
jectives by Theorem 11.2.1. So the result follows from Theorem 7.2.6 and the lemma
above.

Using this theorem we get the following result.

Corollary 11.3.3. IfM ! G is a Gorenstein injective envelope, then inj dimM <1
if and only if M ! G is an injective envelope.

Proof. This follows from Corollary 11.2.4.

Theorem 11.3.4. Let R be n-Gorenstein. If M is an R-module and 0 ! M !
G0 ! G1 ! � � � ! Gn ! � � � is a minimal right GorInj-resolution, then Gi is
injective for i � 1 and Gi D 0 for i > n.

Proof. This follows from Corollary 11.3.3 and Theorem 11.3.2.

Definition 11.3.5. Let A be an R-submodule of B . Then A � B is called a Goren-
stein extension if proj dimB=A < 1, and a Gorenstein injective extension if B is
furthermore Gorenstein injective. We note that every Gorenstein injective envelope
over an n-Gorenstein ring is a Gorenstein injective extension. The Gorenstein injec-
tive envelope of an R-module M is denoted by G.M/.
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Proposition 11.3.6. Let R be n-Gorenstein. Then the following are equivalent for an
R-module M :

(1) M � G is a Gorenstein injective extension.

(2) M � G is a Gorenstein injective preenvelope with proj dimG=M <1.

(3) G Š G.M/˚E for some injective R-module E where the isomorphism leaves
M fixed.

Proof. .1/) .2/. IfM �G is a Gorenstein injective extension, then proj dimG=M <

1 by definition and so Ext1.G=M;G0/ D 0 for all Gorenstein injective R-modules
G0 by Corollary 11.2.2. Thus M � G is a Gorenstein injective preenvelope.
.2/) .3/. (2) implies that we have the following commutative diagram with exact

rows
0 �� M �� G.M/ ��

��

G.M/=M ��

��

0

0 �� M �� G ��

��

G=M ��

��

0

0 �� M �� G.M/ �� G.M/=M �� 0

But G.M/ ! G ! G.M/ is an automorphism. So G Š G.M/ ˚ G0 for some
Gorenstein injective R-module G0. But then G0 is also a summand of G=M . Hence
G0 is injective by Proposition 10.1.2.
.3/) .2/ and .2/) .1/ are trivial.

Proposition 11.3.7. Let R be n-Gorenstein and M be a submodule of a Gorenstein
injective R-module G. If proj dimM < 1, then G Š E.M/˚ G0 for some Goren-
stein injective R-module G0.

Proof. By Corollary 11.3.3, E.M/ Š G.M/ and so we have the following commu-
tative diagram

0 �� M �� E.M/ ��

��

E.M/=M ��

��

0

0 �� M �� G ��

��

G=M ��

��

0

0 �� M �� E.M/ �� E.M/=M �� 0

But then E.M/! G ! E.M/ is an automorphism and so the result follows.
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Corollary 11.3.8. The following are equivalent for a Gorenstein injective R-mod-
ule G:

(1) G is reduced.

(2) G Š G.M/ for every submodule M of G such that proj dimG=M <1.

(3) G has no nontrivial submodules of finite projective dimension.

Proof. .1/) .2/ follows from Proposition 11.3.6.
.2/).3/. LetM be a submodule of finite projective dimension. ThenGŠE.M/˚

G0 for some Gorenstein injectiveG0 by Proposition 11.3.7. But proj dimE.M/ <1.
So G0 � G is a Gorenstein injective extension. Thus G Š G.G0/ Š G0 by assump-
tion. Hence E.M/ D 0.
.3/) .1/ follows easily since every injective module has finite projective dimen-

sion.

Proposition 11.3.9. If R is n-Gorenstein and Mi ! Gi is a Gorenstein injective en-
velope ofMi for each i 2 I , then

L

Mi !L

Gi is a Gorenstein injective envelope.

Proof. We first argue that
L

Gi is Gorenstein injective. Since each Gi is Gorenstein
injective, there is an exact sequence E0i ! � � � ! Eni ! Gi ! 0 with each Ei in-
jective. But then we have the exact sequence

L

E0i ! � � � !
L

Eni !
L

Gi ! 0.
So by Theorem 10.1.13, we see that

L

Gi is Gorenstein injective. Then by Corol-
lary 6.4.4, we get that

L

Mi !L

Gi is a Gorenstein injective envelope.

Proposition 11.3.10. Let R be n-Gorenstein and M � G be a Gorenstein injective
envelope. If f W G ! G is linear and M � Ker f , then f is locally nilpotent on G
(that is, for each x 2 G there is an m � 1 such that f m.x/ D 0).

Proof. By the preceding result we know thatM ˚M ˚M ˚� � � � G˚G˚G˚� � �
is a Gorenstein injective envelope. Let  W G ˚ G ˚ � � � ! G ˚ � � � be the map
such that  .x0; x1; x2; : : : / D .x0; x1 � f .x0/; x2 � f .x1/; : : : /. By our hypothesis
on f ,  is the identity on M ˚ M ˚ � � � . Since we have an envelope,  must
be an automorphism. Let x 2 G. Then .x; 0; 0; : : : / must be in the image of  .
Let  .x0; x1; x2; : : : / D .x; 0; 0; : : : /. Then we see that x0 D x, x1 D f .x/,
x2 D f 2.x/; : : : . But for large m, xm D 0, that is f m.x/ D 0.

Corollary 11.3.11. If R is a commutative n-Gorenstein ring andM � G is a Goren-
stein injective envelope where IM D 0 for some ideal I � R, then for each x 2 G,
Imx D 0 for some m � 1.

Proof. If r 2 I , we consider the function f W G ! G with f .x/ D rx. By applying
Proposition 11.3.10 above to this f , we see that for each x 2 G, rmx D 0 for some
m � 1. Then since I is finitely generated we see that for each x 2 G, Imx D 0 for
some m � 1.
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Exercises

1. Prove Theorem 11.3.4.

2. Let A � B � C be modules and consider the three inclusions A � B , B � C ,
and A � C . Prove that if any two of these are Gorenstein extensions, then so is
the third.

3. Let R be n-Gorenstein and N be a submodule of M . Prove that N � M is
a Gorenstein extension if and only if G.M/ Š G.N/ ˚ E for some injective
R-module E where the isomorphism leaves N fixed.

4. Let R be a local Cohen–Macaulay ring of Krull dimension d admitting a dual-
izing module. Prove that every N 2 J0.R/ has a Gorenstein injective envelope
 W N ! G such that inj dim Coker � d � 1.

5. Let R be as in Problem 4 above. Prove that every N 2 J0.R/ has a minimal
right GorInj-resolution of the form 0 ! N ! G0 ! E1 ! E2 ! � � � !
Ed�1 ! Ed ! 0 where G0 is Gorenstein injective and each Ei is injective.

6. Let R be Iwanaga–Gorenstein. Prove that the class L of R-modules of finite
projective dimension is covering. And moreover, if 0! K ! P ! M ! 0 is
exact where P !M is an L-precover, then K is Gorenstein injective.

7. Prove that if R is Iwanaga–Gorenstein then the minimal left L-resolution of an
R-module M is of the form

� � � ! E2 ! E1 ! L0 !M ! 0

where L0 2 L and Ei is injective for each i .

8. Prove that if R is a local Cohen–Macaulay ring of Krull dimension d admitting a
dualizing module and if L is the class ofR-modules of finite injective dimension,
then every N 2 J0.R/ has an L-cover. And moreover, if  W P ! N is such a
cover, then Ker is Gorenstein injective.

11.4 Gorenstein Essential Extensions

Definition 11.4.1. Let A be a submodule of an R-module B . Then A is said to
be a Gorenstein essential submodule of B if for each submodule N of B such that
proj dimN < 1, N \ A D 0 implies N D 0. If A is a Gorenstein essential sub-
module of B and A � B is a Gorenstein extension, then we say that A � B is a
Gorenstein essential extension.

It is trivial to see that every essential submodule is Gorenstein essential, and if
A � B � C are modules such that A � C is Gorenstein essential, then A;B are
Gorenstein essential submodules of B;C respectively.
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Lemma 11.4.2. Let R be n-Gorenstein. Then the following are equivalent for an
R-module G:

(1) G is Gorenstein injective.

(2) G has no proper Gorenstein essential extensions.

(3) G is a direct summand of all Gorenstein extensions of itself.

Proof. .1/ ) .2/. Let G � H be a Gorenstein essential extension of a Gorenstein
injective R-module G. Then H Š G ˚E for some injective R-module E by Propo-
sition 11.3.6. But proj dimE < 1, G \ E D 0, and G is a Gorenstein essential
submodule of H . So E D 0.
.2/ ) .3/. Suppose G has a proper Gorenstein extension H , and let C be the

collection of all nonzero submodulesN ofH such that proj dimN <1 andN\G D
0. C ¤ ; for otherwise H would be a proper Gorenstein essential extension of G.
Now order C by inclusion and we note that C is an inductive system since R is n-
Gorenstein. Hence C has a maximal element N0 by Zorn’s Lemma. We now argue
that in fact H D G ˚N0.

We first note that H=.G C N0/ Š .H=G/=.N0=G \ N0/ Š .H=G/=N0. So
H=.G C N0/ has finite projective dimension since H=G and N0 do. Hence .G C
N0/=N0 � H=N0 is a Gorenstein extension. But G Š .G C N0/=N0 has no proper
Gorenstein essential extensions. Hence if H ¤ G C N0, then .G C N0/=N0 ¨
H=N0 is not a Gorenstein essential extension. So there is a submodule M of H such
that N0 ¨ M , proj dimM=N0 < 1, .M=N0/ \ ..G C N0/=N0/ D 0. But then
proj dimM <1 andM \G D 0. SoM is in C contradicting the maximality of N0.
Hence H D G ˚N0.
.3/ ) .1/. By Theorem 11.2.1, H has an injective Gorenstein injective preenve-

lope H ! G with proj dimG=H < 1. So G � H is a Gorenstein extension. Thus
G is a direct summand of H and so we are done.

Lemma 11.4.3. If E is an injective submodule of an R-module M and S � M is
maximal with respect to E \ S D 0, then M D E ˚ S .

Proof. .E ˚ S/=S is a summand of M=S since E is injective. But then M=S Š
.T=S/ ˚ E for some R-module T . Hence E Š M=S since S is maximal with
respect to E \ S D 0. Thus M Š E ˚ S .

Definition 11.4.4. A � C is said to be a minimal Gorenstein injective extension if it
is a Gorenstein injective extension and whenever A � B ¨ C is such that A � B

is a Gorenstein extension, then B is not Gorenstein injective. A � B is said to be a
maximal Gorenstein essential extension if A � B is a Gorenstein essential extension
and whenever A � B ¨ C is such that A ¨ C is a Gorenstein extension, then A is
not a Gorenstein essential submodule of C .
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Theorem 11.4.5. Let R be n-Gorenstein. Then the following are equivalent for a
submodule M of an R-module G:

(1) M � G is a Gorenstein injective envelope.

(2) G is a Gorenstein essential Gorenstein injective extension of M .

(3) G is a minimal Gorenstein injective extension of M .

(4) G is a maximal Gorenstein essential extension of M .

Proof. .1/ ) .2/. M � G is a Gorenstein injective extension by Theorem 11.2.1.
We now show that M is a Gorenstein essential submodule.

Let N � G be a submodule of finite projective dimension such that N \M D 0.
ThenE.N/ is a submodule ofG by Proposition 11.3.7. Now letG0 �M be maximal
inG with respect to G0\E.N/ D 0. ThusG Š E.N/˚G0 by Lemma 11.4.3 above
and G=M Š E.N/˚ G0=M . But then M � G0 is a Gorenstein injective extension.
SoG0 Š G.M/˚E D G˚E for some injectiveR-moduleE by Proposition 11.3.6.
Hence E.N/ D 0 and so M is a Gorenstein essential submodule.
.2/) .3/. Let H be a Gorenstein injective extension of M contained in G. Then

proj dimG=H < 1 and so G Š H ˚ E for some injective R-module E. But
E \ H D 0 and proj dimE < 1. So E D 0 since M is a Gorenstein essential
submodule of G. Thus H D G.
.3/ ) .1/. By Proposition 11.3.6, G.M/ is a direct summand of G and so

G.M/ Š G by minimality.
.2/, .4/ follows from the equivalence of (1) and (2) in Lemma 11.4.2.

Exercises

1. Let A � B � C be modules and suppose A � C is Gorenstein essential. Prove
that A � B and B � C are also Gorenstein essential.

2. Prove the equivalence of parts (2) and (4) of Theorem 11.4.5.

3. Argue that if A is an essential submodule of B and B is a Gorenstein essential
submodule of C , then A is a Gorenstein essential submodule of C .

4. Let R be n-Gorenstein. Prove that if A � B is an essential Gorenstein extension,
then G.A/ Š G.B/.

11.5 Gorenstein Projective Precovers and Covers

We now consider the existence of Gorenstein projective precovers. We first note that
since projective modules are Gorenstein projective, such precovers are necessarily
surjective.
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Theorem 11.5.1. If R is n-Gorenstein, then every module M has a Gorenstein pro-
jective precover C ! M such that if 0 ! L ! C ! M ! 0 is exact, then
proj dimL � n � 1 whenever n � 1.

Proof. The proof is dual to the proof of Theorem 11.2.1. It begins with an appeal to
Theorem 10.2.14 and then follows by a dual argument.

Remark 11.5.2. We note that if M is finitely generated, then a Gorenstein projective
precover constructed in the above may be chosen to be also finitely generated.

Corollary 11.5.3. If R is n-Gorenstein, then the following are equivalent for any
R-module M :

(1) M is Gorenstein projective.

(2) Exti .M;L/ D 0 for all R-modules L with proj dimL <1 and all i � 1.

(3) Ext1.M;L/ D 0 for all R-modules L with proj dimL <1.

Furthermore, if M is finitely generated, then each of the above statements is
equivalent to

(4) Exti .M;L/ D 0 for all finitely generated R-modules L with proj dimL < 1
and all i � 1.

(5) Ext1.M;L/ D 0 for all finitely generated R-modules L with proj dimL <1.

(6) Exti .M;P / D 0 for all projective R-modules P and all i � 1.

Proof. .1/) .2/ by Remark 10.2.2 and .3/) .1/ follows from the theorem above.
.2/) .3/; .2/) .4/) .5/; and .2/) .6/ are trivial.
.5/) .1/ follows from the theorem choosing the precover to be finitely generated

and .6/) .1/ follows from Theorem 10.2.16.

Corollary 11.5.4. If R is a commutative local Gorenstein ring, then a finitely gener-
ated R-module is Gorenstein projective if and only if it is maximal Cohen–Macaulay.

Proof. This is left to the reader.

Remark 11.5.5. Dual to Corollary 11.2.4, we have that for a Gorenstein projective
precover C !M of Theorem 11.5.1, proj dimM <1 if and only if C is projective
and if and only if C !M is a projective precover.

We are now in a position to prove a Gorenstein version of Theorem 10.2.8.

Theorem 11.5.6. Let R be n-Gorenstein and 0 ! M 0 ! M ! M 00 ! 0 be an
exact sequence of R-modules. If M 0;M 00 are Gorenstein projective, then so is M ,
and if M;M 00 are Gorenstein projective, then so is M 0.
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Proof. We consider the following exact sequence

� � � ! Ext1.M 00; L/! Ext1.M;L/! Ext1.M 0; L/! Ext2.M 00; L/! � � �

with proj dimL <1. So if M 0;M 00 are Gorenstein projective, then Ext1.M 00; L/ D
Ext1.M 0; L/ D 0 and hence Ext1.M;L/ D 0. Thus M is Gorenstein projective by
Corollary 11.5.3. Similarly for M 0.

The class of Gorenstein projective R-modules, denoted GorProj , is precover-
ing over n-Gorenstein rings by Theorem 11.5.1 and hence every R-module has a
left GorProj -resolution. This resolution is is exact and is usually called a Goren-
stein projective resolution. We now have the following result which is dual to Propo-
sition 11.2.5.

Proposition 11.5.7. Let R be n-Gorenstein and L be the class of R-modules of finite
projective dimension. Then the following are equivalent for an R-module M and
integer r � 0:

(1) left GorProj - dimM � r .

(2) There exists an exact sequence 0! Cr ! Cr�1 ! � � � ! C1 ! C0 !M !
0 with each Ci Gorenstein projective.

(3) Exti .M;L/ D 0 for all i � r C 1 and all L 2 L.

(4) ExtrC1.M;L/ D 0 for all L 2 L.

(5) Every r th GorProj -syzygy of M is Gorenstein projective.

(6) Every r th Proj -syzygy of M is Gorenstein projective.

Furthermore, if M is finitely generated, then each of the above statements is
equivalent to

(7) Exti .M;P / D 0 for all projective R-modules P and all i � r C 1.

Proof. .1/) .2/; .3/) .4/ and .7/; .5/) .1/ and .6/ are trivial.
.2/) .3/. Exti .M;L/ Š Exti�r .Cr ; L/ D 0 for all i > r and all L 2 L. So (3)

follows.
.4/) .5/. LetK be an r th GorProj -syzygy. Then ExtrC1.M;L/ Š Ext1.K;L/

for all L 2 L. But Ext1.K;L/ D 0 for all L 2 L implies K is Gorenstein projective
by Corollary 11.5.3.
.6/ ) .3/. Let � � � ! P1 ! P0 ! M ! 0 be a projective resolution of M and

K D Ker.Pr�1 ! Pr�2/. Then Exti .M;L/ Š Exti�r .K;L/ for all L 2 L and so
(3) now easily follows.
.7/) .6/. If K is an r th Projfg-syzygy of M , then Exti�r .K; P / Š Exti .M;P /

for all i > r and K is finitely generated. But Exti�r .K; P / D 0 for all i > r by
assumption. So K is Gorenstein projective by Corollary 11.5.3.



Section 11.5 Gorenstein Projective Precovers and Covers 293

Corollary 11.5.8. The following properties hold for any R-module M :

(1) left GorProj - dimM � n.

(2) left GorProj - dimM D proj dimM if and only if proj dimM <1.

We can now prove a Gorenstein version of Proposition 10.2.17.

Proposition 11.5.9. Let R be n-Gorenstein. Then the following are equivalent for an
R-module N :

(1) Ext1.M;N / D 0 for all Gorenstein projective R-modules M .

(2) Exti .M;N / D 0 for all Gorenstein projective R-modules M and all i � 1.

(3) N has finite projective dimension.

(4) N has finite flat dimension.

(5) Tori .M;N / D 0 for all i � 1 and all Gorenstein flat right R-modules M .

(6) Tor1.M;N / D 0 for all Gorenstein flat right R-modules M .

Proof. .1/ , .2/. Assume (1). We consider the exact sequence 0 ! M 0 ! P !
M ! 0 with P projective. Then M 0 is Gorenstein projective by Theorem 11.5.6. So
Ext2.M;N / Š Ext1.M 0; N / D 0 and thus (2) follows by induction. The converse is
trivial.
.2/ , .3/. Assume (2). Let � � � ! P1 ! P0 ! N ! 0 be a projective res-

olution of N and K D Ker.Pn�1 ! Pn�2/. Then K is Gorenstein projective by
Theorem 10.2.14. So Extn.K;N / D 0 by assumption. Thus Hom.K; PnC1/ !
Hom.K; Pn/ ! Hom.K; Pn�1/ is exact. So K is a summand of Pn and thus
proj dimN � n. The converse follows from Remark 10.2.2.
.1/, .4/ by Theorem 9.1.10.
.5/ , .4/. Assume (5). Tori .M;N / D 0 means Exti .M;NC/ D 0. Thus

Exti .M;NC/ D 0 for all i � 1 and all Gorenstein projective R-modules M since
Gorenstein projectives are Gorenstein flat. So flat dimNC < 1 by the above. Thus
inj dimNC < 1 since R is n-Gorenstein. Therefore flat dimN < 1. The converse
follows from Theorem 10.3.8 and Theorem 9.1.10.
.6/, .5/. Assume (6). We consider the sequence 0!M 0 ! P !M ! 0 with

P projective. Then M 0 is Gorenstein flat by Theorem 10.3.14. So Tor2.M;N / Š
Tor1.M 0; N / D 0 and so (5) follows by induction. The converse is trivial.

Remark 11.5.10. By Proposition 11.5.9 above and Corollary 11.5.3, we see that
.GorProj ;L/ is a cotorsion theory over any Iwanaga–Gorenstein ring R and has
enough injectives and projectives by Proposition 7.1.7 and Theorem 11.5.1.

In general, modules over n-Gorenstein rings do not have Gorenstein projective cov-
ers. This can be seen by considering the 1-Gorenstein ring Z where the Gorenstein
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projective modules are the free modules. When the ring R is local, all finitely gener-
ated left R-modules have projective covers by Theorem 5.3.3. So it is natural to raise
the analogous question in the Gorenstein situation.

If R is local, commutative and Gorenstein, Auslander announced that all finitely
generated R-modules have finitely generated Gorenstein projective covers. We will
defer a proof of this fact to the next section where we will prove a more general
result (concerning modules over a local Cohen–Macaulay ring admitting a dualizing
module). In order to do this, we will need the following result.

Theorem 11.5.11. Let R be a local Cohen–Macaulay ring of Krull dimension d ad-
mitting a dualizing module. Then every R-module M 2 G0.R/ has a Gorenstein
projective precover  W C !M with proj dim Ker � d � 1.

Proof. The proof is like the proof of Theorem 11.5.1 above. We start by appealing to
Lemma 10.4.15 and follow the same argument.

Corollary 11.5.12. An R-module M is Gorenstein projective if and only if M 2
G0.R/ and Ext1.M;L/ D 0 for all R-modules L of finite projective dimension.

Remark 11.5.13. Using Theorem 11.5.11 and Corollary 11.5.12 above, we get re-
sults corresponding to Remark 11.5.5 and Theorem 11.5.6 for R-modules M;M 0;
M 00 2 G0.R/ with identical proofs.

Proposition 11.5.14. The following are equivalent for an R-module N 2 J0.R/:

(1) Tori .N;M/ D 0 for all i � 1 and all Gorenstein flat R-modules M .

(2) Tor1.N;M/ D 0 for all Gorenstein flat R-modules M .

(3) N has finite injective dimension.

Proof. .1/, .2/ follows as in Proposition 11.5.9.
.1/, .3/. (1) means Exti .M;NC/ D 0 for all i � 1 and all Gorenstein projective

R-modules M by Corollary 10.4.29. Thus flat dimNC < 1 by a result dual to
Proposition 11.2.8 above and so inj dimN < 1. The converse by Theorem 10.4.28.

Proposition 11.5.15. AnR-moduleK is cotorsion and has finite projective dimension
if and only if K 2 G0.R/ and Exti .M;K/ D 0 for all Gorenstein flat R-modules M
and all i � 1.

Proof. If proj dimK < 1, then K 2 G0.R/. The second part follows from Corol-
lary 10.4.27. Conversely, Ext1.F;K/ D 0 for all flat R-modules and so K is co-
torsion, and proj dimK < 1 by Corollary 10.4.29 and a result dual to Proposi-
tion 11.2.8.
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Exercises

1. Prove Theorem 11.5.1.

2. Prove that if R is Iwanaga–Gorenstein, then every finitely generated R-module
M has an L-preenvelope M ! K with K finitely generated. And moreover, if
0 ! M ! K ! C ! 0 is exact, then C is a finitely generated Gorenstein
projective R-module.

3. Prove Corollary 11.5.4.
Hint: Use Proposition 9.5.23.

4. Prove the second part of Theorem 11.5.6.

5. Prove Corollary 11.5.8.

6. Prove Theorem 11.5.11.

7. Prove Corollary 11.5.12.

8. Let R be a local Cohen–Macaulay ring of finite Krull dimension and L be the
class of R-modules of finite projective dimension. State and prove a result corre-
sponding to Proposition 11.5.7.

9. Let R be as in Problem 7 above. State and prove a result corresponding to Propo-
sition 11.5.9.

11.6 Auslander’s Last Theorem
(Gorenstein Projective Covers)

In this section, we let R be a local Cohen–Macaulay ring of Krull dimension d ad-
mitting a dualizing module�. We will prove that any finitely generated R-moduleM
with M 2 G0.R/ (see Chapter 10, Section 4) has a Gorenstein projective cover. We
recall from Proposition 10.4.3 that ifR is Gorenstein, then G0.R/ is the class of allR-
modules. So in this case, all finitely generated R-modules have Gorenstein projective
covers. This result was first announced by Auslander.

We will now be concerned with the Matlis duals M v of modules M in the Foxby
classes G0.R/ and J0.R/. So we start with the following result.

Proposition 11.6.1. If R is complete and M is finitely generated, then M 2 G0.R/ if
and only if M v 2 J0.R/.

Proof. Suppose M 2 G0.R/. Then since Tori .�;M/ D 0, we get Exti .�;M v/ D
.Tori .�;M//v D 0 for i � 1. To get Tori .�;Hom.�;M v// D 0 we only need to
establish that

.Tori .�;Hom.�;M v///v D Exti .�;Hom.�;M v/v/ D 0
for i � 1. But Hom.�;M v/v Š .�˝M/vv Š �˝M and Exti .�;�˝M/ D 0
for i � 1 by hypothesis.
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Now we need to establish that �˝ Hom.�;M v/ ! M v is an isomorphism. We
have thatM ! Hom.�;�˝M/ is an isomorphism and so Hom.�;�˝M/v !M v

is an isomorphism. Also � ˝ Hom.�;M v/ Š � ˝ .� ˝ M/v and so we only
need establish that the natural map � ˝ .� ˝ M/v ! Hom.�;� ˝ M/v is an
isomorphism. But the two functors � ˝ .� �M/v and Hom.�; �˝M/v are right
exact and the natural transformation � ˝ .� ˝ M/v ! Hom.�; � ˝ M/v is an
isomorphism when evaluated at Rn for any n � 1. So a standard argument gives that
�˝.�˝M/v ! Hom.�;�˝M/v is an isomorphism. Thus we haveM v 2 J0.R/.

Now let N D M v and assume N 2 J0.R/. We want to show M D N v 2
J0.R/. We have Tori .�;M/v D Exti .�;M v/ D Exti .�;N /. Since N 2 J0.R/,
Exti .�;N / D 0 and so Tori .�;M/ D 0. But also, Tori .�;Hom.�;N // D 0 for
i � 1. So 0D Tori .�;Hom.�;N //v D Exti .�;Hom.�;N /v/. But Hom.�;N /v D
Hom.�;M v/v Š .�˝M/vv Š �˝M . So Exti .�;�˝M/ D 0 for i � 1.

To establish that M ! Hom.�;� ˝M/ is an isomorphism, we note that � ˝
Hom.�;N / ! N is an isomorphism, and so N v ! .� ˝ Hom.�;N //v Š
Hom.�;Hom.�;N /v/ is an isomorphism. So we need that the natural map�˝M D
�˝Hom.N;E.k//! Hom.Hom.�;N /;E.k// is an isomorphism. This is the case
since the natural transformation

�˝ Hom.N;E.k//! Hom.Hom.�; N /; E.k//
is an isomorphism on all Rn, n � 1, and since both functors are right exact.

Corollary 11.6.2. If C is a finitely generated module, then C is Gorenstein projective
if and only if C v is Gorenstein injective.

Proof. If C is Gorenstein projective, then there is an exact sequence 0 ! C !
Pd�1 ! � � � ! P0 !M ! 0 with P0; : : : ; Pd�1 finitely generated projective mod-
ules. Hence by Proposition 10.4.17 M 2 G0.R/. So M v 2 J0.R/ by the Proposition
above. But 0! M v ! P v0 ! � � � ! P v

d�1 ! C v ! 0 is exact and P v0 ; : : : ; P
v
d�1

are injective. So C v is Gorenstein injective by Proposition 10.4.23.
Conversely, suppose C v is Gorenstein injective. Since C is finitely generated, C v

is Artinian. We claim that if E ! C v is an injective cover of C , then E is also
Artinian. That is, E is of the form E.k/n for some n � 0. To see this, recall that
C has a flat preenvelope C ! F . Since C ! F can be factored C ! Rn ! F

for some n � 0, we can assume F D Rn. But then E.k/n D .Rn/v ! C v is an
injective precover and E is isomorphic to a summand of E.k/n and thus is Artinian.
Hence we see that if Ed�1 ! � � � ! E1 ! E0 ! C v ! 0 is a partial minimal
left Inj-resolution of C v, then it is exact with Ed�1; : : : ; E0 Artinian. So if 0 !
N ! Ed�1 ! � � � ! E1 ! E0 ! C v ! 0 is exact, we get N 2 G0.R/ by
Proposition 10.4.23 and so by Proposition 11.6.1 above N v 2 G0.R/. But 0! C.D
C vv/ ! Ev0 ! Ev1 ! � � � ! Ev

d�1 ! N v ! 0 is exact and Ev0 ; : : : ; E
v
d�1 are

free. So by Proposition 10.4.17 C is Gorenstein projective.
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Theorem 11.6.3. Let R be complete and M be a finitely generated R-module. If
M 2 G0.R/, then M has a Gorenstein projective cover C ! M . If C ! M is such
a cover, then C is finitely generated and proj dim Ker.C !M/ <1.

Proof. By Theorem 11.5.11 there is an exact sequence 0! L! C !M ! 0 with
C Gorenstein projective and with proj dimL <1. By the proof of that result, we see
that we can assume C is finitely generated. But then 0 ! M v ! C v ! Lv ! 0

is exact. By Corollary 11.6.2, C v is Gorenstein injective. Since proj dimL <1, we
have inj dimLv < 1. Since Ext1.Lv; G/ D 0 whenever G is Gorenstein injective
(Proposition 10.1.3), we have that Hom.C v; G/ ! Hom.M v; G/ ! 0 is exact.
That is, M v ! C v is a Gorenstein injective preenvelope. By Proposition 11.6.1 and
Exercise 4 of Section 11.3, M v has a Gorenstein injective envelope ' W M v ! G

and G is a retract of C v and so is Artinian. But then Coker ' is a retract of Lv.
So inj dim Coker' < 1 since inj dimLv < 1. So with NL D Coker 'v, we have
proj dim NL <1. Thus with NL D .G=M v/v , we have that 0! NL! Gv ! M ! 0

is exact with proj dim NL < 1. But Gv is Gorenstein projective if and only if G Š
Gvv is Gorenstein injective by Corollary 11.6.2. So by Proposition 10.2.6, Gv !M

is a Gorenstein projective precover. But M and G are Matlis reflexive (and M v and
Gv are also) and M v ! G is an envelope. So Gv ! M is a cover. This completes
the proof.

We now show that we can drop the hypothesis of completeness from the preceding
theorem.

Theorem 11.6.4. Let M be finitely generated such that M 2 G0.R/, and let ' W
C ! M be a surjective linear map where C is Gorenstein projective. If M has a
Gorenstein projective cover, then ' W C ! M is a Gorenstein projective cover if and
only if proj dim Ker' <1 and Ker' contains no nonzero projective summands of C .

Proof. M has a Gorenstein projective precover  W C 0 ! M by Theorem 11.5.11
where proj dim Ker < 1. If ' W C ! M is a cover, then C ! M is a retract of
C 0 ! M (over M ) and so Ker' is a retract of Ker . Hence proj dim Ker' < 1.
If Ker' contains a projective (so free) summand F of C , then there is easily an
f W C ! C with ' ı f D ' which is not an automorphism of C . Hence the two
conditions are necessary.

Now assume the conditions. Then if  W C 0 ! M is a cover we have a commuta-
tive diagram

C 0

���
��

��
��

��
C

��

�� M

C 0

..
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SinceC !M is a cover, C 0 ! C ! C 0 is an automorphism ofC . So Ker.C ! C 0/
is a summand of C containing Ker.C ! M/. So Ker.C ! C 0/ is Gorenstein
projective. But Ker.C ! C 0/ is also isomorphic to a summand of Ker' and so
proj dim Ker.C ! C 0/ < 1. Hence by Proposition 10.2.3, Ker.C ! C 0/ is pro-
jective and so is zero by hypothesis. Hence C ! C 0 is an isomorphism and thus
C !M is also a cover.

Proposition 11.6.5. For each finitely generated M with M 2 G0.R/, there exists
a Gorenstein projective precover ' W C ! M with C finitely generated and
proj dim Ker' < d � 1 such that C has a direct sum decomposition C D U ˚ F
where U has no nonzero free summands and F !M='.U / is a projective cover.

Proof. By Theorem 11.5.11, there exists a Gorenstein projective precover  W C 0 !
M with proj dim Ker < d � 1. From the proof of that theorem, it is easy to see
that if M is finitely generated, then C 0 can be chosen to be finitely generated. Let
C 0 D U ˚ NF where U has no nonzero free summands. Since  is necessarily a
surjection, NF !M= .U / is a surjection. But then NF has a direct sum decomposition
NF D F ˚ F 0

such that F ! M= .U / is a projective cover and such that the map
F

0 ! M= .U / is zero. This implies the map F
0 ! M has a lifting g W F 0 ! U .

Now let C D U ˚ F and ' D  jC . Then we see that there is a retraction of
C 0 D U ˚ F ˚ F 0 ! M to C ! M over M . In matrix notation, the retraction is
given by

0

@

idU 0 0

0 idF 0

g 0 0

1

A

This gives that Ker' is a retract of Ker and so proj dim Ker' < d � 1. Hence
' W C D U ˚ F !M is the required precover.

Lemma 11.6.6. If ' W C ! M is linear and C D U ˚ F where U has no nonzero
free summands and F ! M='.U / is a projective cover, then Ker' contains no
nonzero free summands of C .

Proof. By contradiction. Suppose x D .x1; x2/ 2 U ˚ F generates a free summand
of C contained in Ker'. Then '.x1/ D '.�x2/ 2 '.U /. Since F ! M='.U / is a
projective cover and maps �x2 to 0, we have �x2 2 m.R/F . Since x 2 C generates
a free summand of C , we have � 2 C � D Hom.C;R/ with �.x/ D 1. Then
�.x1/C �.x2/ D 1. But x2 2 m.R/F and so �.x2/ 2 m.R/. Hence �.x1/ is a unit
of R. This implies U has a rank one free summand, contradicting our hypothesis.

Lemma 11.6.7. If ' W C ! M is a Gorenstein projective precover of M with
proj dim Ker ' < 1 and if M has a cover, then C ! M is a cover if and only if
Ker' contains no nonzero free summand of C .
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Proof. If C 0 ! M is a cover, then we have a decomposition C D C 0 ˚ F with
F � Ker'. Then proj dimF < 1 and F is Gorenstein projective. So by Proposi-
tion 10.2.3, F is projective and thus free. So if ' W C ! M satisfies the hypothesis,
F D 0 and hence ' W C !M is a cover.

If ' W C !M does not satisfy the hypothesis, there is clearly an f W C ! C with
' ı f D ' and f not an isomorphism (we can choose f with F � Ker f ).

We now let OR denote the completion of R. For a finitely generated module M ,
we let OM denote the completion of M . Then OM Š OR ˝ RM . If M and N are
finitely generated and f W M ! N is linear, we have Of W OM ! ON . Since OR is
a faithfully flat R-module, Of is an isomorphism if and only if f is an isomorphism.
Furthermore, Hom OR. OM; ON/ can be identified with the completion of HomR.M;N /

and the completion ofM ˝ RN is OM ˝ OR ON (see Theorems 3.2.5 and 2.1.11). Hence
we have the following result.

Lemma 11.6.8. Given finitely generated R-modules M and N , N is isomorphic to a
summand of M if and only if ON is isomorphic (as an OR-module) to a summand of OM .

Proof. N is a isomorphic to a summand of M if and only if idN is in the image of
HomR.N;M/ � HomR.M;N / ! HomR.N;N / (with the map .f; g/ 7! g ı f /,
or equivalently, if and only if HomR.N;M/˝ R HomR.M;N / ! HomR.N;N / is
surjective. Now apply the remarks above.

We note that this lemma says M has a nonzero free summand if and only if OM
does.

Theorem 11.6.9. If M is a finitely generated R-module and M 2 G0.R/, then M
has a Gorenstein projective cover ' W C ! M . Furthermore C is finitely generated
and proj dim Ker' < d � 1.

Proof. By Proposition 11.6.5, there is a precover ' W C ! M with C finitely gen-
erated and proj dim Ker' < d � 1 and such that C has a direct sum decomposition
C D U ˚F where U has no nonzero free summands and F !M='.U / is a projec-
tive cover. We want to show that in fact ' W C !M is a cover.

By our remarks above about completions and by Lemma 11.6.8, we see that O' W
OC ! OM inherits all the properties of '. So OF ! OM= O'. OU / is a projective cover

since its kernel is contained in 2m.R/F D m. OR/ OF . But then since we know by
Theorem 11.6.3 that OM has a cover, we see that in fact O' W OC ! OM is a cover
by Lemmas 11.6.6 and 11.6.7.

Now let f W C ! C be such that ' ı f D '. Then O' ı Of D O' and Of is
an automorphism of OC since O' W OC ! OM is a cover. This implies that f is an
automorphism ofC and so ' W C !M is the desired Gorenstein projective cover.
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Corollary 11.6.10. If C !M is a Gorenstein projective cover, then proj dimM <1
if and only if C !M is a projective cover.

Theorem 11.6.11. Let M be a finitely generated R-module and M 2 G0.R/. Then
the minimal left Gorenstein projective resolution of M is of the form

� � � ! P2 ! P1 ! C0 !M ! 0

where C0 is Gorenstein projective and Pi is projective for each i � 1 and Pi D 0 for
i > d .

Exercises

1. Prove that M 2 G0.R/ if and only if M v 2 J0.R/.

2. Prove Corollary 11.6.10.

3. Prove Theorem 11.6.11.

11.7 Gorenstein Flat Covers

Our aim in this section is to prove that Gorenstein flat covers exist for all modules over
n-Gorenstein rings. The proof will follow from the following results. But first we note
that the class of Gorenstein flat modules is closed under direct limits and so to find a
Gorenstein flat cover it suffices to find a Gorenstein flat precover by Corollary 5.2.7.

The following lemma uses N�-dimension defined in 8.6.11.

Lemma 11.7.1. Let R be n-Gorenstein and F be the class of Gorenstein flat left
R-modules, then N�F .P / D1 for every pure injective left R-module P .

Proof. Let N be any right R-module and let N � G be a Gorenstein injective enve-
lope. Then we have the exact sequence 0 ! .G=N/C ! GC ! NC ! 0 where
GC is a Gorenstein flat left R-module by Corollary 10.3.9.

Ext1.F; .G=N/C/ Š Tor1.F;G=N/C D 0 if F is a Gorenstein flat left R-module
since Tor1.F;G=N/ D 0 by Theorems 11.3.2 and 10.3.8. Hence in the language of
Chapter 7, Section 1, GC ! NC is a special Gorenstein flat precover (see Defini-
tion 7.1.6).

Now let P be a pure injective left R-module and set N D PC. Then we have a
special Gorenstein flat precover GC ! NC D PCC. Since P is pure injective, it
is a direct summand of PCC and so P has a Gorenstein flat precover. But then by
Corollary 10.3.12 and Corollary 5.2.7, P has a Gorenstein flat cover F ! P . So
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there exists a commutative diagram

0 �� K ��

��

F ��

��

P ��

��

0

0 �� .G=N/C ��

��

GC ��

��

PCC ��

��

0

0 �� K �� F �� P �� 0

with exact rows and P ! PCC ! P the identity on P . Since F ! P is a
Gorenstein flat cover, we see that F is isomorphic to a direct summand of GC and K
is isomorphic to a direct summand of .G=N/C. Since .G=N/C is pure injective, so is
K. Since Ext1.F 0; .G=N/C/ D 0 for F 0 Gorenstein flat, we have Ext1.F 0; K/ D 0

also. Hence 0! K ! F ! P ! 0 is exact with F ! P a special Gorenstein flat
cover andK pure injective. But then we can repeat the argument withK replacing P .
Proceeding in this manner we see that N�F .P / D1.

Corollary 11.7.2. For every R-module L of finite injective dimension, N�F .L/ D 1
where F is the class of Gorenstein flat R-modules.

Proof. If L is injective then L is pure injective and so the result holds by the lemma.
If inj dimL <1, then we see that a repeated application of Theorem 8.6.16 gives the
result.

Theorem 11.7.3. If R is n-Gorenstein, then every R-moduleM has a Gorenstein flat
cover F !M such that if 0! L! F !M ! 0 is exact, then proj dimL <1.

Proof. We will argue that for every R-module M , N�F .M/ D 1 with F the class
of Gorenstein flat R-modules. By Theorem 11.5.1, there is an exact sequence 0 !
L ! C ! M ! 0 with C Gorenstein projective and with proj dimL < 1. By
Theorem 9.1.10, we also have inj dimL < 1. By Corollary 11.7.2, N�F .L/ D
1. By Corollary 10.3.10, C is Gorenstein flat and so easily N�F .C / D 1. Then
Theorem 8.6.13 says N�F .M/ D 1. So M has a special Gorenstein flat precover
NF '! M with Ext1.F 0;Ker'/ D 0 for all Gorenstein flat R-modules F 0. But then

Ext1.C;Ker'/ D 0 for all Gorenstein projective R-modules C . So proj dim Ker' <
1 by Proposition 11.5.9.

Corollary 11.7.4. If F ! M is a Gorenstein flat cover, then flat dimM <1 if and
only if F !M is a flat cover.

We note that it follows from the above that the class of Gorenstein flat R-modules,
denoted GorF lat, over an n-Gorenstein ring is covering and hence every R-module
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has a minimal left GorF lat-resolution. This resolution is exact and is usually called
a minimal Gorenstein flat resolution.

Proposition 11.7.5. Let R be n-Gorenstein and L be the class of R-modules of finite
projective dimension. Then the following are equivalent for an R-module M and
integer r � 0:

(1) left GorF lat- dimM � r .

(2) Tori .L;M/ D 0 for all i � r C 1 for all L 2 L.

(3) TorrC1.L;M/ D 0 for all L 2 L.

(4) Tori .E;M/ D 0 for all injective R-modules E and all i � r C 1.

(5) TorrC1.E;M/ D 0 for all injective R-modules E.

(6) Every r th GorF lat-syzygy is Gorenstein flat.

(7) Every r th F lat-syzygy is Gorenstein flat.

(8) right GorInj- dimMC � r .

Proof. .1/, .2/. Let � � � ! F1 ! F0 ! M ! 0 be a left GorF lat-resolution of
M and K D Ker.Fr�1 ! Fr�2/. Then ToriCr .L;M/ Š Tori .L;K/ for all i � 1
and all L 2 L. So K is Gorenstein flat if and only if ToriCr .L;M/ D 0 for all i � 1
and all L 2 L by Theorem 10.3.8.

The equivalence of (1), (3), (4), (5), (6) and (7) follows similarly from Theo-
rem 10.3.8.
.1/ , .8/. We consider the exact sequence 0 ! K ! Fr�1 ! � � � ! F1 !

F0 ! M ! 0 above. Then 0 ! MC ! FC0 ! � � � ! FCr�1 ! KC ! 0

is exact. So left GorF lat- dimM � r if and only if KC is Gorenstein injective by
Theorem 10.3.8, and if and only if right GorInj- dimMC � r by Proposition 11.2.5
since each FCi is Gorenstein injective by Theorem 10.3.8.

Theorem 11.7.6. Let R be n-Gorenstein and M be an R-module. Then the minimal
left GorF lat-resolution of M is of the form

0! Fn ! Fn�1 ! � � � ! F1 ! G0 !M ! 0

where G0 is Gorenstein flat and Fi is flat for each i D 1; : : : ; n. In particular,
left GorF lat- dimM � n.

We note that it follows from the above that if R is n-Gorenstein and  W G ! M

is a Gorenstein flat cover, then flat dim Ker � n � 1.

Lemma 11.7.7. Let R be left coherent. Then every R-module M has an embedding
M � G such that G is cotorsion and G=M is flat.
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Proof. By Theorem 7.4.4, let 0! K ! F ! M ! 0 be exact where F ! M is a
flat cover of M . Then we have the following pushout diagram

0

��

0

��
0 �� K �� F ��

��

M ��

��

0

0 �� K �� PE.F / ��

��

G ��

��

0

L

��

L

��
0 0

But PE.F / andK are cotorsion by Lemmas 5.3.23 and 5.3.25. SoG is cotorsion (see
Definition 5.3.22). Moreover, PE.F / is flat by Proposition 6.7.1 and so L is flat.

Theorem 11.7.8. Let R be a local Cohen–Macaulay ring of Krull dimension d ad-
mitting a dualizing module. Then every R-module M 2 G0.R/ has a Gorenstein flat
cover. Moreover, if F !M is such a cover, then flat dim Ker � d � 1.

Proof. By Theorem 11.5.11, there exists an exact sequence 0! L! P !M ! 0

where P ! M is a Gorenstein projective precover and proj dimL � d � 1. But
by the lemma above there is an exact sequence 0 ! L ! C ! K ! 0 such that
K is flat and C is cotorsion. But proj dimC < 1. Hence Exti .G; C / D 0 for all
Gorenstein flat G and all i � 1 by Corollary 10.4.27.

We now consider the following pushout diagram

0

��

0

��
0 �� L ��

��

P ��

��

M �� 0

0 �� C

��

�� F ��

��

M �� 0

K

��

K

��
0 0
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where F is Gorenstein flat since P and K are. But then F ! M is a Gorenstein flat
precover since Ext1.G; C / D 0 for all Gorenstein flat G. Hence M has a Gorenstein
flat cover.

Now we note from the above that flat dimL � d � 1 and K is flat. So flat dimC �
d � 1. If  W F 0 ! M is a Gorenstein flat cover, then Ker is a summand of C and
so flat dim Ker � d � 1.

Exercises

1. Complete the proof of Proposition 11.7.5.

2. Prove that if R is n-Gorenstein, then left GorF lat- dimM D flat dimM if and
only if flat dimM <1.

3. Prove Theorem 11.7.6.

4. Prove that ifM 2G0.R/ and F!M is a Gorenstein flat cover, then flat dimM <

1 if and only if F !M is a flat cover.

5. State and prove a result corresponding to Proposition 11.7.5 for Gorenstein flat
dimensions over Cohen–Macaulay rings admitting a dualizing module.

11.8 Gorenstein Flat and Projective Preenvelopes

We start with the following result.

Lemma 11.8.1. Let R be n-Gorenstein, ¹Xkº be a representative set of indecom-
posable injective right R-modules, and N D L

XK . If @˛ is an infinite cardinal,
then there is an infinite cardinal @ˇ such that if M is a Gorenstein flat left R-module
and S � M is a submodule with CardS � @˛, then there is an R-module T with
S � T �M and CardT � @ˇ such that S � T induces the zero map

Tori .N; S/! Tori .N; T / for all i � 1:

Proof. We first note that M is Gorenstein flat if and only if Tori .N;M/ D 0 for all
i � 1 by Theorem 10.3.8.

Let � � � ! P1 ! P0 ! N ! 0 be a projective resolution of N . Then

Card Tori .N; S/ � CardPi ˝ S:

Hence given @˛ , there exists an infinite cardinal @ı � @˛ such that if CardS � @˛ ,
then Card Tori .N; S/ � @ı for all i � 1.

Now note that 0 D Tori .N;M/ Š lim�!Tori .N; S 0/ where the limit is over all S 0
with S � S 0 � M and S 0=S finitely generated. Hence for z 2 Tori .N; S/, there
is an S 0 such that Tori .N; S/ ! Tori .N; S 0/ maps z to zero. Choosing one such S 0
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for each z and letting T be the sum of all the chosen S 0’s, we see that Tori .N; S/!
Tori .N; T / is the zero map for all i � 1. It is now easy to see that we can choose
@ˇ � @˛ so that CardT � @ˇ whenever CardS � @˛ , no matter what choice of S 0’s
we make.

Theorem 11.8.2. Let R be n-Gorenstein. Then every R-module has a Gorenstein flat
preenvelope.

Proof. Let M be a Gorenstein flat left R-module. We use the notation in Lemma
11.8.1 above. Let ˛0 D ˛ and ˛1 D ˇ. Let ˛1 play the role of ˛ and ˛2 be the
new ˇ guaranteed by the lemma. Repeating the procedure, we get @˛0

;@˛1
; : : : with

obvious properties. Then given a submodule S � M with CardS � @˛ D @˛0
, let

S0 D S and find S1; S2; : : : with S1 � S2 � M such that CardSj � @ j̨
and such

that Sj � SjC1 induces the zero map Tori .N; Sj /! Tori .N; SjC1/ for all i � 1. So
let T DS1

jD1 Sj . Then Tori .N; T / D lim!j Tori .N; Sj / D 0 for all i � 1. Thus T
is Gorenstein flat. Furthermore, if we set @ˇ D supj @ j̨

, then CardT � @ˇ .
So for each infinite cardinal @˛, there exists an infinite cardinal @ˇ such that if

M is Gorenstein flat and S � M is a submodule, then there is a Gorenstein flat R-
submodule T ofM containing S such that CardT � @ˇ . Hence every R-module has
a Gorenstein flat preenvelope by Corollary 6.2.2.

Corollary 11.8.3. Every finitely generated R-module has a Gorenstein projective
preenvelope which is also finitely generated.

Proof. This follows from Theorem 11.8.2 and Corollary 10.3.10 since ifM is finitely
generated, then every Gorenstein flat preenvelope M ! G can be factored M !
C ! G where C is a finitely generated Gorenstein projective R-module by Theorem
10.3.8.

Exercises

1. Let R be a local Cohen–Macaulay ring admitting a dualizing module. Prove
that any finitely generated R-module M has a Gorenstein projective preenvelope
M ! C with C finitely generated such that Hom.C; F /! Hom.M;F /! 0 is
exact for all Gorenstein flat R-modules F .

2. Prove that every R-module in G0.R/ has a Gorenstein flat preenvelope.

11.9 Kaplansky Classes

We now introduce Kaplansky Classes and show the existence of Gorenstein covers
and envelopes in a more general setting.
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Definition 11.9.1. A class F of R-modules is said to be a Kaplansky class if there is
a cardinal @ such that for everyM 2 F and for each x 2M , there exists a submodule
F of M containing x such that F , M=F 2 F and CardF � @.

Remark 11.9.2. The definition above is based on a result of Kaplansky which states
that if P is a projective R-module and x 2 P , then there is a countably generated
submodule S of P containing x with S and P=S projective (or equivalently, with S a
summand of P ). So the class of projective modules is Kaplansky. Moreover, the class
of flat modules is Kaplansky by Lemma 5.3.12, and one can easily show that the class
of injective modules is also Kaplansky.

Lemma 11.9.3. Let F be a class of R-modules closed under direct limits. Then the
class of R-modules M such that �F .M/ D1 is also closed under direct limits.

Proof. It suffices to show that the class of R-modules such that �F .M/ D 1 is
closed under well ordered direct limits. For assume F is closed under well ordered
direct limits and consider a direct system ..Mi /; .fij //i2I . We want to show that F

is closed under arbitrary direct limits. We do this by transfinite induction on Card.I /.
If Card.I / D n < @0, there is nothing to prove.
If Card.I / D @0, then there is a cofinal set J � I with I D ¹j0; j1; : : : ; º where

j0 < j1 < � � � . In this case, lim�!i2IMi D lim�!j2JMj by assumption.

Now suppose Card.I / > @0. Then there exists

J0 
 J1 
 J2 
 � � � 
 Jw 
 JwC1 
 � � � 
 J˛ 
 � � �

with ˛ < � for � an ordinal such that
S

˛<� J˛ D I where each J˛ is a right
directed set and Card.J˛/ < Card.I /. So lim�!i2IMi D lim�!˛<�

.lim�!i2J˛

Mi /. But

lim�!i2J˛Mi

2 F by induction hypothesis and so lim�!i2IMi 2 F by hypothesis. Thus

F is closed under arbitrary direct limits.
Now let H be the class of R-modules such that �F .M/ D 1, and assume that

..M˛/; .fˇ˛//˛<� is a directed system in H . If � D n > !, then lim�!M˛ D Mn�1
and so we are done.

If � D !, we first show that lim�!n<!
Mn 2 H . Note that if ' W M ! F is an

F -preenvelope, then so is '.M/! F . Thus we may assume that the F -preenvelope
of each Mn is one-to-one. So if M0 ! F is an F -preenvelope, we consider the
following pushout diagram

0 �� M0

��

�� F 0

��

�� F 0=M0

��

�� 0

0 �� M1
�� P �� P=M1

�� 0
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But P=M1 Š F 0=M0 and so it has an F -preenvelope, say P=M1 ! F . Fur-
thermore, M1 has an F -preenvelope, say M1 ! F 0. Then we construct an F -
preenvelope P ! F 1 D F ˚ F 0. But then M1 ! F 1 is also an F -preenvelope.
Thus we have a commutative diagram

(1)

M0
��

��

F 0

��

M1
�� F 1

with the property that if

(2)

M0
��

��

F 0

��
M1

�� G

is a commutative diagram with G 2 F , then there exists a morphism of dia-
grams from (1) to (2) which is the identity onM0;M1 and F 0. We now continue
with this process to get a commutative diagram

M0
��

��

M1

��

�� M2

��

�� � � �

F 0 �� F 1 �� F 2 �� � � �

whereby each square has the preceding property. Hence we see that lim�!Mn !
lim�!F n is an F -preenvelope.

Then by the dual of the work in Section 8.6, C n D Coker.Mn ! F n/ has an F -
preenvelope for all n � 0 since�F .M/ D1. So the by above, we get that the system
C 0 ! C 1 ! C 2 ! � � � gives that C D lim�!C n D Coker.lim�!M n ! lim�!F n/ has
an F -preenvelope. Repeat to get that �F .lim�!n<!

Mn/ D1.
Now reindex M0;M1; : : : ;M! ;M!C1; : : : , such that M! D lim�!Mn and M!C1 is

the oldM! and so on. So we may assume that the system .M˛/˛<� is continuous, that
is, Mˇ D lim�!˛<ˇ

M˛ if ˇ is a limit ordinal with ˇ < �. Then using transfinite induc-

tion, we see that the above argument generalizes and we get that lim�!˛<�
M˛ 2 H .
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Theorem 11.9.4. Let R be a ring and F be a Kaplansky class of R-modules closed
under direct limits. Then the following are equivalent:

(1) �F .M/ D1 for every finitely presented R-module M .

(2) �F .M/ D1 for every R-module M .

(3) Every R-module has an F -preenvelope.

(4) F is closed under products.

Proof. .1/) .2/ follows from Theorem.
.2/) .3/ by definition of �F -dimension.
.3/) .4/. Let .Fi /i2I be a family of R-modules in F and ' W …i2IFi ! F be

an F -preenvelope. Then there exists a morphism f W F ! …i2IFi such that f ı '
is the identity map and so …i2IFi 2 F .
.4/ ) .1/. Let M be a finitely presented R-module in F . Then since F is

Kaplansky, for every morphismM
f! F there is a F 0 2 F and a cardinal @ such that

Card.F 0/ � @ and a factorization M ! F 0 ! F of f . Now get any two morphisms
M ! F and M ! F 0 with F , F 0 2 F and Card.F /, Card F 0 � @ to be equivalent
if any diagram

M

��

�� F

���
�
�
�

F 0

can be completed by an isomorphism, and let X be a set of representatives of such
morphisms M ! F . Then M ! …XF is an F -preenvelope. Then repeat the
process on cokernels of such F -preenvelopes to get (1).

Remark 11.9.5. We say that a ring R is F -coherent if the class F of R-modules is
closed under direct products. It is clear that every ring R is F -coherent. And if F is
a class of flat modules, then F -coherent coincides with the usual coherency.

Theorem 11.9.6. If R is left Noetherian and F is the class of Gorenstein injective
left R-modules, then F is Kaplansky.

Proof. Let M 2 F and x 2 M . We want to show that there is a Gorenstein injective
submodule S of M containing x such that S and M=S are Gorenstein injective.

We first recall that M 2 F means that there exists an exact sequence

� � � ! E1
@1! E0

@0! E0
@0

! E1
@1

! � � �
of injective modules with M D Ker.E0 ! E1/ such that Hom.E;�/ leaves the
sequence exact whenever E is an injective R-module. Now since E0 ! M is sur-
jective and x 2 M , there is a y 2 E0 such that d0.y/ D x. Then since injectives
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are Kaplansky, there is a cardinal @0 and a pure submodule S0 of E0 containing y
such that Card.S0/ � @0. Now consider @0.S0/ � E0. Then there is a cardinal
@1 and a pure submodule S0 of E0 containing @0.S0/ such that Card.S0/ � @1.
But S0=@0.S0/ � E1. So there is a cardinal @2 and a pure submodule S1 of E1

containing S0=@0.S0/ such that Card.S1/ � @2.
Now we reverse the process and consider S1\.E0=M/. Then there is a submodule

D0 of E0 whose image is S1 \ .E0=M/. Now let T 0 be a pure submodule of E0

containing D0 and @3 be a cardinal such that Card.T 0/ � @3. Then let T 1 
 E1 be
a pure submodule containing @0.T 0/ and @4 be a cardinal such that CardT 1 � @4.
Now consider T 0\M � E0. Then letD0 be a submodule ofE0 such that @0.D0/ D
T 0\M . LetD1 � E1 be such that @1.D1/ D D0. So there are submodules T0 � E0
and T1 � E1 containing D0 and D1, respectively, and cardinal numbers @5;@6 such
that CardT0 � @5 and CardT1 � @6.

Now start the process going forward by considering @1.T1/ 
 E0 and proceed as
before going n steps forward, nC 1 steps backwards, and nC 2 steps forward again.
Then take the union of all the complexes constructed using this “zig-zag” process to
get a complex

H� W � � � ! H1 ! H0 ! H 0 ! H 1 ! � � � :
Let N D Ker.H 0 ! H 1/. Then N is a submodule of M containing x and by
construction, there is a cardinal @ such that Card � @. Moreover, the complex H� is
an exact sequence of injectives since pure submodules of injective modules are again
injective.

Our goal now is to use the complex H� above to construct a new exact sequence
of injectives for a submodule of M that remains exact when Hom.E;�/ is applied to
it whenever E is injective. But first we note that since R is Noetherian, there exists a
set X of injective R-modules such that every injective R-module E is a direct sum of
copies of modules in X . Now let I DL

Ex2X Ex . Then we note that if Hom.I;�/
leaves the exact sequence exact, then Hom.E;�/ leaves the sequence exact whenever
E is injective.

But note that the complex

� � � g2! Hom.I;H1/
g1! Hom.I;H0/

g0! Hom.I;H 0/
g0

! Hom.I;H 1/
g1! � � �

is a subcomplex of the exact complex

� � � f2! Hom.I; E1/
f1! Hom.I; E0/

f0! Hom.I; E0/
f 0

! Hom.I; E1/
f 1

! � � � :

So if Img1 ¤ Kerg0, then there is a pure submodule C1 of E1 and a cardinal number
@1 such that H1 
 C1, Kerg0 
 Im f1jHom.I;C1/ and CardC1 � @1. Now let C 0 be
the image of C1 under the morphism E1 ! E0 and let C0 � E0 be pure and @2 be
such that C 0 
 C0, Im.f1jHom.I;C1// � Hom.I; C0/ and CardC0 � @2. Then let C 00
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be the image of C0 under the morphismE0 !M . Then enlarge C 00 to C 0 � E0 pure
and find @3 such that Im.f0jHom.I;C0// 
 Hom.I; C 0/ and CardC 0 � @3. Then we
start another zig-zag process with Ker.f 0jHom.I;C0// and Im.f0jHom.I;C0//.

Now take the union of these complexes formed in the zig-zag process above to get
a complex

T � W � � � ! T1 ! T0 ! T 0 ! T 1 ! � � �
which becomes exact when Hom.E;�/ is applied to it for each injective R-module
E. But T � may not be exact. So we apply the zig-zag process used to get S� to get
another exact sequence S�� which may not remain exact when Hom.E;�/ is applied
to it with E injective. So we apply the zig-zag process we used to get T � to the
exact sequence S�� to get a new T �� that may not be exact but remains exact when
Hom.E;�/ is applied to it. The limit over these two procedures gives us a module S ,
a cardinal @, and a complex S� as desired.

Finally note that M=S is also Gorenstein injective since the quotient complex
E�=S� is exact and remains exact when Hom.E;�/ is applied to it whenever E
is an injective R-module.

Corollary 11.9.7. Every R-module over a Noetherian ring R has a Gorenstein injec-
tive preenvelope.

Exercises

1. Prove that if F is a Kaplansky class that is closed under extensions and direct
limits, then every module has an F ?-envelope.

2. Prove that if F is a Kaplansky class that contains projective modules and is closed
under extensions and direct limits, then .F ;F ?/ is a perfect cotorsion theory in
R-mod.

3. Prove that for any ring R, the class of Gorenstein flat R-modules is Kaplansky.



Chapter 12

Balance over Gorenstein and Cohen–Macaulay
Rings

In Chapter 11, we studied the existence of Gorenstein precovers and preenvelopes. We
can therefore apply methods of relative homological algebra of Chapter 8 and compute
derived functors. In particular, we can study the question of balance of Hom.�;�/
and tensor.

We will again let GorInj, GorProj , GorF lat denote the classes of Gorenstein
injective, Gorenstein projective, and Gorenstein flat modules, respectively. As usual,
we will let RM and MR denote the classes of left and right R-modules, respectively.
For a class F , we will again let Ffg denote the class of finitely generated modules in
F . These terms will also be used to denote the corresponding full subcategories.

12.1 Balance of Hom.�;�/

It was shown in Chapter 11 that if R is Gorenstein, then GorInj and GorF lat are
precovering and preenveloping classes, and GorProj is precovering by Theorems
11.1.1, 11.2.1, 11.5.1, 11.7.3, and 11.8.2, while GorProjfg is preenveloping for Mfg
by Corollary 11.8.3. Thus we have the following result.

Theorem 12.1.1. Let R be Gorenstein. Then Hom.�;�/ is left balanced on RM �
RM by GorInj�GorInj and GorF lat�GorF lat, on RMfg� RM by GorProjfg�
GorF lat and GorProjfg � GorProj , and on Mfg �Mfg by GorProjfg � GorProjfg.

Proof. This follows from the remarks above, Proposition 8.1.3, Corollary 10.3.10,
and Remark 11.5.2.

Lemma 12.1.2. If R is n-Gorenstein, then every right GorInj-resolution is
Hom.GorProj ;�/ exact.

Proof. By Theorem 11.2.1 there exists a Gorenstein injective preenvelope N ! G of
N with L D Coker .N ! G/ of finite injective dimension. So let 0! L! E0 !
E1 ! � � � ! En ! 0 be an injective resolution of L.

Since C is Gorenstein projective, there exists an exact sequence 0! C ! P 0 !
P 1 ! � � � ! P n�1 ! P n ! � � � with each P i projective. Now set D D
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Ker.P n�1 ! P n/. Then given a linear map C ! L, there is a commutative di-
agram

0 �� C ��

��

P 0 ��

��

P 1 ��

��

� � � �� P n�2 ��

��

D

��

�� 0

0 �� L �� E0 �� E1 �� � � � �� En�2 �� En�1 �� 0

But D is Gorenstein projective and so Exti .D;L/ D 0 for all i � 1 by Remark
10.2.2 since proj dimL < 1. Hence the map D ! En�1 has a factorization D !
En�2 ! En�1. Then as usual, this gives an extension P 0 ! L which can be
lifted to a map P 0 ! G whose restriction gives a required lifting C ! G. So
0 ! Hom.C;N / ! Hom.C;G/ ! Hom.C;L/ ! 0 is exact for all Gorenstein
projective R-modules C .

Now if 0! N ! G0 ! L0 ! 0 is any exact sequence withN ! G0 a Gorenstein
injective preenvelope of N , then there exists a commutative diagram

0 �� N �� G0 ��

��

L0 ��

��

0

0 �� N �� G �� L �� 0

Since N ! G and N ! G0 are both preenvelopes, we see that

0 �� G0 ��

��

L0 ��

��

0

0 �� G �� L �� 0

gives an equivalence of complexes (the two rows). This in turn gives the equivalence
of complexes

0 �� Hom.C;G0/ ��

��

Hom.C;G0/ ��

��

0

0 �� Hom.C;G/ �� Hom.C;L/ �� 0

So if Hom.C;G/ ! Hom.C;L/ ! 0 is exact, then so is Hom.C;G0/ !
Hom.C;L0/ ! 0. Thus 0 ! Hom.C;N / ! Hom.C;G0/ ! Hom.C;L0/ ! 0

is exact for all Gorenstein projective R-modules C . Hence the result follows.
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Dually, we have the following result.

Lemma 12.1.3. If R is n-Gorenstein, then every left GorProj -resolution and left
GorF lat-resolution is Hom.�;GorInj/ exact.

The two lemmas above give the following result.

Theorem 12.1.4. Let R be Gorenstein, then Hom.�;�/ is right balanced on RM �
RM by GorProj � GorInj.

By Theorem 12.1.4, we can compute right derived functors of Hom.M;N / using
a left GorProj -resolution of M or a right GorInj-resolution of N . We will denote
these derived functors by Gexti .M;N /. It is easy to check that

(1) Gext0.�;�/ Š Hom.�;�/.
(2) Gexti .C;�/ D 0 for all i � 1 and all C 2 GorProj .

(3) Gexti .�; G/ D 0 for all i � 1 and all G 2 GorInj.

(4) If the exact sequence 0 ! M 0 ! M ! M 00 ! 0 of R-modules is
Hom.GorProj ;�/ exact, then by part (2) of Theorem 8.2.3 there is a long
exact sequence

� � � ! Gexti .M;�/! Gexti .M 0;�/! GextiC1.M 00;�/! � � � :
(5) If the exact sequence 0 ! N 0 ! N ! N 00 ! 0 of R-modules is

Hom.�;GorInj/ exact, then by part (1) of Theorem 8.2.5 there is a long ex-
act sequence

� � � ! Gexti .�; N /! Gexti .�; N 00/! GextiC1.�; N 0/! � � � :
(6) There are natural transformations

Gexti .�;�/! Exti .�;�/
which are also natural in the long exact sequences as in (4) and (5) above.

Now by Theorem 12.1.1, let Gexti .M;N / denote the left derived functors of
Hom.M;N / computed using a right GorInj-resolution of M or a left GorInj-res-
olution of N . Then again it is easy to check the following properties:

(1) There is a natural map Gext0.M;N /
�! Hom.M;N /. If we let Ker � D

Gext0.M;N / and Coker � D Gext
0
.M;N /, then we have an exact sequence

0! Gext0.M;N /! Gext0.M;N /! Hom.M;N /! Gext
0
.M;N /! 0:

(2) If M or N are Gorenstein injective, then

Gext0.M;N / D Hom.M;N / and Gext0.M;N / D Gext
0
.M;N / D 0:
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(3) Gexti .M;N / D 0 for all i � 1 and for all N 2 GorInj.

(4) Gexti .M;N / D 0 for all i � 1 and for all M 2 GorInj.

(5) There are natural transformations

Exti .�;�/! Gexti .�;�/

where Exti .M;N / denote left derived functors obtained using a right Inj-reso-
lution of M or a left Inj-resolution of N (see Example 8.3.5). These transfor-
mations are also natural in the corresponding long exact sequences below.

(6) If the exact sequence 0 ! M 0 ! M ! M 00 ! 0 is Hom.�;GorInj/ exact,
then by part (2) of Theorem 8.2.5 there is a long exact sequence

� � � ! Gexti .M;�/! Gexti .M
0;�/! Gexti�1.M 00;�/! � � � :

(7) If the exact sequence 0 ! N 0 ! N ! N 00 ! 0 is Hom.GorInj;�/ exact,
then by part (1) of Theorem 8.2.3 there is a long exact sequence

� � � ! Gexti .�; N /! Gexti .�; N 00/! Gexti�1.�; N 0/! � � � :

Likewise, we can compute left derived functors of Hom.M;N / using a right
GorF lat-resolution of M and a left GorF lat-resolution of N by Theorem 12.1.1.
These functors are again denoted Gfexti .M;N / and have the same properties as above
noting that we now get natural transformations

Exti .�;�/! Gfexti .�;�/

where Exti .�;�/ denote the left derived functors obtained by using a right F lat-
resolution of M or a left F lat-resolution of N of Example 8.3.6. The other cases in
Theorem 12.1.1 are similar and correspond to Example 8.3.11.

If R is a local Cohen–Macaulay ring admitting a dualizing module, then every
M 2 G0.R/ has a Gorenstein projective and Gorenstein flat precover and Gorenstein
flat preenvelope by Theorems 11.5.11, 11.7.8, and Exercise 2 of Section 11.8, re-
spectively, and each M 2 J0.R/ has a Gorenstein injective preenvelope by Theorem
11.2.6. Thus we have the following result.

Theorem 12.1.5. Hom.�;�/ is left balanced on G0.R/ � G0.R/ by GorF lat �
GorF lat, on G0.R/fg�G0.R/ by GorProjfg�GorF lat and GorProjfg�GorProj ,
and on G0.R/fg � G0.R/fg by GorProjfg � GorProjfg.

Lemma 12.1.6. Let M 2 J0.R/. Then every right GorInj-resolution of M is
Hom.GorProjfg;�/ exact.
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Proof. Let C be a finitely generated Gorenstein projective R-module. Then there
exists an exact sequence 0 ! C ! P 0 ! P 1 ! � � � with each P i finitely gen-
erated and projective. So if C 0 D Ker.P d�1 ! P d /, then C 0 is finitely generated
Gorenstein projective and so Exti .C 0; L/ D 0 for all i � 1 and all R-modules L of
finite injective dimension by Proposition 10.2.6. Thus the result now follows as in
Lemma 12.1.2.

Remark 12.1.7. This Lemma together with Exercise 3 and Remark 11.5.2 give the
following result which corresponds to Theorem 12.1.4 above.

Theorem 12.1.8. Hom.�;�/ is right balanced on G0.R/fg � J0.R/ by GorProjfg �
GorInj.

Remark 12.1.9. Using Theorems 12.1.5 and 12.1.8, we can compute derived func-
tors Gfexti .M;N / (which have the same properties as those of Example 8.3.6) and
Gexti .M;N /, respectively.

Exercises

1. Prove Theorem 12.1.1.

2. Prove Lemma 12.1.3 and Theorem 12.1.4.

3. Prove that if M 2 G0.R/ then every left GorF lat-resolution or left GorProj -
resolution of M is Hom.�;GorInj/ exact.

4. Prove Theorem 12.1.8.

5. Prove Remark 12.1.9.

6. Let R be a Cohen–Macaulay ring of Krull dimension d with a dualizing mod-
ule, and C be the full subcategory of R-modules whose d th Inj-syzygies are in
J0.R/. Prove that Hom.�;�/ is left balanced on J0.R/�C by GorInj�GorInj.
Conclude that in this case derived functors Gexti .M;N / can be computed.

Hint: Use Exercise 2 of Section 11.1.

12.2 Balance of �˝�
We start with the following result.

Lemma 12.2.1. If R is n-Gorenstein, then every left GorProj -resolution or left
GorF lat-resolution is GorF lat˝� exact.

Proof. If � � � ! C1 ! C0 ! M ! 0 is a left GorProj (or GorF lat)-resolution
of an R-module M , then � � � ! F ˝ C1 ! F ˝ C0 ! F ˝M ! 0 is exact if
and only if 0 ! .F ˝M/C ! .F ˝ C0/C ! .F ˝ C1/C ! � � � is exact. But
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the latter is equivalent to the sequence 0 ! Hom.M;FC/ ! Hom.C0; FC/ !
Hom.C1; FC/! � � � which is exact by Proposition 10.3.3 and Lemma 12.1.3.

This gives the following result.

Theorem 12.2.2. Let R be n-Gorenstein. Then �˝� is left balanced on MR � RM

by GorProj � GorProj and GorF lat � GorF lat.

Lemma 12.2.3. If R is n-Gorenstein, then every right GorF lat-resolution is
GorInj˝� exact and every right GorInj-resolution is GorF lat˝� exact.

Theorem 12.2.4. LetR be n-Gorenstein. Then�˝� is right balanced on MR� RM

by GorF lat � GorInj and on MR fg � RM by GorProjfg � GorInj.

Proof. Follows easily from the lemmas above.

Using Theorem 12.2.2, we can compute the left derived functors of M ˝ N using
Gorenstein projective modules. These functors will be denoted by Gtori .M;N /. We
then have the following easy properties:

(1) Gtor0.�;�/ Š �˝�.

(2) Gtori .C;�/ D 0 for all i � 1 and all Gorenstein projective right R-modules C .

(3) Gtori .�;D/ D 0 for all i � 1 and all Gorenstein projective left R-modules D.

(4) If the exact sequence 0 ! M 0 ! M ! M 00 ! 0 of right R-modules is
Hom.GorProj ;�/ exact, then by part (1) of Theorem 8.2.3 there is a long
exact sequence

� � � ! GtoriC1.M 00;�/! Gtori .M
0;�/! Gtori .M;�/! � � � :

(5) Same as (4) for an exact sequence 0 ! N 0 ! N ! N 00 ! 0 of left R-mod-
ules.

(6) There are natural transformations

Tori .�;�/! Gtori .�;�/
which are natural in the long exact sequences as in (4) and (5) above.

By Theorem 12.2.2, we also have left derived functors Gtori .M;N / that can be
obtained using Gorenstein flat modules. These functors have the same properties as
above. Again by Theorem 12.2.2, we can compute left derived functors gtori .M;N /
using left GorF lat-resolutions with similar properties as above. But gtori .M;F / D
Gtori .M;F / D 0 for all i � 1 and for all Gorenstein flat R-modules F by Lem-
ma 12.2.1. Hence gtori .�;�/ Š Gtori .�;�/ since ¹gtoriº and ¹Gtoriº are covari-
antly left strongly connected sequences (see Definition 8.2.10).
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We can also compute right derived functors Gtori .M;N / using a right GorF lat-
resolution of M or a right GorInj-resolution of N by Theorem 12.2.4. We have the
following properties

(1) There is a natural transformation

M ˝N �! Gtor0.M;N /:

Again, we can let Ker � D Gtor0.M;N / and Coker � D Gtor0.M;N /, then we
have an exact sequence

0! Gtor0.M;N /!M ˝N ! Gtor0.M;N /! Gtor0.M;N /! 0:

(2) If M or N are Gorenstein flat, then

M ˝N D Gtor0.M;N / and Gtor0.M;N / D Gtor0.M;N / D 0:

(3) Gtori .M;N / D 0 for all i � 1 and for all M 2 GorF lat

(4) Gtori .M;N / D 0 for all i � 1 and for all N 2 GorF lat.

(5) There are natural transformations

Gtori .M;N /! Tori .M;N /

where Tori .M;N / denote right derived functors obtained using a right F lat-
resolution of M or a right Inj-resolution of N (see Example 8.3.9). These
transformations are again natural in the long exact sequences that follow below.

(6) If the exact sequence 0! M 0 ! M ! M 00 ! 0 is Hom.�;GorF lat/ exact,
then by part (1) of Theorem 8.2.5 there is a long exact sequence

� � � ! Gtori .M;�/! Gtori .M 00;�/! GtoriC1.M 0;�/! � � � :

(7) Same as (6) for an exact sequence 0 ! N 0 ! N ! N 00 ! 0 of left R-mod-
ules.

Exercises

1. Prove Lemma 12.2.3 and Theorem 12.2.4.

2. State and prove a result corresponding to Lemma 12.2.1 for Cohen–Macaulay
rings admitting a dualizing module.

3. Prove that � ˝ � is left balanced on G0.R/ � G0.R/ by GorProj � GorProj

and GorF lat � GorF lat.

4. Prove that �˝� is right balanced on G0.R/�J0.R/ by GorF lat�GorInj and
on G0.R/fg � J0.R/ by GorProjfg � GorInj.
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12.3 Dimensions over n-Gorenstein Rings

Theorem 12.3.1. Let R be left and right Noetherian. Then the following are equiva-
lent:

(1) R is n-Gorenstein.

(2) Every nth Inj-cosyzygy of an R-module (left or right) is Gorenstein injective.

(3) Every nth Proj -syzygy of an R-module (left or right) is Gorenstein projective.

(4) Every nth F lat-syzygy of an R-module (left or right) is Gorenstein flat.

(5) Every nth Projfg-syzygy of a finitely generatedR-module (left or right) is Goren-
stein projective.

Proof. .1/) .2/ follows from Exercise 2 of Section 11.2 and Proposition 11.2.5.
.2/ ) .1/. Let E be an injective module, N be an R-module and G be an nth

Inj-cosyzygy of N . Then ExtnC1.E;N / Š Ext1.E;G/. But Ext1.E;G/ D 0 since
G is Gorenstein injective by assumption. Hence proj dimE � n for all injective R-
modules E. Similarly for right R-modules. So R is n-Gorenstein by Theorem 9.1.11.

The proofs of the equivalence of .1/; .3/; .5/ are by arguments dual to the above.
.1/) .4/ by and Proposition 11.7.5 and Theorem 11.7.6.
.4/ ) .1/. If an nth F lat-syzygy of any right R-module M is Gorenstein flat,

then TornC1.M;E/ D 0 for all right R-modules M and all injective R-modules E.
Hence proj dimRE � n for all such E. Similarly for R-modules M . Thus R is
n-Gorenstein.

Corollary 12.3.2. If R is Iwanaga–Gorenstein and inj dimRR D n, then

gl right GorInj- dimRM D gl left GorProj - dimRM D gl left GorF lat- dimRM

D gl left GorProjfg- dimRMfg D n:

Proposition 12.3.3. IfR is n-Gorenstein, then the following are equivalent for a right
R-module L:

(1) proj dimL <1 (and so � n).

(2) The natural transformation Gexti .L;�/ ! Exti .L;�/ is an isomorphism for
i � 0.

(3) Tori .L;�/! Gtori .L;�/ is an isomorphism for i � 0.

Proof. .1/ ) .2/. (1) means that Exti .L;G/ D 0 for i � 1 and for all Gorenstein
injective rightR-modulesG by Proposition 10.1.15. Now letN ! G be a Gorenstein
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injective preenvelope of N and H D G=N . Then we have a commutative diagram

Gexti .L;G/ ��

��

Gexti .L;H/ ��

��

GextiC1.L;N / ��

��

0

Exti .L;G/ �� Exti .L;H/ �� ExtiC1.L;N / �� 0

If i D 0, then Gext0.�;�/ D Ext0.�;�/ D Hom.�;�/ and so the first two maps
are isomorphisms. Hence Gext1.L;N /! Ext1.L;N / is an isomorphism. The result
now follows by induction on i .
.2/ ) .1/. right GorInj- dimN � n and so GextnC1.L;N / D 0 for all right

R-modules N . But then ExtnC1.L;N / D 0 for all N and so proj dimL <1.
.1/ ) .3/. We consider the exact sequence 0 ! H ! C ! N ! 0 where

C ! N is a Gorenstein projective precover. If proj dimL < 1, then we have a
commutative diagram

0 �� ToriC1.L;N / ��

��

Tori .L;H/ ��

��

Tori .L; C / ��

��

Tori .L;N /

��
0 �� GtoriC1.L;N / �� Gtori .L;H/ �� Gtori .L; C / �� Gtori .L;N /

by Theorem 10.3.8 and Corollary 10.3.10. But Tor0.�;�/ D Gtor0.�;�/ D �˝ �
and the result follows as in the above.
.3/) .1/. GtornC1.L;N /D 0 for allR-modulesN since left GorProj - dimN �

n. So the result follows.

We also have the following result.

Proposition 12.3.4. Let R be n-Gorenstein and N be an R-module. Then

(1) If M is an R-module, then Gext1.M;N /! Ext1.M;N / is an injection.

(2) If M is a right R-module, then Tor1.M;N /! Gtor1.M;N / is a surjection.

Proof. (1) Let N ! G be a Gorenstein injective preenvelope and H D Coker.N !
G/. Then we have the following commutative diagram

Hom.M;G/ �� Hom.M;H/ �� Gext1.M;N / ��

��

Gext1.M;G/ D 0

Hom.M;G/ �� Hom.M;H/ �� Ext1.M;N /

with exact rows. So (1) follows.
(2) Follows similarly.
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Corollary 12.3.5. Let R be n-Gorenstein. Then the following are equivalent for an
exact sequence 0! N ! L!M ! 0 of R-modules:

(1) The sequence 0 ! N ! L ! M ! 0 corresponds to an element of
Gext1.M;N / � Ext1.M;N /.

(2) Hom.L;G/ ! Hom.N;G/ ! 0 is exact for all Gorenstein injective R-mod-
ules G.

(3) Hom.C;L/! Hom.C;M/! 0 is exact for all Gorenstein projective R-mod-
ules C .

Proof. .1/ ) .2/. If 0 ! N ! L ! M ! 0 corresponds to an element of
Gext1.M;N /, then there is a commutative diagram

0 �� N �� L ��

��

M ��

��

0

0 �� N �� G �� H �� 0

with exact rows such that N ! G is a Gorenstein injective preenvelope. But if
N ! G0 is a map with G0 Gorenstein injective, then N ! G0 can be lifted to G. But
then N ! G0 can be lifted to L and the result follows.
.2/ ) .1/. Hom.L;G/ ! Hom.N;G/ ! 0 exact for all Gorenstein injective

R-modules G implies that we have a commutative diagram

0 �� N �� L ��

��

M ��

��

0

0 �� N �� G �� H �� 0

with exact rows whereN ! G is a Gorenstein injective preenvelope. This shows that
0! N ! L!M ! 0 corresponds to an element of Gext1.M;N /.
.1/, .3/ follows by a dual argument.

Theorem 12.3.6. The following are equivalent for a Noetherian ring R and integer
n � 2:

(1) R is n-Gorenstein.

(2) Every left and right R-module has a GorInj-precover and preenvelope and
left GorInj-dimension at most n � 2.

(3) Every left and rightR-moduleM has a GorF lat-precover and preenvelope and
right GorF lat-dimension at most n � 2.

(4) Every left and right finitely generated R-module M has a GorProjfg-precover
and preenvelope and right GorProjfg-dimension at most n � 2.
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Proof. .1/ , .2/. If R is n-Gorenstein, then a right GorInj-resolution of M is of
the form 0 ! M ! G0 ! G1 ! � � � ! Gn ! 0. So Gexti .M;N / D 0 for
i � n � 1 for all R-modules N . Let � � � ! G1 ! G0 ! N ! 0 be a minimal left
GorInj-resolution of N and Kn D Ker.Gn�1 ! Gn�2/. Then Gextn�1.M;N / D 0
implies that Kn � Gn�1 has a factorization Kn ! Gn ! Gn�1 and thus Kn is a
direct summand of Gn and hence is Gorenstein injective. So Kn D Gn. But if we
set M D R in the above, we get that 0 ! Gn ! Gn�1 ! Kn�1 ! 0 is an exact
sequence. So Kn�1 is Gorenstein injective by Theorem 10.1.4 and thus Gn D 0 by
minimality. But then again Gn�2=Gn�1 is Gorenstein injective. It is now easy to see
thatGn�2=Gn�1 ,! Kn�2 is a Gorenstein injective precover and soGn�1 D 0. Thus
(2) follows. Conversely, left GorInj- dimN � n� 2 means Gextn�1.M;N / D 0 for
all modulesM . But then right GorInj- dimM � n for allM and so the result follows
from Theorem 12.3.1.
.1/) .3/ If R is n-Gorenstein, then Gtorn.M;N / D Gtorn�1.M;N / D 0 for all

modules M and N . So if 0!M ! F 0 ! F 1 ! � � � is a right GorF lat-resolution
of M , then F n�2 ˝ N ! F n�1 ˝ N ! F n ˝ N ! F nC1 ˝ N is exact for
all finitely generated R-modules N . So K D Ker.F n ! F nC1/ is pure in F n by
Lemma 8.4.23. But then Tor1.L; F n=K/ D 0 for all modules L of finite injective
dimension. So F n=K is Gorenstein flat by Theorem 10.3.8 since R is Gorenstein.
Hence K is Gorenstein flat by Theorem 10.3.14. But F n�2 ! F n�1 ! K ! 0 is
exact by takingN D R in the above. So F D Ker.F n�2 ! F n�1/ is also Gorenstein
flat. Hence 0! M ! F 0 ! � � � ! F n�3 ! F ! 0 is a right GorF lat-resolution
of M .
.3/) .4/ is trivial.
.4/ ) .1/. right GorProjfg- dimM � n � 2 means Gfextn�1.M;N / D 0 for

all modules N 2 Mfg. So if � � � ! F1 ! F0 ! N ! 0 is a left GorProjfg-
resolution and K D Ker.Fn�1 ! Fn�2/. Then K is a summand of Fn. So left
GorProjfg- dimN � n. Thus the result follows from Theorem 12.3.1 above.

Corollary 12.3.7. If R is Iwanaga–Gorenstein and inj dimRR D n, then

gl left GorInj- dimRM D gl right GorF lat- dimRM

D gl right GorProjfg- dimRMfg D n � 2;
or is zero if n � 1.

Proof. The case n � 2 follows from the theorem above. The case n D 1 follows
using the same arguments. If n D 0, then every R-module is Gorenstein injective,
Gorenstein flat, and Gorenstein projective.

Exercises

1. Prove the equivalence of parts 1, 3, 5 of Theorem 12.3.1.

2. Prove Corollary 12.3.2.
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3. Prove part 2 of Proposition 12.3.4.

4. Complete the proof of Corollary 12.3.5.

5. Let R be a left and right Noetherian and suppose GorInj is preenveloping, and
GorF lat;GorProj are precovering over R. Prove that the following are equiv-
alent for an integer n � 0.

(a) R is n-Gorenstein.

(b) GextnCk.M;N / D 0 for all R-modules (left and right) M;N and k � 1.

(c) GextnC1.M;N / D 0 for all R-modules (left and right) M;N .

(d) GtornCk.M;N / D 0 for all R-modules (left and right) M;N and all k � 1.

(e) GtornC1.M;N / D 0 for all R-modules (left and right) M;N .

6. LetR be left and right Noetherian and suppose GorInj, GorF lat are precovering
and preenveloping. Then the following are equivalent for an integer n � 2.

(a) R is n-Gorenstein.

(b) Gextn�1.M;N / D 0 for all R-modules (left and right) M;N .

(c) Gtorn.M;N / D Gtorn�1.M;N / D 0 for all finitely generated modules M
and all modules N .

(d) Gfextn�1.M;N / D 0 for all R-modules (left and right) M;N .

7. Let R be Iwanaga–Gorenstein. Prove that the following are equivalent

(a) R is 1-Gorenstein.

(b) gl left GorInj- dimRM D 0.

(c) gl right F lat- dimRM D 0.

(d) gl right GorProj - dimRMfg D 0.

8. (Enochs–Jenda [62]). Let R be a commutative Gorenstein ring. Then the follow-
ing are equivalent for an integer n � 2.

(a) R is n-Gorenstein.

(b) left GorF lat- dim Hom.E;M/ � n�2 for allR-modulesM and all injectives
E.

(c) right GorInj- dimM ˝E � n � 2
(d) left GorProj - dim Hom.M;R/ � n � 2 for all finitely generated R-mod-

ules M .
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12.4 Dimensions over Cohen–Macaulay Rings

In this section, we consider Gorenstein dimensions over Cohen–Macaulay rings.

Theorem 12.4.1. LetR be a Cohen–Macaulay local ring of Krull dimension d admit-
ting a dualizing module�, and let CM denote the class of maximal Cohen–Macaulay
R-modules. Then the following are equivalent for an integer n � 0:

(1) inj dim� � n.

(2) gl right GorInj- dim J0.R/ � n.

(3) Every nth Inj-cosyzygy of an R-module in J0.R/ is Gorenstein injective.

(4) gl left GorProj - dim G0.R/ � n.

(5) Every nth Proj -syzygy of an R-module in G0.R/ is Gorenstein projective.

(6) gl left GorF lat- dim G0.R/ � n.

(7) Every nth F lat-syzygy of an R-module in G0.R/ is Gorenstein flat.

(8) gl left CM- dim Mfg � n.

(9) Every nth Projfg-syzygy of a finitely generated R-module is maximal Cohen–
Macaulay.

Proof. .1/) .2/. If inj dim� D m, then dimR D m and so by Theorem 11.2.6 and
Exercise 4 of Section 11.2 gl right GorInj- dim J0.R/ � m.
.2/ ) .3/. Let M 2 J0.R/ and 0 ! M ! G0 ! � � � ! Gn ! 0 be a

right GorInj-resolution ofM . If L is an R-module of finite injective dimension, then
ExtnCi .L;M/ Š Exti .L;Gn/ D 0 for all i � 1 by Theorem 10.4.24. Now let 0 !
M ! E0 ! E1 ! � � � be a right Inj-resolution of M and G D Coker.En�2 !
En�1/. Then Exti .L;G/ D 0 for all i � 1 and all R-modules L of finite injective
dimension. So G is Gorenstein injective again by Theorem 10.4.24.
.3/ ) .1/. Since R is Cohen–Macaulay, � is the dualizing module and so

inj dim� D dimR and thus � 2 J0.R/. But then the nth Inj-cosyzygy of � is
Gorenstein injective by assumption and so inj dim� � n since inj dim� <1.

The proof of .1/ ) .4/ ) .5/ is dual to the above using Theorems 11.5.11 and
10.4.18.
.5/) .1/. inj dim� D proj dimHd

m.R/ D d by Proposition 9.5.22. SoHd
m.R/ 2

G0.R/ and so the nth Proj -syzygy ofHd
m.R/ is Gorenstein projective and hence pro-

jective since proj dimHd
m.R/ <1. So proj dimHd

m.R/ � n and thus inj dim� � n.
.7/) .1/ is similar.
.1/) .6/ follows from Theorem 11.7.8.
.6/) .7/. Let M 2 G0.R/ and 0! Fn ! � � � ! F1 ! F0 ! M ! 0 be a left

GorF lat-resolution of M . If inj dimL < 1, then TornCi .L;M/ Š Tori .L; Fn/ D
0 for all i � 1 by Theorem 10.4.28. So if C is an nth F lat-syzygy of an R-mod-
ule M 2 G0.R/, then Tori .L; C / D 0 for all i � 1 and for all R-modules L of
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finite injective dimension. So C is Gorenstein flat again by Theorem 10.4.28 since
C 2 G0.R/.
.1/) .8/. LetM 2Mfg andC be the nth CM-syzygy ofM . Then ExtnCi .M;�/Š

Exti .C;�/ for each i � 1. But then Exti .C;�/ D 0 for all i � 1 since inj dim� � n.
So C is maximal Cohen–Macaulay by Proposition 9.5.23.
.8/ ) .9/. This follows as in the above since if C is the nth Projfg-syzygy, then

Exti .C;�/ Š ExtnCi .M;�/ for all i � 1.
.9/) .1/. (9) means that ExtnCi .M;�/ D 0 for all i � 1 and all M 2Mfg. But

then inj dim� � n.

Corollary 12.4.2.

gl right GorInj- dim J0.R/ D gl left GorF lat- dim G0.R/

D gl left GorProj - dim G0.R/

D gl left CM- dim Mfg D dimR:

Exercises

1. Prove 1) 4) 5 in Theorem 12.4.1.

2. Let dimR D d and let J0.R/ be closed under taking d th GorInj-syzygies. Then
prove that the following are equivalent for an integer n � 2.

(a) inj dim� � n.

(b) GextnCk.M;N / D 0 for all M , N 2 J0.R/ and k � �1.

(c) Every nth GorInj-syzygy of an R- module N 2 J0.R/ is Gorenstein injec-
tive.

(d) gl left GorInj- dim J0.R/ � n � 2.

Hint: Use Exercise 6 of Section 12.1.

3. Let dimR D d and let G0.R/ be closed under taking d th GorF lat-cosyzygies.
Then prove that the following are equivalent for an integer n � 2.

(a) inj dim� � n.

(b) right GorF lat- dim G0.R/ � n � 2.

(c) right GorProj - dim G0.R/fg � n � 2.

4. Under the assumptions of Exercises 2 and 3 above, prove that

gl left GorInj- dim J0.R/ D gl right GorF lat- dim G0.R/

D gl right GorProj - dim G0.R/fg D d � 2;

or is zero if d � 1.
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12.5 �-Gorenstein Modules

We conclude this chapter by introducing new classes of modules over Cohen–Macau-
lay rings admitting a dualizing module which generalize Gorenstein modules. We
will again let R denote a Cohen–Macaulay ring of Krull dimension d admitting a
dualizing module �.

We recall that W denotes the class of all modules W such that W Š � ˝ P for
some projective R-module P and V denotes the class of all modules V such that
V Š Hom.�;E/ for some injective R-module E. In Proposition 10.4.8, we showed
that W is precovering and V is preenveloping. If M 2 G0.R/ and � � � ! E1 !
E0 ! � ˝ M ! 0 is a left Inj-resolution of � ˝ M , then we have a com-
plex � � � ! V1 ! V0 ! M ! 0 where Vi D Hom.�;Ei / for each i since
M Š Hom.�;�˝M/. But if E is an injective R-module, then the complex � � � !
Hom.Hom.�;E/; V1/ ! Hom.Hom.�;E/; V0/ ! Hom.Hom.�;E/;M/ ! 0

is equivalent to the exact sequence � � � ! Hom.E;E1/! Hom.E;E0/! Hom.E;
�˝M/! 0 for Hom.Hom.�;E/; Vi /ŠHom.E;Ei / and Hom.Hom.�;E/;M/Š
Hom.Hom.�;E/;Hom.�;� ˝M// Š Hom.E;� ˝M/ by Remark 10.4.2 since
�˝M 2 J0.R/. Thus the complex � � � ! V1 ! V0 !M ! 0 is a left V -resolution
of M . In fact, we have the following result.

Lemma 12.5.1. V is closed under inductive limits.

Proof. This follows from Lemma 10.2.4.

Theorem 12.5.2. Every R-module has a V -cover.

Proof. Let ¹Ekº be a representative set of indecomposable injective R-modules and
set Vk D Hom.�;Ek/. Then ¹Vkº is a representative set for V . For if V 2 V , then
V Š Hom.�;E/ Š Hom.�;

L

Ek/ Š ˚Vk . So for an R-module M , set S.M/ D
L

k2I V
.Hom.Vk ;M//

k
. Then S.M/ 2 V by the Lemma above and so the evaluation

map S.M/! M is a V -precover. But then M has a V -cover by Lemma 12.5.1 and
Corollary 5.2.7.

Let X be the class of all R-modules X such that X Š � ˝ F for some flat R-
module F . Suppose N 2 J0.R/. If 0 ! Hom.�;N / ! F 0 ! F 1 ! � � � is a
right F lat-resolution of Hom.�;N /, then we have a complex 0 ! N ! X0 !
X1 ! � � � where X i Š � ˝ F i for each i since � ˝ Hom.�;N / Š N . Now if
X 2 X, then the complex � � � ! Hom.X1; X/ ! Hom.X0; X/ ! Hom.N;X/ !
0 is equivalent to the exact sequence � � � ! Hom.F 1; F / ! Hom.F 0; F / !
Hom.Hom.�;N /; F / ! 0 where X Š � ˝ F with F flat since F , F i 2 G0.R/

and so Hom.� ˝ F i ; � ˝ F / Š Hom.F i ; F / and Hom.N;� ˝ F / Š Hom.� ˝
Hom.�;N /;� ˝ F / Š Hom.Hom.�;N /; F / since Hom.�;N / 2 G0.R/. Thus
the complex 0 ! N ! X0 ! X1 ! � � � is a right X-resolution of N . F lat
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is covering by Theorem 7.4.4. Thus we have a left F lat-resolution � � � ! F1 !
F0 ! Hom.�;N / ! 0 of Hom.�;N / and consequently a complex � � � ! X1 !
X0 ! N ! 0 where Xi D � ˝ Fi for each i . But then this complex is an ex-
act left X-resolution since Hom.� ˝ F;N / Š Hom.� ˝ F;� ˝ Hom.�;N // Š
Hom.F;Hom.�;N // and Tori .�;Hom.�;N // D 0 for all i � 1. So we have the
following result.

Proposition 12.5.3. Every N 2 J0.R/ has a right X-resolution and an exact left
X-resolution. In particular, X is precovering and preenveloping on J0.R/.

Remark 12.5.4. We note that if N 2 J0.R/fg, then a similar argument shows that N
has a right Wfg-resolution and so in particular Wfg is preenveloping on J0.R/fg where
Wfg denotes the class of modules �˝ P with P finitely generated and projective.

Theorem 12.5.5. Hom.�;�/ is left balanced on M�M by V�V , on J0.R/�J0.R/

by X �X, and on J0.R/fg � J0.R/fg by Wfg �Wfg.

Proof. The result follows from Proposition 10.4.7, Theorem 12.5.2, Proposition 12.5.3
and Remark 12.5.4 above.

Theorem 12.5.6. Hom.�;�/ is right balanced on G0.R/� G0.R/ by Proj �V and
on J0.R/ � J0.R/ by W � Inj.

Proof. Let M 2 G0.R/ and � � � ! P1 ! P0 ! M ! 0 be a projective resolution
of M . Then � � � ! � ˝ P1 ! � ˝ P0 ! � ˝ M ! 0 is exact and so easily
0 ! Hom.M; V / ! Hom.P0; V / ! Hom.P1; V / ! � � � is exact for all V 2 V .
Now the first part of the theorem easily follows since each module in G0.R/ has an
exact right V -resolution by Proposition 10.4.8. The second part follows dually.

Theorem 12.5.7. �˝� is left balanced on G0.R/�J0.R/ by Proj�W and F lat�X.

Proof. We simply note that if M 2 G0.R/, then Tori .�;M/ D 0 for all i � 1 and
each N 2 J0.R/ has an exact left W -resolution and an exact left X-resolution by
Proposition 10.4.8 and 12.5.3.

Lemma 12.5.8. Let M 2 J0.R/ and 0 ! M ! X0 ! X1 ! � � � be a right
X-resolution of M . Then the complex 0! V ˝M ! V ˝ X0 ! V ˝ X1 ! � � �
is exact for all V 2 V .

Proof. We first note that the sequence 0 ! V ˝M ! V ˝ X0 ! V ˝ X1 ! � � �
is equivalent to the sequence 0! E ˝ Hom.�;M/! E ˝ F 0 ! E ˝ F 1 ! � � �
where V Š Hom.�;E/ and X i Š � ˝ F i with E injective and F i flat. But
0 ! Hom.�;M/ ! F 0 ! F 1 ! � � � is a right F lat-resolution of Hom.�;M/

and so we are done.
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Theorem 12.5.9. �˝� is right balanced on G0.R/ � J0.R/ by V �X.

Proof. Let M 2 G0.R/ and 0! M ! V 0 ! V 1 ! � � � be a right V -resolution of
M . Then 0! �˝M ! �˝V 0 ! �˝V 1 ! � � � is exact and so 0! X˝M !
X ˝ V 0 ! X ˝ V 1 ! � � � is exact for all X 2 X. The result now follows from the
lemma above.

Lemma 12.5.10. M 2 V if and only if MC 2 X .

Proof. If M 2 V , then M Š Hom.�;E/ for some injective E and so M 2 G0.R/

by Remark 10.4.2. Furthermore,MC Š �˝EC 2 X . Conversely, ifMC Š �˝F
with F flat, then MCC Š Hom.�; FC/ 2 V . But � ˝M is a pure submodule of
�˝MCC Š FC. So �˝M is injective by Proposition 5.3.8. But MC 2 J0.R/.
It is now easy to check that M 2 G0.R/ and so M Š Hom.�;�˝M/ 2 V .

A dual argument gives the following result.

Lemma 12.5.11. M 2 X if and only if MC 2 V .

Lemma 12.5.12. Let G 2 G0.R/. Then right V -dimG � n if and only if for any
left V -resolution � � � ! V1 ! V0 ! M ! 0 of each M 2 RM, Hom.G; Vn/ !
Hom.G;Ker.Vn�1 ! Vn�2// is exact where V�1 DM .

Proof. The proof is as in Lemma 8.4.34 noting that V -preenvelopes of modules in
G0.R/ are injections.

Theorem 12.5.13. The following are equivalent for an integer n � 0:

(1) inj dim� � n.

(2) right V -dimR � n.

(3) If � � � ! E1 ! E0 ! M ! 0 is a left Inj-resolution of an R-module M ,
then the complex � � � ! Hom.�;E1/! Hom.�;E0/! Hom.�;M/! 0 is
exact at Hom.�;Ei / for all i � n � 1 where E�1 DM .

(4) If 0 ! M ! F 0 ! F 1 ! � � � is a right F lat-resolution of an R-module M ,
then the complex 0! �˝M ! �˝F 0 ! �˝F 1 ! � � � is exact at�˝F i
for all i � n � 1 where F�1 DM .

(5) If 0 ! M ! F 0 ! F 1 ! � � � is a right F lat-resolution of an R-module
M 2 G0.R/, then the complex 0! �˝M ! �˝ F 0 ! �˝ F 1 ! � � � is
exact at �˝ F i for all i � n � 1 where F�1 DM .

(6) If 0 ! M ! P 0 ! P 1 ! � � � is a right Projfg-resolution of a finitely

generated R-module M , then the complex 0 ! � ˝M ! � ˝ P 0 ! � ˝
P 1 ! � � � is exact at �˝ P i for all i � n � 1 where P�1 DM .
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(7) If 0 ! M ! E0 ! E1 ! � � � is a right Inj-resolution of an R-module
M , then for each V 2 V the complex 0 ! Hom.V;M/ ! Hom.V;E0/ !
Hom.V;E1/! � � � is exact at Hom.V;Ei / for all i � n.

(8) If 0 ! M ! E0 ! E1 ! � � � is a right Inj-resolution of an R-module M 2
G0.R/, then for each V 2 V the complex 0! Hom.V;M/! Hom.V;E0/!
Hom.V;E1/! � � � is exact at Hom.V;Ei / for all i � n.

(9) Every left V -resolution � � � ! V1 ! V0 ! M ! 0 of M is exact at Vi for all
i � n � 1 where V�1 DM .

(10) EachM 2 G0.R/ has an exact right V -resolution 0!M ! V 0 ! V 1 ! � � �
such that for each V 2 V the complex 0 ! Hom.V;M/ ! Hom.V; V 0/ !
Hom.V; V 1/! � � � is exact at Hom.V; V i / for all i � n.

(11) If � � � ! P1 ! P0 ! M ! 0 is a left Proj -resolution of an R-module
M , then for each X 2 X the complex 0 ! Hom.M;X/ ! Hom.P0; X/ !
Hom.P1; X/! � � � is exact at Hom.Pi ; X/ for all i � n.

(12) Each M 2 J0.R/ has an exact left W -resolution � � � ! W1 ! W0 ! M ! 0

such that for each W 2 W the complex 0! Hom.M;W /! Hom.W0; W /!
Hom.W1; W /! � � � is exact at Hom.Wi ; W / for all i � n.

(13) Every right X-resolution 0! M ! X0 ! X1 ! � � � of M 2 J0.R/ is exact
at X i for all i � n � 1 where X�1 DM .

(14) If � � � ! F1 ! F0 ! M ! 0 is a left F lat-resolution of an R-module M ,
then for each V 2 V the complex � � � ! V ˝ F1 ! V ˝ F0 ! V ˝M ! 0

is exact at V ˝ Fi for all i � n.

(15) Each M 2 J0.R/ has an exact left X-resolution � � � ! X1 ! X0 ! M ! 0

such that for each V 2 V the complex � � � ! V˝X1 ! V˝X0 ! V˝M ! 0

is exact at V ˝Xi for all i � n.

(16) Every right Wfg-resolution 0 ! M ! W 0 ! W 1 ! � � � of M 2 J0.R/fg is

exact at W i for all i � n � 1 where W �1 DM .

Proof. .1/ , .2/. Let 0 ! � ! E0 ! E1 ! � � � ! En ! 0 be an injective
resolution of �. Then 0! Hom.�;�/! Hom.�;E0/! � � � ! Hom.�;En/!
0 is exact since Exti .�;�/ D 0 for all i � 1. But Hom.�;�/ Š R and it is easy
to check that this sequence is a right V -resolution. So (2) follows. Conversely, let
0 ! R ! V 0 ! V 1 ! V n ! 0 be a right V -resolution of R (see Proposition
10.4.8). Then 0 ! � ! � ˝ V 0 ! � � � ! � ˝ V n�1 ! � ˝ V n ! 0 is exact
since V � G0.R/ and so Tori .�; V / D 0 for all i � 1 and all V 2 V . But �˝ V i is
injective for each i . Thus (1) follows.
.1/ , .3/ follows as in Theorem 8.4.36 and .1/ , .4/ , .6/ follows as in

Theorem 8.4.31.
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.1/, .7/. It follows from Proposition 8.4.3 that proj dimV � n if and only if (7)
holds. But then the result follows since proj dim Hom.�;E/ � n for all injective E
if and only if inj dim� � n.
.4/) .5/; .7/) .8/ are trivial.
.2/, .9/. This follows as in Theorem 8.4.36 using Lemma 12.5.12 and Theorem

12.5.5.
.5/ ) .1/. Let K be the nth F lat-syzygy of Hom.�;E/ with E an injec-

tive R-module. Then K 2 G0.R/. So if 0 ! K ! F 0 ! F 1 ! � � � is
a right F lat-resolution, then � � � ! Hom.� ˝ F 1; E/ ! Hom.� ˝ F 0; E/ !
Hom.� ˝ K;E/ ! 0 is exact at Hom.� ˝ F i ; E/ for i � n � 1 by assump-
tion. Therefore, Exti .K;Hom.�;E// D 0 for all i � n � 1. Now computing
Exti .�;�/ using a left F lat-resolution � � � ! Fn ! Fn�1 ! � � � ! F1 ! F0 !
Hom.�;E/ ! 0, we see that K D Ker.Fn�1 ! Fn�2/ is a direct summand of Fn
and thus flat dim Hom.�;E/ � n. But then (1) follows.
.1/ ) .10/. The existence of such a resolution follows from Proposition 10.4.8.

We now simply note that if V 0 2 V , then

Exti .V; V 0/ Š Exti .Hom.�;E/;Hom.�;E 0//
Š Hom.Tori .Hom.�;E/;�/;E 0/
D 0

for all i � 1 since E 2 J0.R/. So inj dim� � n if and only if proj dimV � n for all
V 2 V and thus Exti .V;M/ D 0 for all i > n and all V 2 V . Hence (10) follows.
.8/; .10/ ) .1/. V 2 G0.R/ and so its nth Proj -syzygy is in G0.R/. Hence

Exti .V;M/ D 0 for all i > n and all M 2 G0.R/ means proj dimV <1.
.1/, .11/ follows similarly since inj dim� � n if and only if inj dimX � n for

all X 2 X.
.1/, .12/. We note that inj dim� � n if and only if inj dimW � n for all W 2

W , and ifW ,W 0 2 W , then Exti .W 0; W / D 0 for all i � 1 since Exti .�;�/ D 0 for
all i � 1. Moreover, the nth Inj-cosyzygy of W is in J0.R/. Thus the result follows
from Proposition 10.4.9 and an argument dual to the one in .1/, .10/.
.4/ ) .13/. Let M 2 J0.R/ and 0 ! M ! X0 ! X1 ! � � � be a

right X-resolution of M . Then 0 ! Hom.�;M/ ! F 0 ! F 1 ! � � � is a
right F lat-resolution of Hom.�;M/ where X i Š � ˝ F i . But the complex 0 !
� ˝ Hom.�;M/ ! � ˝ F 0 ! � ˝ F 1 ! � � � is equivalent to the complex
0!M ! X0 ! X1 ! � � � . So (13) easily follows.
.13/ ) .5/. Let M 2 J0.R/ and 0 ! M ! F 0 ! F 1 ! � � � be a right F lat-

resolution. Then 0! �˝M ! �! F 0 ! �˝F 1 ! � � � is a right X-resolution
of �˝M . But �˝M 2 J0.R/. So (5) follows from (13).
.1/ , .14/ is trivial since flat dimV � n if and only if Tori .V;M/ D 0 for all

i � nC 1 and all R-modules M .
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.1/, .15/. We simply note that Hom.Tori .V;X/;Q=Z/ Š Exti .V;XC/ D 0 for
all i � 1 since XC 2 V by Lemma 12.5.11. Thus Tori .V;X/ D 0 for all V 2 V and
X 2 X.
.1/, .16/ is left to the reader.

Definition 12.5.14. An R-module M is said to be �-Gorenstein injective if there
exists a Hom.V ;�/ exact exact sequence

� � � ! V1 ! V0 ! V 0 ! V 1 ! � � �

of modules in V such that M D Ker.V 0 ! V 1/.

Dually, an R-module M is said to be �-Gorenstein projective if there exists a
Hom.�;W/ exact exact sequence

� � � ! W1 ! W0 ! W 0 ! W 1 ! � � �

of modules in W such that M D Ker.W 0 ! W 1/.
A module M is said to be �-Gorenstein flat if there exists a V ˝ � exact exact

sequence
� � � ! X1 ! X0 ! X0 ! X1 ! � � �

of modules in X such that M D Ker.X0 ! X1/.
We note that every V 2 V is �-Gorenstein injective, W 2 W is �-Gorenstein

projective, and X 2 X is �-Gorenstein flat.

Proposition 12.5.15. Classes V ;W , and X are closed under direct summands.

Proof. Let V 2 V andG be a direct summand of V . Set V Š Hom.�;E/ Š G˚G0
for some R-module G0 and injective R-module E. But then � ˝ G is an injective
R-module. Furthermore, G 2 G0.R/ since V 2 G0.R/. So G Š Hom.�;�˝ G/.
That is, G 2 V . The proofs for W and X are similar.

Lemma 12.5.16. IfM is�-Gorenstein injective, then Exti .V;M/ D 0 for all V 2 V

and all i � 1.

Proof. This is trivial since Exti .V; V 0/ D 0 for all V , V 0 2 V and all i � 1.

Remark 12.5.17. It follows from the above that the right V -dimension of an �-
Gorenstein injective module and the left W -dimension of an �-Gorenstein projective
module are either zero or infinite.

We now show that there is an abundant supply of �-Gorenstein modules.
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Theorem 12.5.18. Let M be an R-module. Then

(1) If 0 ! M ! V 0 ! V 1 ! � � � is an exact right V -resolution of M and
C i D Ker.V i ! V iC1/, then C i is �-Gorenstein injective for i � d .

(2) If � � � ! V1 ! V0 ! M ! 0 is a left V -resolution of M and Ci D
Coker.ViC1 ! Vi /, then Ci is �-Gorenstein injective for i � d � 1.

Proof. This follows as in the proof of Theorem 10.1.13 using Theorem 12.5.13 above.

Theorem 12.5.19. LetM be a finitely generatedR-module and supposeM 2 J0.R/.
Then

(1) If � � � ! W1 ! W0 ! M ! 0 is an exact left W -resolution of M and
Ci D Coker.WiC1 ! Wi /, then Ci is �-Gorenstein projective for i � d .

(2) If 0 ! M ! W 0 ! W 1 ! � � � is a right Wfg-resolution and C i D
Ker.W i ! W iC1/, then C i is �-Gorenstein projective for i � d � 1.

Proof. This follows as in the proof of Theorem 10.2.16 using Theorem 12.5.13 and
Remark 12.5.4.

Remark 12.5.20. IfM is�-Gorenstein flat, thenMC is�-Gorenstein injective. For
if X 2 X, then XC 2 V by Lemma 12.5.11. Thus if � � � ! X1 ! X0 ! X0 !
X1 ! � � � is the exact sequence in the definition, then � � � ! X1C ! X0C ! XC0 !
XC1 ! � � � is an exact sequence of modules in V . Moreover, applying Hom.V;�/
gives the sequence � � � ! Hom.V;Hom.�; F 1C/ ! Hom.V;Hom.�; F 0C// !
Hom.V;Hom.�; FC0 // ! � � � where X Š �˝ F with F flat. This is equivalent to
the complex � � � ! .E˝F 1/C ! .E˝F 0/C ! .E˝F0/C ! .E˝F1/C ! � � �
where V Š Hom.�;E/ with E injective. But the exact sequence � � � ! V ˝ X1 !
V ˝X0 ! V ˝X0 ! V ˝X1 ! � � � is equivalent to � � � ! E˝F1 ! E˝F0 !
E ˝ F 0 ! E ˝ F 1 ! � � � and thus MC D Ker.XC0 ! XC1 / is �-Gorenstein
injective. We will show in Theorem 12.5.25 below that the converse holds if M 2
J0.R/.

Proposition 12.5.21. The left X-dimension of an �-Gorenstein flat module is either
zero or infinite.

Proof. Let M be �-Gorenstein flat. If the left X-dimension of M is finite, then the
right V -dimension of MC is finite. But MC is �-Gorenstein injective by Remark
12.5.20 above. So MC 2 V by Remark 12.5.17. Thus M 2 X by Lemma 12.5.11.

Proposition 12.5.22. Let M 2 G0.R/. Then M is �-Gorenstein injective if and only
if �˝M is Gorenstein injective.
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Proof. Suppose � � � ! V1 ! V0 ! V 0 ! V 1 ! � � � is an exact sequence of
modules in V with M D Ker.V 0 ! V 1/ such that the sequence remains exact when
Hom.V;�/ is applied to it whenever V 2 V . Now applying � ˝ � to the complex
gives the complex � � � ! E1 ! E0 ! E0 ! E1 ! � � � of injective modules
where Vi Š Hom.�;Ei /; V i Š Hom.�;Ei /, and � ˝ M D Ker.E0 ! E1/.
But Tori .�; V / D 0 for all i � 1 and all V 2 V since V 2 G0.R/. Furthermore,
M 2 G0.R/ by assumption. So the complex � � � ! E1 ! E0 ! E0 ! E1 ! � � �
is exact by Theorem 10.4.10. But if V , V 0 2 V , then Hom.V; V 0/ Š Hom.E;E 0/
where V Š Hom.�;E/, V 0 Š Hom.�;E 0/ with E;E 0 injective. Thus Hom.E;�/
leaves the complex � � � ! E1 ! E0 ! E0 ! E1 ! � � � exact. That is, �˝M is
Gorenstein injective.

Conversely, if � ˝ M is Gorenstein injective and � � � ! E1 ! E0 ! E0 !
E1 ! � � � is the exact sequence of injective modules for � ˝M , then Hom.�;�/
leaves the sequence exact since inj dim� < 1. Thus we get an exact sequence
� � � ! V1 ! V0 ! V 0 ! V 1 ! � � � of modules in V . It is now easy to check
that this sequence remains exact if Hom.V;�/ is applied to it whenever V 2 V . Thus
M Š Hom.�;�˝M/ is �-Gorenstein injective.

Proposition 12.5.23. Let M 2 J0.R/. Then M is �-Gorenstein projective if and
only if Hom.�;M/ is Gorenstein projective.

Proof. The proof is dual to the proof of the proposition above noting that
Hom.W 0; W / Š Hom.P 0; P / where W 0 Š � ˝ P 0, W Š � ˝ P with P;P 0
projective and Exti .�;M/ D Exti .�;W / D 0 for all i � 1 and all W 2 W since
W 2 J0.R/.

Lemma 12.5.24. Let M 2 J0.R/ and � � � ! X1 ! X0 ! X0 ! X1 ! � � � be a
complete X-resolution of M . Then Tori .L;M/ D 0 for all i � 1 and all R-modules
L of finite V -dimension if and only if the sequence � � � ! L ˝ X1 ! L ˝ X0 !
L˝X0 ! L˝X1 ! � � � is exact for all such L.

Proof. We recall from the proof of Theorem 12.5.13 that Tori .V;X/ D 0 for all
i � 1, V 2 V , andX 2 X. So the complex � � � ! V ˝X1 ! V ˝X0 ! V ˝X0 !
V ˝ X1 ! � � � is exact for all V 2 V by assumption and Lemma 12.5.8 above.
One then proceeds by induction on right V -dimension of L as in the proof of Lemma
10.3.7. The converse is trivial.

Theorem 12.5.25. The following are equivalent for an R-module M 2 J0.R/:

(1) M is �-Gorenstein flat.

(2) Hom.�;M/ is Gorenstein flat.

(3) MC is �-Gorenstein injective.

(4) Tori .V;M/ D 0 for all i � 1 and all V 2 V .
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(5) Tori .L;M/ D 0 for all i � 1 and all L of finite right V -dimension.

(6) Tor1.L;M/ D 0 for all L of finite right V -dimension.

Proof. .1/ , .2/. Let � � � ! X1 ! X0 ! X0 ! X1 ! � � � be as in Definition
12.5.14. Then we have an exact sequence � � � ! F1 ! F0 ! F 0 ! F 1 ! � � � of
flat modules whereXi Š �˝Fi ,X i Š �˝F i , and Hom.�;M/ D Ker.F 0 ! F 1/

since Exti .�;M/ D Exti .�;X/ D 0 for all i � 1, all X 2 X and Hom.�;� ˝
F / Š F for all flat F . But � � � ! V ˝X1 ! V ˝X0 ! V ˝X0 ! V ˝X1 ! � � �
is exact for all V 2 V by assumption and V ˝X Š Hom.�;E/˝�˝F Š E ˝F
where V Š Hom.�;E/. Thus the complex � � � ! E˝F1 ! E˝F0 ! E˝F 0 !
E ˝ F 1 ! � � � is exact for all injective R-modules E. So Hom.�;M/ is Gorenstein
flat. The converse is now standard.
.2/ , .3/. Hom.�;M/ is Gorenstein flat if and only if Hom.�;M/C is Goren-

stein injective if and only if �˝MC is Gorenstein injective. But MC 2 G0.R/. So
the result follows by Proposition 12.5.22 above.
.1/ ) .4/ is trivial since Tori .V;X/ D 0 for all V 2 V and X 2 X, .4/ ) .5/

follows by dimension shifting, and .5/) .6/ is trivial.
.6/) .5/ Suppose L has finite right V -dimension and consider the exact sequence

0! L0 ! P ! L! 0 with P projective. Then P has a finite V -dimension. Thus
L0 also has finite V -dimension and so the result follows by dimension shifting.
.5/ ) .1/. Setting R D L in Lemma 12.5.24, we get that the complete X-

resolution � � � ! X1 ! X0 ! X0 ! X1 ! � � � is exact and so M is �-Gorenstein
flat.

Theorem 12.5.26. Let M 2 J0.R/. Then

(1) If � � � ! X1 ! X0 ! M ! 0 is an exact left X-resolution of M and Ci D
Coker.XiC1 ! Xi /, then Ci is �-Gorenstein flat for all i � d .

(2) If 0 ! M ! X0 ! X1 ! � � � is a right X-resolution and C i D Ker.X i !
X iC1/, then C i is �-Gorenstein flat for i � d � 1.

Proof. (1) If V 2 V , then Torj .V;M/ D 0 for all j � d C 1. But if Ci is the i th
X-syzygy ofM , then Torj .V; Ci / Š ToriCj .V;M/ D 0 for all i � d , j � 1, V 2 V

since Tori .V;X/ D 0 for all i � 1, V 2 V , X 2 X. So the result follows from
Theorem 12.5.25 above.

(2) This follows from Theorem 12.5.13 as in Corollary 10.3.13.

Theorem 12.5.27. Every R-module has an �-Gorenstein injective precover.

Proof. If � � � ! V1 ! V0 ! M ! 0 is a left V -resolution of M , then K D
Ker.Vd�1 ! Vd�2/ is �-Gorenstein injective by Theorem 12.5.18 above. So K has
an exact sequence � � � ! V1 ! V0 ! V 0 ! V 1 ! � � � such that each V i 2 V and
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Hom.V;�/ leaves the sequence exact whenever V 2 V . But then it is easy to see that
each cosyzygy in the sequence is also�-Gorenstein injective. Thus the result follows
as in Theorem 11.1.1.

Theorem 12.5.28. Every R-module has an �-Gorenstein injective cover.

Proof. This is now standard.

Theorem 12.5.29. Every R-module M 2 G0.R/ has an �-Gorenstein injective pre-
envelope M ! G such that if 0 ! M ! G ! L ! 0 is exact, then right V -
dimL � d � 1 whenever d � 1.

Proof. The proof is similar to the proof of Theorem 11.2.1 using Theorem 12.5.18
and Lemma 12.5.16.

Corollary 12.5.30. The following are equivalent for an R-module M 2 G0.R/:

(1) M is �-Gorenstein injective.

(2) Exti .V;M/ D 0 for all V 2 V and for all i � 1.

(3) Exti .L;M/ D 0 for all R-modules L such that right V -dimL <1 and for all
i � 1.

(4) Ext1.L;M/ D 0 for all R-modules L such that right V -dimL <1.

Proof. .1/) .2/ is Lemma 12.5.16 above, .2/) .3/ follows by dimension shifting,
and .3/) .4/ is trivial.
.4/) .1/ follows from the theorem above as in Corollary 11.2.2 since by Theorem

12.5.18 a direct summand of an �-Gorenstein injective in G0.R/ is also such.

Corollary 12.5.31. Let M 2 G0.R/. Then the following are equivalent for a �-
Gorenstein injective preenvelope M ! G with right V -dimG=M <1:

(1) right V -dimM <1.

(2) G 2 V .

(3) M ! G is a right V -preenvelope.

Proof. .1/, .2/ Let 0 ! M ! G ! L ! 0 be exact. Then right V -dimL < 1
by Theorem 12.5.29. So if right V -dimM < 1, then right V -dimG < 1 and thus
G 2 V by Remark 12.5.17. The converse is now trivial.
.2/, .3/ is trivial.

Proposition 12.5.32. Let L be the class ofR-modules of finite right V -dimension and
�GorInj denote the class of �-Gorenstein injective R-modules. Then the following
are equivalent for an R-module M 2 G0.R/ and integer r � 0:
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(1) right�GorInj-dimM � r .

(2) There exists an exact sequence 0 ! M ! G0 ! G1 ! � � � ! Gr�1 !
Gr ! 0 with each Gi �-Gorenstein injective.

(3) Exti .L;M/ D 0 for all L 2 L and all i � r C 1.

(4) ExtrC1.L;M/ D 0 for all L 2 L.

(5) Every r th �GorInj-cosyzygy of M is �-Gorenstein injective.

(6) Every r th V -cosyzygy of M is �-Gorenstein injective.

Proof. The result follows as in Proposition 11.2.5 noting that Ext1.L; V / D 0 for all
L 2 L, V 2 V since V is �-Gorenstein injective.

Corollary 12.5.33. Let M 2 G0.R/. Then

(1) right�GorInj-dimM � d .

(2) right�GorInj-dimM D right V -dimM if and only if right V -dimM <1.

Proof. (1) follows from Theorem 12.5.18 and Proposition 12.5.32 above.
(2) follows from (1) above and Corollary 12.5.31.

Proposition 12.5.34. The following are equivalent for an R-module M 2 G0.R/:

(1) Exti .M;N / D 0 for all i � 1 and all �-Gorenstein injective R-modules N .

(2) Ext1.M;N / D 0 for all �-Gorenstein injective R-modules N .

(3) M has right V -dimension at most d .

(4) M has finite right V -dimension.

Proof. .1/) .2/ and .3/) .4/ are trivial, and .2/) .1/ follows by induction.
.1/ ) .3/. Let 0 ! M ! V 0 ! V 1 ! � � � be exact with each V i 2 V and

K D Ker.V d ! V dC1/. Then K is �-Gorenstein injective by Theorem 12.5.18.
So Hom.V dC1; K/ ! Hom.V d ; K/ ! Hom.V d�1; K/ is exact and thus K is a
summand of V d .
.4/) .1/ by Corollary 12.5.30.

Lemma 12.5.35. Let L be the class ofR-modules in G0.R/ such that right V -dimL<

1. Then L is closed under inductive limits.

Proof. right V -dimL � d by the Proposition above and so the result follows since V

is closed under inductive limits by Lemma 12.5.1.

Theorem 12.5.36. Every R-module M 2 G0.R/ has a �-Gorenstein injective en-
velope M ! G such that if 0 ! M ! G ! L ! 0 is exact, then right V -
dimL � d � 1 whenever d � 1.
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Corollary 12.5.37. Let M 2 G0.R/ and M ! G be a �-Gorenstein injective enve-
lope, then right V -dimM <1 if and only if M ! G is a V -envelope.

Theorem 12.5.38. If M 2 G0.R/ and 0 ! M ! G0 ! G1 ! � � � is a minimal
right �-Gorenstein injective resolution, then Gi 2 V for each i � 1 and Gi D 0 for
i > d .

Proof. This follows from Theorem 12.5.36 and Corollary 12.5.37 above.

Remark 12.5.39. There are analogous results for �-Gorenstein projective and �-
Gorenstein flat precovers and preenvelopes and balance.

Exercises

1. Prove Lemma 12.5.1.

2. Prove Remark 12.5.4.

3. Prove Theorem 12.5.5.

4. Prove the second part of Theorem 12.5.6.

5. Prove 1, 3, 1, 4, 6, 2, 9, 1, 12, 1, 15, and 1, 16 in Theorem
12.5.13.

6. Complete the proof of Theorem 12.5.15.

7. Prove Remark 12.5.17.

8. Prove Theorems 12.5.18 and 12.5.19.

9. Prove that an R-moduleM is Gorenstein injective if and only ifM 2 J0.R/ and
Hom.�;M/ is �-Gorenstein injective.

10. Prove that an R-module M is Gorenstein projective (flat) if and only if M 2
G0.R/ and �˝M is �-Gorenstein projective (flat).

11. Prove part (2) of Theorem 12.5.26.

12. Complete the proof of Theorem 12.5.27.

13. Prove that every inductive limit of �-Gorenstein injective modules is �-Goren-
stein injective.

14. Prove Theorem 12.5.28.

15. Prove Proposition 12.5.32.

16. Prove Theorem 12.5.36.
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coreflective, 192
cosyzygy, 174
cotorsion, 122

theory, 158
covariant functor, 20
cover

F -, 110, 173
�-Gorenstein injective, 334
V -, 325
flat, 115
Gorenstein flat, 300
Gorenstein injective, 281
Gorenstein projective, 295
injective, 126
projective, 110, 116, 133
torsion free, 98

covering, 111, 115, 125, 173
cycles, 28

D
Dedekind domain, 109, 200
depth, 225
derived functor, 176
determined by, 145
diagram

commutative, 12
pullback, 26
pushout, 25

dimension, 56
F -, 187
GorF lat, 302, 320
GorInj , 283, 320
GorProj , 292
GorProj

fg
, 320

�-, 211
�-, 217
copure flat, 223
copure injective, 222
flat, 84, 192
global, 187
injective, 84
Krull, 56
projective, 84

dimension shifting, 45
direct

limit, 34

sum, 23
system, 34

direct product, 9
direct sum, 9
directed set, 33
domain

Dedekind, 109, 200
Prüfer, 87

double complex, 181
dual

algebraic, 144
Matlis, 93

duality
local, 244
Matlis, 93

dualizing module, 244

E
Eakin–Nagata Theorem, 76
embedded

finitely, 96
prime, 58

enough
injectives, 159
projectives, 159

envelope
F -, 135, 173
�-Gorenstein injective, 335
V -, 272
flat, 142
Gorenstein injective, 285
injective, 74
pure injective, 147, 150
pure injective flat, 147

enveloping, 135, 173
epimorphism, 20
essential extension, 74

Gorenstein, 288
essential submodule, 74

Gorenstein, 288
essentially zero, 247
exact

T .�;�/, 173
functor, 24
left, 24
makes the sequence, 174
pure, 117
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right, 24
sequence of complexes, 29
sequence of modules, 11
short, 11
split, 12

F
faithfully flat

algebra, 68
module, 45, 68

fibration, 161
filtration, 64

I -, 64
I -good, 64
stable, 64

finitely
embedded, 96
presented, 79

flat
�-Gorenstein, 330
copure, 223
cotorsion theory, 169
cover, 115
dimension, 84, 192
envelope, 142
faithfully, 45, 68
module, 43
precover, 115
preenvelope, 143
resolution, 43
rigid, 196

Foxby classes, 268
free

module, 9
free resolution, 11
full subcategory, 20
functor, 20

additive, 23
balanced, 181, 311, 315
contravariant, 21, 177
covariant, 20, 177
derived, 176
exact, 24
local cohomology, 238
of two variables, 22

functorial, 20

G
Generalized Krull Principal Ideal Theorem,

59
converse of, 60

generator of a cotorsion theory, 158
generically Gorenstein, 232
global

F -dimension, 187
weak dimension, 192

Gorenstein
n-, 221
essential extension, 288
essential submodule, 288
extension, 285
flat, 263
flat cover, 300
flat precover, 300
flat preenvelope, 305
flat resolution, 302
generically, 232
injective, 249
injective cover, 281
injective envelope, 285
injective extension, 285
injective precover, 280
injective preenvelope, 281
injective resolution, 283
Iwanaga–, 219
projective, 256
projective cover, 295
projective precover, 291
projective preenvelope, 305
projective resolution, 292

grade, 226
graded

module, 64
ring, 63

H
Hausdorff, 39
height, 56
hereditary ring, 200
Hilbert Basis Theorem, 50
homogeneous, 64
homology module, 28
homomorphism

connecting, 12
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homotopic, 30
homotopy

chain, 30
class, 31

Horseshoe Lemma, 176

I
identity morphism, 19
image, 9
indecomposable module, 88
induced order, 1
inductive

limit, 34
system, 34

inductively ordered set, 1
injective

FP -, 137
�-Gorenstein, 330
cogenerator, 80
copure, 222
cover, 126
dimension, 84
envelope, 74
extension, 74
minimal resolution, 75
module, 71
precover, 126
pure, 117
resolution, 73
structure, 145

inverse
limit, 36
system, 36

inverse polynomial, 91
irreducible module, 61
isolated associated prime, 58
isomorphic

functors, 22
sets, 2

isomorphism, 2, 20
Iwanaga–Gorenstein, 219

J
Jacobson radical, 18

K
Kaplansky, 306
kernel, 8, 23

Koszul complex, 240
Krull

dimension, 56
Generalized Principal Ideal Theorem, 59
Intersection Theorem, 65
Principal Ideal Theorem, 59

L
least element, 1
length of a module, 51
limit

direct, 34
inductive, 34
inverse, 36
of a sequence, 39
ordinal, 3
projective, 36

local
cohomology functor, 238
duality, 244
ring, 48

localization, 46, 48
locally nilpotent, 142
long exact sequence, 30

extended, 179

M
makes the sequence exact, 174
map

additive, 10
balanced, 14
biadditive, 14
bilinear, 14
chain, 28
functorial, 20
neat, 104
universal, 98

mapping cone, 31
Matlis

dual, 93
reflexive, 93

maximal
Cohen–Macaulay, 229
element, 1
essential extension, 74
Gorenstein essential extension, 289
spectrum, 55



356 Index

minimal
F -resolution, 175
complete F -resolution, 175
Gorenstein injective extension, 289
injective resolution, 75

mock finitely generated, 255
module, 8

FP -injective, 137
�-Gorenstein flat, 330
�-Gorenstein injective, 330
�-Gorenstein projective, 330
absolutely pure, 137
Artinian, 49
canonical, 246
character, 80
Cohen–Macaulay, 229
cohomology, 28
complete, 39
copure flat, 223
copure injective, 222
cotorsion, 122
dualizing, 244
faithfully flat, 45, 68
finitely embedded, 96
finitely presented, 79
flat, 43
free, 9
Gorenstein flat, 263
Gorenstein injective, 249
Gorenstein projective, 256
graded, 64
homology, 28
indecomposable, 88
injective, 71
irreducible, 61
length of, 51
localization of, 46, 48
maximal Cohen–Macaulay, 229
mock finitely generated, 255
Noetherian, 49
projective, 42
pure injective, 117
pure projective, 184
reduced, 251, 259
reflexive, 93
semisimple, 51
simple module, 18

strongly cotorsion, 238
torsion free, 98
unitary, 8

monomorphism, 20
morphism, 19
multiplicative subset, 46

N
Nakayama Lemma, 18, 125
natural transformation, 22
neat map, 104
nilpotent, 18, 60

T -, 125
locally, 142

nilradical, 57
Noetherian, 49
numbers

cardinal, 5
ordinal, 3

O
opposite category, 22
ordered set

inductively, 1
partially, 1
totally, 1

ordinals, 3
orthogonal class, 158

P
partial resolution, 211
partially ordered set, 1
perfect, 115
Pontryagin dual, 101
Prüfer domain, 87
precover

F -, 110, 173
L-, 288
�-Gorenstein injective, 333
V -, 325
W -, 270
flat, 115
Gorenstein flat, 300
Gorenstein injective, 280
Gorenstein projective, 291
injective, 126



Index 357

projective, 116
special F -, 159
torsion free, 99

precovering, 111, 125, 173
preenvelope

F -, 135, 173
L-, 260, 273, 295
�-Gorenstein injective, 334
V -, 270
flat, 143
Gorenstein flat, 305
Gorenstein injective, 281
Gorenstein projective, 305
pure injective, 147
special F -, 159

preenveloping, 135, 173
primary

p-, 57, 61
decomposition, 62
ideal, 57
submodule, 60

prime
embedded, 58
isolated associated, 58

prime divisors, 58
minimal, 58

principle
of transfinite construction, 6
of transfinite induction, 6

product
of a family of objects, 23
of categories, 21
tensor, 14, 240

projective
�-Gorenstein, 330
cover, 110, 115, 133
dimension, 84
limit, 36
module, 42
precover, 116
pure, 184
resolution, 42

pullback, 26
pure

essential extension, 150
exact, 117
injective, 117

projective, 184
submodule, 98, 117

pure injective
envelope, 147, 150
preenvelope, 147

pushout, 25

Q
quasi–Frobenius, 263
quotient

complex, 29
topology, 39

quotient module, 8

R
radical

Jacobson, 18
nil, 57
of a module, 125
of an ideal, 57

rank, 228
reduced

module, 251, 259
primary decomposition, 62

reflective subcategory, 196
reflexive module, 93
residue field, 48
resolution

F -, 174
complete, 174
flat, 43
Gorenstein flat, 302
Gorenstein injective, 283
Gorenstein projective, 292
injective, 73
left GorF lat, 302
left GorInj , 313
left GorProj , 292
minimal injective, 75
partial, 211
projective, 42
right GorF lat, 314
right GorInj , 283

resolving class, 216
ring

Artinian, 49
Cohen–Macaulay, 229
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coherent, 85, 142
Gorenstein, 219
graded, 63
hereditary, 200
Iwanaga–Gorenstein, 219
local, 48
Noetherian, 49
of p-adic integers, 41
perfect, 115
quasi–Frobenius, 263
semihereditary, 87
semilocal, 60
semiperfect, 117
semisimple, 52
Zariski, 69

S
Schanuel’s Lemma, 46, 78, 211
segment of a set, 2
semihereditary ring, 87
semilocal, 60
semiperfect, 117
semisimple, 51
sequence

M -, 225
R-, 225
Cauchy, 39
convergent, 39
exact, 11, 29
extended long exact, 179
long exact, 30
short exact, 11
split exact, 12

sets
cofinal, 34
directed, 33
inductively ordered, 1
isomorphic, 2
of morphisms, 19
partially ordered, 1
totally ordered, 1
well ordered, 1

short exact sequence, 11
simple, 18
Snake Lemma, 12
socle, 76

special
F -precover, 159
F -preenvelope, 159

spectrum, 55
maximal, 55

split exact, 12
stable filtration, 64
strongly

copure flat, 223
copure injective, 222
cotorsion, 238

strongly connected
contravariantly, 180
covariantly, 179

subcategory, 20
coreflective, 192
full, 20
reflective, 196

subcomplex, 29
submodule

essential, 74
pure, 98, 117
superfluous, 111

subspace topology, 39, 66
superfluous submodule, 111
support, 56
system

direct, 34
inductive, 34
inverse, 36

syzygy, 174

T
tensor product, 14

of complexes, 240
topology, 38

I -adic, 39
quotient, 39
subspace, 39, 66

torsion
group, 37
module, 98

torsion free
cover, 98
group, 37
module, 98

totally ordered set, 1
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U
universal, 14

balanced map, 14
map, 98
mapping problem, 14

upper bound, 1

V
von Neumann regular, 201

W
Wakamatsu Lemma, 162
well ordered, 1

Z
zero divisors, 54
zig-zag process, 170, 309
Zorn’s Lemma, 1
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