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Preface

The subject of relative homological algebra was introduced by S. Eilenberg and
J.C. Moore in their 1965 AMS Memoir ‘Foundations of Relative Homological Al-
gebra’. We now have in hand more theorems guaranteeing the existence of precovers,
covers, preenvelopes and envelopes. These are basic objects of the subject and are
used to construct resolutions and then left and right derived functors. Also, several
new useful ideas have come into play since the appearance of Eilenberg and Moore’s
work. Among others these include the various versions of what is now known as
Wakamatsu lemma, the notions of special precovers and preenvelopes and the or-
thogonality of classes of objects of an Abelian category with respect to the extension
functor. Hence it seems opportune to now give a systematic treatment of this subject
along with the new developments and applications.

This book is aimed at graduate students. For that reason, we have attempted to
make the book a reasonably self-contained treatment of the subject requiring only
familiarity with basic notions in module and ring theory at the level of Basic Algebra I
by N. Jacobson [118].

The first three chapters give the basic tools and notation that will be used throughout
the book. This material constitutes notes from our lectures at our respective universi-
ties and is suitable for an introductory course in module and ring theory.

The material in chapter four which deals with torsion free covers over integral do-
mains is not essential to what follows in the book, but the ideas and proofs in this
chapter give the flavor of what is to come. Chapter five gives information about pre-
covers and covers and chapter six deals with preenvelopes and envelopes. Chapter
seven introduces the notion of cotorsion theory which is used to prove the existence
of special covers and envelopes. Chapter eight introduces balance (on the left or the
right) of a functor of two variables. Balance means that we have two specific kinds of
resolutions of each of the two variables each of which can be used to compute the rel-
ative derived functors. We show that the basic functors Hom and Tensor are balanced
using resolutions different from the usual projective, injective and flat resolutions.
This allows us to compute useful versions of the Extension and Torsion functors with
negative indices. We consider chapters five, six, seven and eight as the heart of the
book. This material together with chapters four and nine is suitable for a course in rel-
ative homological algebra and its applications to commutative and noncommutative
algebra.

The remainder of the book gives applications to ring theory and is more special-
ized. The commutative rings that we consider include local Cohen—Macaulay rings
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admitting a dualizing module with the Gorenstein local rings as a special case. For
example, we prove Auslander’s announced (but unpublished) result concerning the ex-
istence of maximal Cohen—Macaulay approximations over Gorenstein local rings. We
also consider a noncommutative version of Gorenstein rings which we call Iwanaga—
Gorenstein rings. Over these rings there is an especially pleasant application of rela-
tive homological algebra. We define relative versions of projective, injective and flat
modules which we label Gorenstein. We prove that over an Iwanaga—Gorenstein ring
there are enough Gorenstein projectives, injectives and flats (that is, the appropriate
precovers and preenvelopes exist). We then show that Hom and Tensor are balanced
when we use these Gorenstein versions of the projective, injective and flat modules
to compute the resolutions over Iwanaga—Gorenstein rings. Then we prove that these
rings have finite global dimension in this situation.

This book was planned while we were visiting the Department of Mathematics and
Computer Science at University of Antwerp, UIA, Belgium. We would like to thank
the department for its hospitality.

We would like to thank the many colleagues who have discussed and studied these
topics with us through the years. These include (but are not limited to) Tom Cheatham,
Richard Belshoff, Jinzhong Xu, Mark Teply, and Freddy Van Oystaeyen. We also
appreciate the interest our colleagues in Spain have shown in this subject. These
include Juan Martinez, Alberto del Valle, Manolo Saorin and Pepe Asensio in Murcia
and Blas Torrecillas, Juan Ramon Garcia Rozas, Luis Oyonarte, Juan Antonio Lopez
Ramos, and Maria Jesus Asensio in Almeria.

Finally, we would like to thank Mrs. Rosie Torbert for the excellent job she has
done typing the manuscript.

Lexington/Auburn, 2000 Edgar E. Enochs, Overtoun M. G. Jenda



Preface to the Second Edition

In this new edition, now titled Relative Homological Algebra Volume I, we have added
well-known additional material in the first three chapters, and added new material that
was not available at the time the original edition was published. In particular, the
major changes are the following:

* Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the begin-
ner, and this has necessitated a new Section 1.3.

e Chapter 3: The classic work of D. G. Northcott [155] on injective envelopes and
inverse polynomials is finally included. This provides additional examples for
the reader.

* Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to
date. The material in this section was not available at the time the first edition
was published.

We have clarified some text throughout the book and updated the bibliography by
adding new references.

We would like to thank our colleague, Darrel Hankerson, who over the years has
continued to provide technical support for our books and research projects. Also
thanks to Mrs. Rosie Torbert who continues to do an excellent job typing the manu-
scripts.

Lexington/Auburn, June 2011 Edgar E. Enochs, Overtoun M. G. Jenda
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Chapter 1
Basic Concepts

In this chapter we introduce basic terminology, notation, and results concerning set
theory, modules, categories, and complexes.

1.1 Zorn’s Lemma, Ordinal and Cardinal Numbers

We start by introducing an informal and naive set theory. To avoid the usual contra-
dictions of set theory, we will use the term class for a collection which may be too
large to be called a set. Some definitions which we give concerning sets can obviously
be applied to classes.

Definition 1.1.1. A partially ordered set is a set X with a relation < such that (1)
x<x,2)x <yandy <z impliesx <z,and (3) x < y and y < x implies x = y,
for all x, y, z € X. A partially ordered set X is said to be fotally ordered if for all x,
y € Xeitherx < yory <ux.If S C X for the partially ordered set X, then S has
an induced order with x < y in § exactly when this relation holds in X.

Definition 1.1.2. If X is a partially ordered set, an element x € X is said to be an
upper bound of asubset S C X if y < xforall y € S. Anx € X is said to be a
maximal element of X if x < y for y € X implies x = y. The partially ordered set
X 1is said to be inductively ordered if every subset S C X which is totally ordered
with the induced order has an upper bound in X.

Theorem 1.1.3 (Zorn’s Lemma). Every inductively ordered set has a maximal ele-
ment.

Zorn’s Lemma is implied by (and in fact equivalent to) the axiom of choice which
states that the Cartesian product of a nonempty family of nonempty sets is nonempty.
There are other versions of the result which can be found in standard books on set
theory and logic.

Definition 1.1.4. An element x of a partially ordered set X is said to be a least ele-
ment of X if x < y forall y € X. A totally ordered set X is said to be well ordered
if every nonempty subset S has a least element (when S is given the induced order).

We note that a totally ordered set X is well ordered if and only if whenever we have
Xp > X1 > xp > x3 > --- for elements x, of X there is an ng such that x,, = x,,
forn > nyg.
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Definition 1.1.5. Two well ordered sets X and Y are said to be isomorphic if there
is a bijection f : X — Y which preserves order, that is, x; < x, in X implies
f(x1) < f(xp)inY. Suchan f : X — Y is called an isomorphism. We note that if
£ is an isomorphism, then sois f .

Definition 1.1.6. If X is a well ordered set, then a subset S C X is said to be a
segment of X if y < x and x € § implies y € S.

The union and intersection of any collection of segments of the well ordered set X
are segments of X. If S and T are segments of X, then either S C T or T C S.

X isasegmentof X. If S # X is asegment of X and x € X is the least element of
X notin §,then S ={y :y € X,y < x}. Conversely, any such S (for any x € X) is
a segment of X. Thus the set of proper segments of X ordered by inclusion is a well
ordered set which is isomorphic to X. So we see thatif So D S1 D Sz D --- are
segments of X, then for some ng > 0, S, = Sy, for all n > ny.

Proposition 1.1.7. Every set can be well ordered.

Proof. Let X be a set. We consider the set X of well ordered sets S such that as a
set S C X. We order these sets so that S < T if and only if S is a segment of T
and if the order on S is induced by that on 7. S = @ is an example of such an S.
If € C X is a nonempty totally ordered subset of X, there is a unique way to order
Y = [Ugee S so that the order induced on each S € € is the original order on S.
Then in fact Y is well ordered (and each S € € is a segment of Y), that is, € has
an upper bound in X. So by Zorn’s Lemma, there is a maximal element S of X. If
S#Xandye X,y ¢ S,weorder T = S U{y} withx < y forall x € § and with
the induced order on S the original order on S. Then 7 is well ordered and S < T,
contradicting the choice of S. Hence S = X and so X can be well ordered. O

Theorem 1.1.8. Suppose S is a segment of the well ordered set X and that f : X — S
is an isomorphism. Then S = X and [ = idy.

Proof. We only need to argue that f(x) = x for all x € X. If this is not the case, let
x be the least element of X such that f(x) # x. Then f(x) > x, forif f(x) < x we
have f(f(x)) = f(x) by the choice of x. But this means f is not an injection. So
f(x) > x and hence x € S. Now let x = f(y). Then f(x) > f(y) and so x > y.
So again by the choice of x, f(y) = y. But then x = y contradicting the fact that

f(x) # x. o

Corollary 1.1.9. If X and Y are well ordered sets, then there is at most one isomor-
phism [ : X =Y.

Proof. If f,g : X — Y are isomorphisms, then by the preceding result, g~! o f =
idy. Hence f = g. O
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Theorem 1.1.10. If X and Y are well ordered sets, then exactly one of the following
holds:

(a) X isisomorphictoY,
(b) X is isomorphic to a proper segment of Y,

(c) Y is isomorphic to a proper segment of X.

Proof. We first argue that one of (a), (b) or (c) holds. We consider the set of pairs
(S,T) where S and T are segments of X and Y respectively and where S is iso-
morphic to 7. Given two such pairs (S, T), (S’, T’), we write (S,T) < (S’,T’) if
S € S’and T C T'. Note that the isomorphisms (necessarily unique) f : S — T
and /' : S’ — T’ agree on S. For T and f'(S) are isomorphic segments of
Y with y = f/(f~1(»)) the isomorphism. By Theorem 1.1.8, f/(S) = T and
f'(f~Y(y)) = yfory e T. Sowith y = f(x) we get f'(x) = f(x)forx € S.

By taking unions, we see that any chain of such pairs (S, 7') has an upper bound
(note that (@, ) is such a pair and so by Zorn’s Lemma there is a maximal pair (S, T')).
If S # Xand T # Y, let xo be the least element of X notin S and let yo be the least
element of Y notin 7. Then S’ = S U{xo}, T’ = T U{yo} are isomorphic segments
of X and Y respectively. Since (S,7T) < (S’,T"), this contradicts our choice of
(S.T).

It is not hard then to see by Theorem 1.1.8 that no two of (a), (b) and (c) can
simultaneously be true. O

If X and Y are well ordered sets, we write Ord X = OrdY if X and Y are iso-
morphic. We write Ord X < OrdY if X is isomorphic to a proper segment of YV
and Ord X > OrdY if Y is isomorphic to a proper segment of X. Then by Theorem
1.1.10 we see (without actually specifying what Ord X is) that {Ord X : X is a set}
is a totally ordered class. Any two finite well ordered sets X, Y with n elements are
isomorphic. So we write Ord X = n for such an X. If N is the set of natural numbers
with the usual order, we write Ord(N) = w. If « = Ord X and § = OrdY with X
and Y well ordered sets with X NY =@, weleta + f = Ord(X UY) where X UY
is ordered so that x < y forall x € X, y € Y and such that the induced orders on X
and Y are the original orders. We note that X U Y is well ordered with this order.

An ordinal number o« > 0 with o« = Ord X is said to be a limit ordinal if X has no
largest element. By the definition of addition of ordinals above, we see that @ > 0 is
a limit ordinal if and only if @ # B + 1 for any ordinal B.

Theorem 1.1.11. The class {Ord X : X is a set} is well ordered.

Proof. The statement means that any nonempty set of ordinals has a least element. So
it suffices to argue that if (X;);es is a nonempty family of well ordered sets, then for
some j € [, X; is isomorphic to a segment of each X;, i € /. Suppose this is not
the case. Let ip € I. Then by Theorem 1.1.10 we see that there is an i; € [ so that
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Xj, is isomorphic to a proper segment S of Xj,. Then repeating the argument with
i1 replacing ip we see that there is an i» € [ with X;, isomorphic to a proper segment
of X;,. But this implies X;, is isomorphic with a segment S, of X;, with S, & Sj.
Repeating the argument we see that we can find segments S; 2 S2 2 S3 2 54 2 -
of Xj,. But this is impossible. O

Definition 1.1.12. If X and Y are sets, we say that X and Y have the same cardinality
if there is a bijection f : X — Y, and we write Card X = Card Y. We say Card X <
Card Y if there is an injection f : X — Y.

Theorem 1.1.13. If X and Y are sets, then either Card X < CardY or CardY <
Card X.

Proof. We consider subsets S C X x Y with the property that if (x, y), (x’,y") € S
and (x, y) # (x’,y’) then x # x’, y # y’. Among such subsets one can clearly pick
a maximal one, say 7', by Zorn’s Lemma. We claim that 7 is the graph of a function
from X to Y or 7’ = {(y,x) : (x,y) € T} is the graph of a function from ¥ to X.
For if neither holds, then for some x¢ € X, (xo,y) ¢ T for any y € Y and for some
yo €Y, (x,y0) ¢ T forany x € X. Then we note that 7 U {(xo, yo)} 2 T and
has the property above, contradicting the maximality of 7'. Hence either 7 is a graph
of a function from X to Y so that there is an injection X — Y or T” is a graph of a
function from Y to X and so there is an injection ¥ — X. m|

Theorem 1.1.14 (Cantor, Schroder, Bernstein). Let X and Y be sets. If Card X <
CardY and CardY < Card X, then Card X = CardY .

Proof. Let f : X — Y and g : ¥ — X be injections and let h = gf, R =
X —g(Y),and A = RUAI(R)Uh?>(R)U--- sothat h(4) C A C X. Hence if
we let A" = f(A), then g(A’) = h(A) C A. Nowlet B=X —A, B ' =Y — A'.
ThenANB=0,AANB' =0, AUB =X,AUB =Y,and Card A = Card 4’.
So if Card B = Card B’, then Card X = Card(4 U B) = CardA4 + Card B =
Card A’ + Card B’ = Card(A’ U B’) = Card Y and so we are done. Thus it suffices
to show that Card B = Card B’. But then we only need to argue that g(B") = B.
Soletx € B. Then x ¢ A andso x ¢ R since R C A. Hence x € g(Y) and so
x = g(y)forsome y € Y. If y € A, then g(y) = x € A, a contradiction. So
y € B’ and thus x € g(B’). Hence B C g(B’). To show g(B’) C B welety € B’
and argue g(y) € B. Suppose g(y) € A. Then g(y) ¢ R since R = X — g(Y¥) and
so g(y) € h™(R) for somen > 1. Let g(y) = h"(z) for some z € R C A. Then
g(y) = h("1(2)) = g(f(W"71(2))). Soy = f(H"7!(2)). But h""!(z) € A.
Hence y € A’, a contradiction since y € B’. So g(y) € B and we are done. m|

Theorem 1.1.15. The class {Card X : X a set} is well ordered.
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Proof. We need to argue that if (X;);es is any nonempty family of sets then there is
anig € [ such thatforeachi € I thereis aninjection X;, — X;. We consider subsets
S C [lies Xi with the property thatif (x;)ier, (yi)ier € S andif (x;)ier # (Vi)ier
then x; # y; for all i € I. Partially ordering these S by inclusion we see that an
application of Zorn’s Lemma gives a maximal such S. If ; (S) # X; foreachi € I,
then choosing y; € Xj, y;i ¢ mi(S) for each i, we see that the set S U {(y;)ier}
contradicts the maximality of S. Hence for some ig € I, 7;,(S) = Xj,. Then given
X € Xj, there is a unique (x;);es € S with x;, = x. Hence for i € I we can define a
function X;, — X; which, with this notation, maps x to x;. By the property imposed
on §, this function is an injection. O

As usual, we use the symbols 0, 1,2,3, ..., n,... todenote the finite cardinals. The
infinite cardinals are written ¥, where « is an ordinal number. So R is the smallest
infinite cardinal. Hence 8¢9 = Card N. Then for any 8, Ny +1 is the least cardinal
number larger than Ry If B is a limit ordinal, R is the least cardinal number greater
that Ry, for all ordinals & < .

Definition 1.1.16. Given cardinal numbers m; and m, with m; = Card X1, m, =
Card X,, we define mm, to be Card(X; x X3) and define m1 4+ m5 to be Card(X; U
Xp)if X1 N X, = 0.

We see that n + Rg = R for any finite n > 0. Also, the usual arguments show that
Ro + Rop = Rg,n-Rg = Rp if n > 1 and that Ry - Rg = Ry (that is, N2 = Ro).

Proposition 1.1.17. For any infinite cardinal R, Ré = Ry.

Proof. Clearly R, < R2 since there is an injection X — X x X for any set X. So if
N2 = R, fails then X2 > Ry. So assume X2 > R, for some o. We can then assume
R, is the least infinite cardinal with &é > Ry. Let 8, = Card X for some set X. By
Proposition 1.1.7, X can be well ordered. We consider the set of segments S C X
such that Card S = R, (for example, S = X). Since the segments are well ordered
by inclusion, there is a least such S. So we can suppose that S = X. This then means
that for every proper segment 7" of X, Card T < Card X. Hence by our assumption
on R, = Card X, Card T2 = Card T for every infinite proper segment T'.

We now order X x X so that (x1,y1) < (x2,y2) if sup{x1, y1} < sup{xz, y2},
so that (x1, y1) < (x2,y2) if sup{x1, y1} = sup{xz, y2} and if x; < x5, and so that
(x1,y1) =< (x2,y2) if sup{x1, y1} = sup{x2, y2} and x; = x2 and y; < y. Then it
is easy to see that Y = X x X is well ordered. Now we apply Theorem 1.1.10. If ¥ is
isomorphic to a segment of X (possibly X itself) then &ﬁ =CardY < Card X = R,
contradicting our choice of Xy. So suppose X is isomorphic to a proper segment U
of Y = X x X. Then there is a z € X so that (x,y) < (z,z) forall (x,y) € U.
Let T be the segment of X determined by z, thatis T = {x : x € X, x < z}. Then
noting that T is infinite and that Card T < Card X we have Card T2 = Card 7. But
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UCTxT.SoCardU < CardT. Butthen Card X = CardU < CardT < Card X.
This gives a contradiction and so proves the proposition. m|

Proposition 1.1.18 (The principle of transfinite induction). If 8 > 0 is an ordinal, let
X ={a : a is an ordinal number,o0 < B}. Let S C X. If(1)0€ S, 2)a+1<p
and o € S impliesa + 1 € S, and (3) y < B is a limit ordinal and a € S for all
o <y impliesy € S, then S = X.

Proof. If S # X, let y be the least ordinal y < 8 which is notin S. By (1), y > 0.
If y is not a limit ordinal then y = o + 1. Butthena € S andsoa +1 =y € S by
(2). If y is a limit ordinal we get y € S by (3) and so we get a contradiction in both
cases. Hence S = X. i

When 8 = w, we have X = N and we get the usual induction ((3) does not apply).

If we are given a statement P, for each @ < B and we let S be those « for which
Py is true. Then to argue all P, are true we only need check (1), (2) and (3) for S.
For example, if we can argue P, implies Py for o + 1 < B, then we get (2) for S.

There is an analogous principle of transfinite construction. This principle says, for
example, that in order to construct a set M,, for all @ < B, it suffices to give My, to
show how to get My 1 from My when @ + 1 < B, and how to get M, from all the
My, o <y when y < B is a limit ordinal.

Exercises

1. Argue thatif f : Y — Z is a surjective function, then Card Z < Card Y.

2. If X is an infinite set, argue that X admits a partition & into countable subsets
S C X. (Thatis, (1)if S € P then S C X and CardS = Ry, 2)if S, T € P
thenS =T orSNT =0,3)X = Ugep ).

Hint: Use Zorn’s Lemma on sets & satisfying (1) and (2). If # is a maximal such
set, argue that X — (g is finite.

3. If Ry and Ry are infinite cardinals, argue that Ry + Rg = R, - Rg = R, where
y = sup(a, B).

4.(a) Let X be an infinite set and let X! = X, X2 = X x X and in general

X"l = X" x X forn > 1. Let Y = (32, X". Argue that CardY <
Rp - Card X = Card X and so deduce that Card Y = Card X.

(b) Use (a) and Problem 1 to argue that if # (X)) is the set of finite subsets of X,
then Card ¥ (X) = Card X.

5.(a) Let X be any set and let (X)) be the set of all subsets of X. Argue that there
is no surjection o : X — &£ (X) by arguing that for any function o : X —
P(X)thesetY ={x:x e X,x ¢ o(x)}isnoto(y) forany y € X.

(b) Deduce that Card X < Card & (X) for any set X.



Section 1.1 Zorn’s Lemma, Ordinal and Cardinal Numbers 7

6. If (m;i);es is any family of cardinal numbers, define ) ;; m; and [[;c; m;
to be the cardinality of | J;c; X; and [[;,c; X; where the X; are sets such that
Card X; = m, foreachi € [ and where X; N X; =@ ifi # j. Nowlet ] = N
and suppose 0 < mg < my < myp < ---. Argue that Y ;2o m; < [[2o mi.
Hint: With the notation above, argue that there is no surjection | Jio, X; —
[172, Xi as follows: Let f : (72, Xi — [72, Xi be a function. Let xg € Xo
be any element. Since m;, < my;41, the function x +— m,41(f(x)) from X,
to Xp+1 is not surjective and so let x,4+1 € Xy41,Xn+1 € Tnt+1(f(Xy)) for
n > 0. Then argue that (x,),>0 is not in the image of f.

7.(a) Noting that > ;2 o R, < 8o - Ry, argue that Y 7o o R, = Ry,.
(b) Argue that [[;2 8y < R0
(c) Use (a), (b) and Problem 6 to deduce that X, < &20.

Note. If m, n are any cardinal numbers and if Card X = m, CardY = n, then
m" is defined to be Card XY .

8.(a) Let ¢ and B be ordinals and let X and Y be well ordered sets such that
OrdX = o and OrdY = B. Suppose that f : X — Y is an injective
function which preserves order. Argue that @ < f and that « = B if and only
if f is a bijection.

(b) If « and B are ordinal numbers, show that 8 < o 4+ 8 and that 8 = o + B if
and only if @« = 0.

9.(a) Let X be any well ordered set and (cx)xex be a family of ordinals indexed
by X. For each x € X, let Y, be a well ordered set such that Ord Y, = oy
and such that Y, N Yy = @if x # x". Order Y = (J,cx Yx sothatif y € Yy
and y’ € Y,» where x < x’ then y < y’ and so that if y, y’ € Yy (for some x)
then y < y’ if and only if this holds in the original order on Y. Argue that Y
is well ordered with this order.

(b) With this Y, Ord Y is denoted ), oy otx. Show that for each ¥ € X, oz <
erX Ux.

10. Use the following steps to give another proof of Proposition 1.1.17.

Let X be an infinite set. We want to prove that there is a bijection X — X x X.
If S C X is a countable subset then there is a bijection 0 : § — § x S. Using
Zorn’s Lemma find a maximal pair (7, t) where 7 C X is an infinite subset and
where 7 : T — T x T is a bijection. If Card(7") = Card(X) deduce that there is
abijection X — X x X. If Card(T') < Card(X) argue that thereisa7’ C X —T
such that Card(T’) = Card(T). If T = T U T’ show that there is a bijection
T:T — T x T which agrees with t on T'. So contradict the choice of (T, 7).

Hint: Using T find an appropriate partition of T x T.
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1.2 Modules

Throughout this book, R will denote an associative ring with 1.

We will assume that the reader is familiar with modules and their elementary prop-
erties. By an R-module M, we shall mean a unitary left R-module, that is, an Abelian
group M withamap R x M — M, denoted (r, x) — rx, such that forall x, y € M,
r,s € R

r(x+y)=rx+ry
(r+s)x =rx +sx
(rs)x =r(sx)

lx =x wherel € R.

If (rs)x = r(sx) is replaced by (sr)x = r(sx), then M is said to be a right R-
module and we denote the image of (r, x) by xr and so (sr)x = r(sx) becomes
(sr)x = (xs)r.

Also recall that if R and S are rings, then an Abelian group M is said to be an
(R, S)-bimodule, denoted g Mg, if M is a left R-module and right S-module and the
structures are compatible, that is, (rx)s = r(xs) forallr € R,s € S, x € M. In
particular, any ring R is naturally an (R, R)-bimodule.

Definition 1.2.1. Let M, N be R-modules. Then amap f : M — N is said to an
R-module homomorphism if

M fx+y)=fx)+ f»)
(2) flrx)=rf(x)
forallx,y e M,r € R.

Note that if R is a field, then an R-module homomorphism is a linear transformation
of vector spaces.

Definition 1.2.2. Let M be a R-module, and M’ be a subset of M. If M’ is an
R-module, then we say that M is an R-submodule of M .

Let M’ be a submodule of M, then M/M’' = {x + M’ : x € M} is also an R-
module and is called quotient module. Note that in this case, scalar multiplication is
defined by r(x + M') =rx + M'forr € R,x € M.

Now let f : M — N be an R-module homomorphism. Then the kernel of f
denoted Ker f, is defined by

Ker f ={xeM: f(x) =0}

Ker f is an R-submodule of M.
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The image of f, denoted Im f of f(M), is defined by

Imf ={f(x):xe M}.

Im f is an R-submodule of N. But then N/Im f is also an R-module. N/Im f is
called the cokernel of f and is denoted by Coker f.

Theorem 1.2.3. Let f : M — N be an R-homomorphism. Then M/ Ker f =~ Im f.
Proof. This is left to the reader. m|

Definition 1.2.4. Let (M;);cs be a family of modules. Then l_[ie 7 M; is the set of all
families (x;);ez of elements where x; € M; foreachi € I. Then [[;c; M; is clearly
amodule. It is called the direct product of the family (M;); 7. The submodule of this
product consisting of all (x;);es such that x; = 0 except for a finite number of i € /
is called the direct sum of the family and is denoted @@, .; M;. If M; = M for each
i then this product and direct sum are denoted M ! and M @),

If I is the set of natural numbers N, then the elements of the product are often
written as (xg, X1, X2, . ..) where x,, € M,, for each n.

The product and sum above are also denoted [[; M; and €); M;. So then their
elements are often written as (x;);7.

Definition 1.2.5. An R-module F is said to be free if it is a direct sum of copies of
R, or equivalently, if it has a basis. That is, if M = RY) for some index set /.

Proposition 1.2.6. Every R-module is a quotient of a free R-module.

Proof. Let M be an R-module and {x; : i € I} be a set of generators of M. Then
RY) is a free R-module. Define a map ¢ : RY) — M by ¢((ri)ies) = D ier TiXi.
Then ¢ is onto and so M =~ R / Ker ¢ by the theorem above. m|

Corollary 1.2.7. An R-module is finitely generated if and only if it is a quotient of
R" for some integer n > .

Definition 1.2.8. If M and N are R-modules, then by Hompg (M, N) we mean all the
R-homomorphisms from M to N. Clearly Homg (M, N) is an Abelian group under
addition.

Now suppose M is an R-module and N is an (R, S)-bimodule. Lets € S, f €
Hompg (M, N) and define fs : M — N by (fs)(x) = f(x)s. Then clearly f(s1 +
§2) = fs1+ fso, (f +g)s = fs+ gs, (fs)t = f(st),and f -1 = f forall f,
g € Homg(M, N), s1,52,5,¢t, 1 € S. That is, Homg(M, N) is a right S-module.
Similarly, if M is an (R, S)-bimodule and N is an R-module, then Homg (M, N) is
a left S-module where the map sf : M — N is defined by (sf)(x) = f(xs). In
particular, if g Mg and g N7 are modules, then Homg (M, N) is an (S, T')-bimodule.
Likewise, given modules s Mg, 7 Ng, then Homg (M, N) is a (T, S)-bimodule.
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Proposition 1.2.9. If M is an R-module, then the map ¢ : Homg(R,M) — M
defined by o(f) = f(1) is an R-isomorphism.

Proof. This is left to the reader. m|

Proposition 1.2.10. Let M be an R-module, (Nj)ieq be a family of R-modules, and
7j [y Ni = Nj foreach j be the projection map. Then the map

@: HomR<M, HN,-) — l_[HOHI(M, Ni)
1 1

defined by o(f) = (m; o f)1 is an isomorphism.

Proof. ¢ is clearly an R-homomorphism. Suppose (f;); € [[; Hom(M, N;). Then
fi is a map from M to N; for each i. So we can define amap f : M — [[ N; by
f(x) = (fi(x))r. f is clearly an R-homomorphism. Furthermore, 7; o f(x) =
i ((fi(x))r) = fj(x) forall x € M and so w; o f = f; for each j. Hence
o(f) = (o f)r = (fi)r. Thatis, ¢ is onto.

Now suppose ¢(f) = 0. Then (7j o f)(x) = 7;(f(x)) = 0 for each j and each
x € M. Butthen f(x) = Oforall x € M. Thatis, f = 0 and so ¢ is one-to-one. O

A similar proof gives the following.

Proposition 1.2.11. Let M be an R-module, (Nj)ieq be a family of R-modules, and
ej : Nj — @ N; be the jth embedding. Then the map

73 HomR(@Ni,M> — HHomR(N,-,M)
1 1

defined by o(f) = (f o e;) is an isomorphism.

Definition 1.2.12. If M, M’, N, N' are R-modulesand f : M' — M,g: N — N’
are R-homomorphisms, then define a map ¢ : Hom(M, N) — Hom(M’, N’) by
o(h) = ghf. @ is denoted by Hom( f, g). We have that Hom( f, g)(h1 + hz) =
Hom( f; g)(h1) + Hom( f, g)(h3), that is, Hom( f, g) is additive. Furthermore, in
the situation g Mg, RML’Q, RN, gN',if f : M’ — M is an (R, S)-homomorphism
and g : N — N’ is an R-homomorphism, then Hom( f, g) is an S-homomorphism
between the two left S-modules.

If M’ L M £> M" and N” % N £ N’ are homomorphisms, then it is easy to
see that Hom( f, g) o Hom( /', g’) = Hom(f' o f,g o g).

The maps Hom( f, idy ), Hom(idys, g) are denoted by Hom( f, N), Hom(M, g) re-
spectively. We note that if / : M’ — M is an R-homomorphism, then we have
a homomorphism of Abelian groups Hom( f, N) : Hom(M,N) — Hom(M’, N).
Similarly, for amap g : N — N’, we get a map Hom(M, g) : Hom(M,N) —
Hom(M, N').
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Definition 1.2.13. A sequence of R-modules and R-homomorphisms

01 3o 0—1
o> My > My > My—->M_ 1 > M5 — -

is said to be exact at M; if Imd; ;1 = Ker d;. The sequence is said to be exact if it is

. A .
exact at each M;. It is easy to see that a sequence 0 — A — B of R-modules is exact

if and only if f is one-to-one, and a sequence B % C - 0is exact if and only if g

is onto. An exact sequence of the form 0 — M’ I) M L M” = 0is said to be a
short exact sequence. In this case, Coker f = M/Im f =~ M".

Remark 1.2.14. Let M be an R-module. Then M is a quotient of a free R-module,
say Fy by Proposition 1.2.6. Then we have a short exact sequence

a
0= K — Fo 2 M —0 (1.1)

where M =~ Fy/K; from the above.
But K is a quotient of a free, say F;. Then we have an exact sequence

ad
0— Ky — Fy = Ky — 0. (1.2)

Now paste (1.1) and (1.2) to get

ad ad
0Ky — Fi 5 Fo =3 M — 0. (1.3)

Note that Imd; = K7 = Ker dy.
Now repeat to get an exact sequence

—>F2—>F1—>F0—>M—>0

where each Fj is a free R-module. This is called a free resolution of M .

Proposition 1.2.15. The following statements hold:

() If0 - N’ 1) N £ N”is an exact sequence of R-modules, then for each
R-module M the sequence

Hom(M, Hom(M,
0 — Hompg(M,N') O(—>f)H0mR(M,N) 0(—>g)H0m(M,N”)

is also exact.

Q) IfM’ 1> M 5 M" = 0is an exact sequence of R-modules, then for each

module R-module N the sequence

Hom(g,N Hom( f,N
0 = HomM". N) ""&™ Hom(m. N) "% Hom(m', V)

is exact.
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Proof. (1) Let 0 € Hom(M, N') be such that Hom(M, f)(oc) = 0. Then fo = 0
and so o = 0 since f is one-to-one. Hence Hom(M, f) is one-to-one.

We now show exactness at Hom(M, N). Leto € Hom(M, N'). Then Hom(M, g)o
Hom(M, f)(o) = gfo. Butif x € M, then f(o(x)) € Imf = Kerg. So
Hom(M, g) o Hom(M, f)(0) = gfo = 0. Thus

Im(Hom(M, f)) C Ker(Hom(M, g)).

Now let T € Ker(Hom(M, g)). Then Hom(M, g)(tr) = gt = 0. Solmt C Kerg =
Im f. Hence let o be the map from M to N’ defined by 0 = f~'t. Then o €
Hom(M, N') is such that Hom(M, f)(0) = fo = t. Thatis, T € Im(Hom(M, f)).
Thus we have exactness at Hom(M, N).

(2) Follows similarly. |

Proposition 1.2.16 (Snake Lemma). Suppose

YA VI VY 0
l o J{ . i o
f’ g’
0 N’ N N

is a commutative diagram (that is, f'o’ = of and g'c = 0"g) of R-modules with
exact rows. Then there is an exact sequence

o/

f d g
Kero’ = Kero — Kero” — Cokero’ — Cokero = Cokero”

Furthermore, if [ is one-to-one, then f is also one-to-one, and if g’ is onto, then g’
is onto. d is called a connecting homomorphism.

Proof. The proof for exactness is routine once we define the map d.

Let x” € Kero”. Choose x € M such that g(x) = x”. Then g’ o o(x) =
0" og(x)=0"(x")=0.Soo(x) € Kerg’ =1Im f’. Thus o(x) = f'(y’) for some
y" € N’. So define d : Kero” — Cokero’ by d(x”) = y’ + Imo’. Thend is a
well-defined homomorphism. O

Definition 1.2.17. An exact sequence 0 — M’ i) M % M” — 0 of R-modules is
said to be split exact, or we say the sequence splits, if Im f is a direct summand of M .

Proposition 1.2.18. Letr 0 — M’ 1) M 5 M" = 0 be an exact sequence of

R-modules. Then the following are equivalent:
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(1) The sequence is split exact.
(2) There exists an R-homomorphism ' : M — M’ such that f' o f = idpy.
(3) There exists an R-homomorphism g”" : M" — M such that g o g”" = idpg.

Proof. This is left to the reader. |

Exercises

1. Prove Theorem 1.2.3.
2. Prove Proposition 1.2.11.

3. Let M be an R-module and (N;);ey be a family of R-modules. Consider the
homomorphism of Abelian groups

@ @HomR(M, N;) — Hompg (M, ®N;)
iel
which maps (fi)ier to f where f(x) = (fi(x))ier
(a) Argue that ¢ is an isomorphism if / is finite or if M is finitely generated.
(b) Find an example where ¢ is not an isomorphism.
4. If N is an R-module and (M;);e1 is a family of R-modules define

@ @HomR(Mi, N) — HomR<l_[ M;, N)
iel i€l
where ¢(fi)ier = f with f((xi)ier) = X ;e fi(xi)
(a) Argue that ¢ is an isomorphism if / is finite.
(b) Find an example where ¢ is not an isomorphism.

5.(a) Let x € M where M is an R-module. For every R-module N consider the
homomorphism Homg (M, N) — N of Abelian groups that maps f to f(x).
Argue that this is an isomorphism for all N if and only if M is isomorphic to
R under an isomorphism that maps x to 1.

(b) Find an example of an M with two different elements x, y € M such that
each of the maps f +— f(x) and f — f(y) from Homg(M,N) to N are
isomorphisms for all N.

6. Prove the second part of Proposition 1.2.15.
7. Complete the proof of Proposition 1.2.16.

8. Prove that if M £> N and N % M are such that go f = idy, then N =
Im f & Kerg.

9. Prove Proposition 1.2.18.
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10. (a) Let (M;);es be a family of R-modules. Argue that €D, c; M; is finitely gen-
erated if and only if each M; is finitely generated and M; = 0 except for a
finite number of i € .

(b) Find an example of a ring R and a family (M;); ey of R-modules with M; # 0
for an infinite number of i € I such that [ [,.; M; is a finitely generated R-
module.

1.3 Tensor Products of Modules and Nakayama Lemma

Definition 1.3.1. Let M be a right R-module, N a left R-module, and G an Abelian
group. Then amap o0 : M x N — G is said to be balanced if it is additive in both
variables (biadditive), that is,

o(x+x'y)=0(x.y)+ o y),
o(x,y+y) =0y +oxy),
o(xr,y) =o(x,ry)

forall x,x" € M,y,y € N,r € R.
Note that the term bilinear is used when R is commutative and when we add the
condition o (x,ry) = ro(x, y) forall x, y, and r.

Definition 1.3.2. A balanced map o : M x N — G is said to be universal or we say
o solves the “universal mapping problem” for G if for every Abelian group G’ and
balanced map 6’ : M x N — G’, there exists a unique map /# : G — G’ such that
o' =ho.

Definition 1.3.3. A tensor product of a right R-module M and left R-module N is
an Abelian group T together with a universal balanced mapo : M x N — T.

Ifo:MxN —T,0": M x N — T’ are both universal balanced maps, then we
can complete the diagram

T
ey
g
MxN 2

\kajl
T

to a commutative diagram. But then fh = idy. Similarly, 2f = id7/ and thus /% is
an isomorphism. Thus tensor products are unique up to isomorphism. We will thus
speak of the tensor product of Mg and g N, and will denote itby M ® rN or simply
M®N.
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Theorem 1.3.4. The tensor product of Mg and g N exists.

Proof. Let F be the free Abelian group with base M x N, that is,

F= {Zmi(x,-,yi) mi € 7, (xi,vi) € M x N} ~ 7,(MxN)

1

Let S be the subgroup of F generated by elements of F of the form

(X+x/,y)—(x,y)—(x,’)’)v(xa)’+)’/)—(X’J’)—(X’y,)v(”x:)’)—(x:”)’)

where x, x’ € M, y,y' € N,r € R. Defineamapo : M x N — F/S by
o(x,y) = (x,y) + S. Then o is clearly balanced. Now let ¢’ : M x N — G’ be a
balanced map into an Abelian group G’. But F is free on M x N. So there is a unique
homomorphism /' : F — G’ that extends o”, that is, 4’(x, y) = ¢’ (x, y). But clearly
S C Ker/' since ¢’ is balanced. So we get a unique induced map i : F/S — G’
such that o’ = ho. Thus F/S = M ® gN. O

Remark 1.3.5. We see from the proof above that F/S is generated as an Abelian
group by cosets (x,y) + S. We denote (x,y) + Sby x ® y. So M ® gN is
generated as an Abelian group by the elements x ® y. Since —(x ® y) = (—x) ® y,
the elements of M ® gN are of the form ) x; ® y;. Furthermore, if x, x'eM,y,
y' € N,and r € R, then

E+XN®y=xy+x'®y,
x®Y+Y)=x®y+x®)y,
xr)®y =x® (ry).

Proposition 1.3.6. Mr ® R = M for every right R-module M, and R® gN = N
for every left R-module N.

Proof. The map M x R — M given by (x,r) + xr is balanced and so there is
a unique homomorphism & : M ® grR — M such that hi(x ® r) = xr. But i’ :
M — M ® grR givenby h/(x) = x ® 1 is a group homomorphism and hh’ = idyy.
Moreover, M ® RrR is generated by x ® 1, x € M and so easily 'h = idpyg 4R-
Thus M @ RR = M. O

Proposition 1.3.7. Let (M;)1 be a family of right R-modules and N a left R-module.

Then
(P M) e xN =Pt @ N).
1 1
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Proof. The map (P M;) x N — @;(M; ® N) givenby ((x;)1,y) — (x; ® y)r is
balanced and so we have a unique homomorphism 2 : (B; M;)® N — P;(M;QN)
such that 2((x;); ® ¥y) = (x; ® y)7. Similarly one gets a unique homomorphism
h @M ® N) — (B; Mi) ® N givenby h'((x; ® yi)r) = >y ei(xi) ® yi. It
is easy to see that i’ = h™1. O

We note that with the appropriate hypothesis there is an isomorphism
M k(P N) =D e N.
I

Proposition 1.3.8. Ler f : Mg — My and g : RN — RN’ be homomorphisms.
Then there is a unique homomorphism h : M ® RN — M’ ® rN’ such that

h(x®y) = f(x) ® g(y).

Proof. We consider the following commutative diagram

MxN —2> M® gN

s

7

M' x N —2~ M'® gN’

where o, 0’ are the universal balanced maps (x,y) — x ® y, (x’,y) —» x' ® y/,
respectively, and /' = o’/(f x g). But A’ is balanced. So there exists a unique
homomorphism% : M @ gN — M'® rN’suchthath(x ® y) = f(x)®g(y). O

Remark 1.3.9. The map /s : M ® RN — M’ ® gN’ in the proposition above is
denoted by f ® g. Now suppose f’ : My — Mp, g : RN' — RN" are R-
homomorphisms. Then we getamap /' ® g/ : M’ ® grN' — M"” ® grN" and it
is easy to see that (f' ® g') o (f ® g) = f'f ® g'g by evaluating the maps on a
generator x ® y € M ® N. We also note thatidyy @ idy : M N - M ® N is
clearly the identity on M ® N, andif f : M — M', g : N — N’ are isomorphisms,
then f ® g is an isomorphismand (f ® )™ ' = f~ 1@ g~ L.

Proposition 1.3.10. If N’ 1) N & N” = 0is an exact sequence of left R-modules,

idy ® idy ®
then for each right R-module M, the sequence M @ rN’ ' M—>f M ® rN usE

M ® rN" — 0is also exact.

Proof. Letx ® y” € M ® N”. Then thereisa y € N such that g(y) = y” and so
X®y € M ® N is such that (idyy ® g)(x ® y) = x ® y”. Thatis, M ® gN —
M ® grN" — 0is exact.



Section 1.3 Tensor Products of Modules and Nakayama Lemma 17

Clearly, Im(idys ® f) C Ker(idys ® g) since Im f C Kerg. ButIm(idys ® f) C
Ker(idps ® g) means that we have an induced commutative diagram

, idy ® f .
M ® rN M&N — = (M ®N)/Im(idy ® f) 0
idM@g\L ////
<z~ h
M®N//

If we can show that / is an isomorphism, then we would be done for then Ker(idys ®
g) C Im(idpys ® f). So we now define an inverse of 4. Defineamapo : M x N —
(M ®N)/Im(idy ® f) by o(x,y") = x®y +Im(idy ® f) where y” = g(y). o
is a well-defined balanced map. So there is a unique homomorphism 2’ : M @ N” —
(M ® N)/Im(idpys ®@ f) givenby ' (x ® ") = x ® y + Im(idpys ® f). Then one
easily checks that n’ = h~1. O

Now let / be a right ideal of R and M be an R-module. Then I M, the set of all
finite sums Z?:l rixi, ri € I,x; € M, is a subgroup of M. With this notation, we
have the following.

Corollary 1.3.11. Let I be a right ideal of R and M be a left R-module. Then
(R/1)® rM = M/IM.

Proof. We consider the exact sequence 0 - I — R — R/I — 0. But I ®

M 1) M — R/I ® M — 0 is exact by Propositions 1.3.6 and 1.3.10, and Im f =
{> ;rixi :ri € I,x; € M} = I M. Hence the result follows. O

Now suppose M is an (S, R)-bimodule and N is a left R-module. Then the tensor
product M ® g N is aleft S-module with s(x® y) = (sx)®y forallx e M,y € N,
s € S. If M is aright R-module and N is an (R, T')-bimodule, then M ® grN is a
right 7-module with (x ® y)t = x @ (yt) forallx e M,y e N,t € T. If M is an
(S, R)-bimodule and N is an (R, T')-bimodule, then M ® g N is an (S, T")-bimodule
with s(x ® y)t = (sx) ® (y1).

We finally note that the associativity property holds for tensor products. That is,
given Mg, rNs, s P, we have that (M @ gN)®s P = M ® r(N ®g P). One
begins by constructing a balanced map (M ® gRN) X P - M ® gr(N ®s P). Todo
this let z € P and note that the function M x N - M ® r(N ®s P) which maps
(x,y)tox ® (y ® z) is balanced and givesamap M @ gN - M ® r(N ®gs P)
mapping X ® y to x ® (y ® z). Using these maps (for all z € P), we get a map
(M ® RN)x P - M ® r(N ®g P) which maps (x ® y,2) to x ® (y ® z). This
map is balanced and so givesamap (M ® gN) Qs P > M ® r(N ®s P) which
maps (X®y)Rz to x®(y®z). Similarlyamap M@ r(N®sP) > (M gN)Qs P
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can be constructed which maps x ® (y ® z) to (x ® y) ® z. Clearly the two maps are
inverses of one another.

Definition 1.3.12. The intersection of all maximal left ideals of a ring R is called the
Jacobson radical of R and is denoted rad(R). An R-module M is said to be simple if
it is isomorphic to R /m for some maximal left ideal m of R, or equivalently, has no
submodules different from 0 and itself. Thus it is easy to see that rad(R) = {r € R :
rM = 0 for every simple left R-module M }. So rad(R) is a two-sided ideal of R.
Moreover, rad(R) consists precisely of elements r € R such that 1 — sr is invertible
for all s € R. For if r € rad(R), then r € m for each maximal left ideal mt of R and
sosr € m forall s € R. Butthen 1 —sr ¢ w for each maximal left ideal m and
every s € R. Hence 1 — sr is invertible for if not then the left-ideal R(1 — s7) would
be contained in some maximal left ideal of R. Conversely, if r ¢ rad(R), then r ¢ m
for some maximal left ideal m. But then Rr 4+ mt = R and so there is an s € R such
that 1 — sr € m. Thatis, 1 — sr is not invertible.

In particular, if € rad(R), then 1 — r is invertible.

Proposition 1.3.13 (Nakayama Lemma). Let M be an R-module and I be a sub-
group of the additive group of R such that either

(a) I is nilpotent (that is, I = 0 for some n > 1), or

(b) I Crad(R) and M is finitely generated. Then IM = M implies M = 0.
Proof. (a)is trivial for M = IM = [?M =-.- = 0.

(b) Suppose M # 0. Then let {x1,..., x,} be a minimal set of generators of M.

Sox; = Z?:l rix; for some r; € I since M = IM. But 1 — ry is invertible. Thus
X1 € Rxp + Rx3 + --- + Rx, which contradicts the minimality of {x1,...,x,}. O

Corollary 1.3.14. Let M be an R-module, N a submodule of M, and I a subgroup
of the additive group of R such that either

(a) I is nilpotent, or

(b) I C rad(R) and M is finitely generated. Then IM + N = M implies M = N.

Proof. We note that I[(M/N) = (IM + N)/N and so we apply Nakayama Lemma
to M/N. |

Proposition 1.3.15. If M is a nonzero finitely generated R-module and I C rad(R)
is a right ideal, then (R/1) ® rM # 0.

Proof. This easily follows from Nakayama Lemma and Corollary 1.3.11. m|
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Exercises

1. If I C R is atwo sided ideal of the ring R and if M is a right R/I-module, then
M is aright R-module withx -r = x - (r + 1) forx € M, r € R. Similarly any
left R/I-module N is a left R-module. In this situation argue that

M ® rN =M ®g/; N.

2. Let M be aright R-module and let x € M. For every left R-module N consider
the homomorphism ¢ : N — M ® gN of Abelian groups with ¢(y) = x ® y.
Argue that ¢ is an isomorphism for all N if and only if M is isomorphic to the
right R-module R under an isomorphism that maps x to 1.

3.(a) Let I C R be a left ideal. Consider the properties: (i) for every module M
and submodule S C M, IM + S = M implies S = M and (ii) for any
module M, IM = 0 implies M = 0. Argue that (i) and (ii) are equivalent.

(b) Let the left ideal / C R have properties (i) and (ii) above. Let F = R® R ®

- and let S C F be the submodule generated by x; = (1,—-r1,0,0,...),

x2 =(0,1,-r2,0,...),x3=1(0,0,1,—r3,0,...),.... Show that I(F/S) =

F/S and hence deduce that F/S = 0, thatis, S = F. S0 (1,0,0,0,...) € §

and thus (1,0,0,...) can be written as a sum syxy + --+ + S,X;, for some

n > 1and sq,82,...,5, € R. Now solve for s1, 52, ...,5, and deduce that
rirp---ry = 0.

1.4 Categories and Functors

Definition 1.4.1. A category C consists of the following:
(1) aclass of objects, denoted Ob(C),

(2) for any pair A, B € Ob(C), a set denoted Homg (A4, B) with the property that
Homg (A, B) N Homg(A’, B') = @ whenever (A, B) # (A’, B’). Homg(A, B)
is called the set of morphisms from A to B.
If f € Homg(A, B) we write f : A — B and say f is a morphism of C from
Ato B.

(3) a composition Homg(B, C) x Homg(A4, B) — Homg(A4, C) for all objects
A, B,C,denoted (g, /) — gf (or g o f), satisfying the following properties

(i) for each A € Ob(C), there is an identity morphism id4 € Homg(A4, A)
such that f oidg = idg o /' = f forall / € Hom(4, B).

(ii) h(gf) = (hg)f for all f € Homg(A, B),g € Homg(B,C) and h €
Homg(C, D).
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Examples include categories Sets, Ab, Top, and gMod whose objects are respec-
tively, sets, Abelian groups, topological spaces, and left R-modules, and morphisms
are functions, group homomorphisms, continuous maps, and R-homomorphisms, re-
spectively, with the usual compositions.

Now let Mor(C) denote the set of all morphisms of C. Then

Mor(C) = | J Hom(4.B)
A,Be0Ob(C)

If f : A — B isamorphism in C, then f is said to be an isomorphism if there is a
morphism g : B — A in C such that fg = idp and gf = id4. Clearly, g is unique
if it exists and is denoted by f~!. f is said to be a monomorphism (epimorphism) if
for every morphisms g, h : C — A, (g.h: B — C)inC, fg = fh(gf = hf)
implies g = h.

Definition 1.4.2. If C and C’ are categories, then C’ is said to be a subcategory of C
if

(1) Ob(C’) c Ob(C), Mor(C’) € Mor(C) and Homg/(A’, B’) = Homg(A’, B') N
Mor(C)

(2) For any A" € Ob(C’), the identity morphisms on A’ in C and C’ are the same,
and if /' € Homg/(A’, B), ¢’ € Homg/(B’, C’), then the map g’ o f” is the
same in C as in C.

Definition 1.4.3. A subcategory C’ of C is said to be a full subcategory if
Homg/ (A4, B) = Homg(A4, B) forall A, B € Ob(C’).

We note that for any category C and any subclass S of Ob(C), there is a unique full
subcategory C" of C with Ob(C’) = S. Ab and the category of compact spaces are
full subcategories of the category of groups Grp and Top, respectively.

Definition 1.4.4. If C and D are categories, then we say that we have a functor F :
C — D if we have

(1) a function Ob(C) — Ob(D) (denoted F)

(2) functions Homg (A, B) — Homp(F (A), F(B)) (also denoted F) such that
(i) if f € Homg(A4, B), g € Homg(B, C), then F(gf) = F(g)F(f), and
ii) F(idq) = idf(4) for each A € Ob(C).

A functor is sometimes called a covariant functor.

A function Ob(C) — Ob(D) is said to be functorial if it agrees with a functor from
C to D (usually in some obvious way).
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Example 1.4.5.

1.
2.

We have the identify functor idg : C — C.

Define F : Grp — Ab by F(G) = G/G' where G’ is the commutator sub-
group of G. Then it is easy to see that F' is a covariant functor.

. Let Top™ denote the category of topological spaces with a base point. Define

F : Top* — Grp by F(X) = m1(X), the fundamental group. Then continuous
maps get mapped to group homomorphisms and F satisfies the conditions of a
functor.

Let M be aleft R-module. Define F : gMod — Abby F(N) = Homg(M, N)
and for f € Hom(N’, N), define F(f) : Hom(M, N') — Hom(M, N) by
F(f)(h) = fh. Then F is a covariant functor. This functor is denoted by
Hompg (M, —).

Similarly, if M is aright R-module, we can define a function F : gMod — Ab
by F(N) = M ® gN and for f € Hom(N’, N), define F(f): M ® gN' —
M ® RN by F(f)(x®y") = x® f(y'). Then F is again a covariant functor.
This functor is denoted by M ® g—.

Definition 1.4.6. We say that we have a contravariant functor F : C — D if we have
(1) a function Ob(C) — Ob(D) (denoted F)
(2) functions Homg (A4, B) — Homp(F (B), F(A)) (also denoted F') such that

(i) if f € Homg(A, B), g € Homg(B,C), then F(gf) = F(f)F(g), and
ii) F(idq) = idF(4) for each A € Ob(C).

Example 1.4.7.

1.

Let M be an R-module. Define F' : gRMod — Ab by F(N) = Homg(N, M)
and for f/ € Hom(N', N), define F(f) : Hom(N,M) — Hom(N’', M)
by F(f)(h) = hf. Then F is a contravariant functor and is denoted by
Hom(—, M).

. Define a function F : Top — Ab by F(X) = H"(X, G), the nth cohomology

group of the topological space X with coefficients in G. Then F is a contravari-
ant functor.

. Let C be the category of finite dimensional Galois extensions of k. Then define

a function F : C — Grp by F(K) = §(K/k), the Galois group of K over k.
Then F is a contravariant functor.

Definition 1.4.8. If C and D are categories, the product C x D of C and D is the cate-
gory whose class of objects is Ob(C) x Ob(D) and where Homgxp((A4, D), (B, E)) =
Homg¢ (A, B) x Homp(D, E) with (g,k) o (f,h) = (go f.k oh) where f : A — B
andg: B —>CareinCandh:D — Eandk : E — F areinD.



22 Chapter 1 Basic Concepts

Definition 1.4.9. If C is any category, we define C° (the category opposite C) to be
the category such that Ob(C?) = Ob(C), and Homgo (B, A) = Homg(A, B) where
forg:C — B, f : B— AinC° f o g is defined to be the morphism g o f of
C. So then a contravariant functor 7 : C — D is simply a functor 7 : C® — Dora
functor T : C — DO.

Definition 1.4.10. A functor of the form F : C x D — E is called a funcror of two
variables. A functor F : C®xD — E is said to be a functor C x D — E which is con-
travariant in the first and covariant in the second variable. For example, Hom(—, —) :
rMod x gMod — Ab is a functor of two variables which is contravariant in the first
and covariant in the second variable. The functor — ® r— : Modg x gMod — Ab
is covariant in both variables where Mod g denotes the category of right R-modules.

Definition 1.4.11. If F, G : C — D are functors, then by a natural transformation
from F to G we mean a function ¢ : Ob(C) — Mor(D) with o (A4) : F(A) — G(A)
such that for any f € Mor(C) there is a commutative diagram

o(A)
F(A) —— G(A)
l F(f) J{ G(f)
F(B) — > G(B)
o(B)

thatis, 6 (B)F(f) = G(f)o(A).

We denote the natural transformation o by o : F — G.

Suppose F,G,H : C — D are functorsand o : F — G, t : G — H are natural
transformations. Then we can form the composition diagrams to get the following
commutative diagram

a(A) (A)
F(A) G(A) H(A)
l F(f) i G(f) l H(f)
o(B) 7(B)

F(B) —> G(B) — H(B)

for any morphism f : A — B in C.

We can also form a category of functors from C to D, denoted DC, where objects
are functors and morphisms are natural transformations ¢ : ¥ — G. Two functors
F., G in this category are said to be isomorphic if there are natural transformations
0 : F —- G,7:G — F suchthat t o0 = idr (identity transformation) and
0 ot = idg. Itis easy to show that ' and G are isomorphic if and only if for each
A € Ob(C), g (A) is an isomorphism in D.
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Definition 1.4.12. A category C is said to be additive if Homg(A, B) is an Abelian
group such that if f, f1, f> € Homg(A4, B), g, g1, &> € Homg(B, C) then

gfi+ fo)=gfi+gfrand (g1 +g2)f =g1f +g2f.

We note that if C is an additive category, then Homg (A, B) # @ since the zero
morphism is always in Homg (A4, B). This is denoted 04 p or simply 0. Easily, gMod
is an additive category.

Definition 1.4.13. If C, D are additive categories, then a functor F : C — D is said
to be additive if for all f, g € Homg (A4, B), F(f + g) = F(f) + F(g).

We note that the composition of additive functors is also additive. Furthermore, if
F is additive, then F(048) = Of(4)F(B) and F(—f) = —F(f). For example, let
M be an (R, S)-bimodule. Then Homg(M,—) : gMod — sMod is an additive
covariant functor while Homg(—, M) : RMod — Mody is an additive contravariant
functor. Similarly — ® rM and M ® g — are additive covariant functors.

Definition 1.4.14. By a product of a family (A;);e; where A; € Ob(C) we mean an
object A of C together with morphisms 7; : A — A; such that for each B € Ob(C)
and morphisms f; : B — A; there is a unique morphism f : B — A such that
mio f = fiforalli € I. Aisunique up to isomorphism and is denoted by [ [;<; 4;.

Dually, a coproduct of a family (A;);es of objects in C is an object 4 in C together
with morphisms ¢; : A; — A such that for each B € Ob(C) and morphisms f; :
A; — B, there exists a unique morphism f : A — B such that f oe; = f; for all
i € I. Again a coproduct is unique up to isomorphism and is denoted by | ] 4;. If
the category C is additive, then the coproduct is called a direct sum and is denoted

®D; Ai.

Definition 1.4.15. Let f : A — B be a morphism in C. Then a kernel of f, denoted
ker f,is a morphism k : K — A such that fk = 0 and for each morphism g : C —
A with fg = 0, there exists a unique morphism 4 : C — K such that g = kh. K is
denoted by Ker f. It is easy to see that ker /" is a unique monomorphism and that a
morphism f is a monomorphism if and only if Ker f = 0.

Dually, a cokernel of f, denoted coker f, is a morphism p : B — C such that
pf = 0 and for each morphism g : B — D with gf = 0, there exists a unique
morphism & : C — D such that hip = g. C is denoted Coker f. coker f is a unique
epimorphism and a morphism f is an epimorphism if and only if Coker f = 0.

Suppose that in an additive category C all morphisms have kernels and cokernels.

k k
Then a morphism f : A — B gives rise to Ker f ij; L B Cgf Coker f.

Then since f o ker f = 0 we get a decomposition A — Coker (ker f) — B
of f. Since coker f o f = 0 and A — Coker(ker /) is an epimorphism we get
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that Coker(ker f) — B — Coker f is 0. So then Coker(ker f) — B factors
as Coker(ker f) — Ker(coker f) — B giving us a morphism Coker(ker /) —
Ker(coker f).

Definition 1.4.16. An additive category C is said to be an Abelian category if it sat-
isfies the following conditions

(1) C has products (and coproducts),
(2) every morphism in C has a kernel and a cokernel, and

(3) for every morphism f : A — B, the map Coker(ker f) — Ker(coker f) as
above is an isomorphism.

Examples of Abelian categories include gMod and Modg.

Definition 1.4.17. If C and D are Abelian categories, then a functor F : C — D is
said to be left exact if for every short exact sequence 0 - A —- B — C — 0O in
C the sequence 0 — F(A) — F(B) — F(C) is exact in D. F is said to be right
exact if F(A) — F(B) — F(C) — 0is exact. If F is contravariant, then it is left
exactif 0 - F(C) — F(B) — F(A) is exact and right exact if F(C) — F(B) —
F(A) — 0Ois exact. F is said to be an exact functor if it is both left and right exact.

It follows from Proposition 1.2.15 that functors Hom(M, —) and Hom(—, N) are
left exact and from Proposition 1.3.10 that tensor product functors are right exact. As
an application, we have the following result.

Theorem 1.4.18. Let R be a commutative ring and T : gMod — Ab be a contravari-
ant left exact functor which converts sums to products. Then for some R-module D,
T(M) =~ Homg(M, D), that is, T is isomorphic to Homg(—, D).

Proof. Let D = T(R). Then D can be viewed as an R-module. For if M is an R-
module, then for each x € M, the map fx : R — M defined by fx(r) = rx is an R-
homomorphism. But 7 is contravariant. So we have an R-homomorphism 7'( fy) €
Hom(T' (M), T(R)). But then we have a well-defined map o : R x T(R) — T(R)
given by o (r, x) = T(fy)(x). o gives T(R) an R-module structure where we denote
o(r,x) by rx noting that T (/)T (fs) = T(frs) forall r, s € R since frs = fs fr
and T is contravariant and so (rs)x = o(rs,x) = T(frs)(x) = T(f)T(fs)(x) =
r(sx).

We now define amap g,, : T(M) — Hom(M, T(R)) by g,,(x)(a) = T(fa)(x).
Then g,, is a natural transformation and g, is an isomorphism on 7'(R). But 7" and
Hom(—, T'(R)) convert sums to products. So g,, is an isomorphism for a free R-
module M. Now let M be an R-module and consider the presentation F; — Fy —
M — 0 of M where Fy, F; are free. Since T and Hom(—, D) are both left exact we
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have the following commutative diagram

0 —T(M) T (Fo) T(F1)

- i £ry l £, i

0 —— Hom(M, D) —— Hom(Fy, D) —— Hom(Fy, D)

with exact rows. But the last two vertical maps are isomorphisms by the above. So
g, 15 also an isomorphism and we are done. O

Definition 1.4.19. Let C be an Abelian category. Then a pushout of the diagram

S
A—— B
d
C

in C is an object D together with morphisms 2 : B — D and k : C — D such that
kg = hf andif

S
A—— B

gi g/i
f/
C —= D'

is any commutative diagram in C, then there is a unique morphism D — D’ such that
the diagram

f
A— B
k
C ——= D
5 \
1S commutative.
The diagram
f
A—— B
S
k
C ——= D

in the above is called a pushout diagram.



26 Chapter 1 Basic Concepts

Dually, a pullback diagram is a commutative diagram

O <—

h
R
S
4
—

>
v<— v

such that if

~

k/

A<=——n

1%
R
S
g
——

v<~— "

is any commutative diagram in C, then there is a unique morphism o : P’ — P such
that ho = b’ and ko = k’.

In this case P with morphisms £, k is called a pullback of morphisms f : A — C
andg: B — C.

It is now easy to see that pullbacks and pushouts are unique up to isomorphism.

Example 1.4.20.

1. In the above, if we set D = (C & B)/K where K = {(g(a),—f(a)) : a € A},
and let 1(b) = (0,b) + K, k(c) = (c,0) + K, then D with morphisms £, k is
a pushout.

2. If weset P = {(b,a) € B® A : g(b) = f(a)} and let h and k be projection
morphisms, then P with morphisms 4, k is a pullback.

Exercises

1.(a) Let C and D be categories. Argue that there is a category whose objects are the
functors F : C — D and whose morphisms are the natural transformations
o0 : F — G (where F,G : C — D are functors).

(b) If the category D has products, argue that the category described in a) does
too.

2.(a) Let C be the category of commutative rings. Argue that C admits finite sums
(for commutative rings R and S argue that R ®7 S can be made into a com-
mutative ring. Then consider the functions r > r ® 1 and s > 1 ® s from R
and Sto R®z S).
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(b) If R and S are subrings of Q, argue that R ®z S is isomorphic to a subring
of Q.

(c) Find a sequence of commutative rings Rg, R1, Rz, ... no two of which are
isomorphic such that Q is a sum of Ry, Ry, R, ... in C.

3. Let C be a category and consider the category of functors C — Sets. Argue
that any natural transformation Homg (X, —) — Homg (Y, —) is given by a mor-
phism ¥ — X of C. Deduce that Homg (X, —) and Homg (Y, —) are isomorphic
functors if and only if X and Y are isomorphic objects of C.

4.(a) Foraring R and any R-modules M and N, define a relation on Homg (M, N)
so that f and g are related if and only if f — g : M — N can be factored
through a free R-module F, that is, f — g can be written as a composition
M — F — N. Check that this is an equivalence relation on Homg (M, N).
For f € Homg(M, N), let [ /] be the equivalence class of f. For f : M —
N and g : N — P, check that the definition of [g] o [ f] as [g o f] is well-
defined.

(b) Argue that there is an additive category C whose objects are the R-modules
M and whose morphisms are the [ /] : M — N where f € Homg(M, N).

(c) Argue that in C of (b), M and M & F are isomorphic objects when F is a
free R-module.

5. Verify Example 1.4.20.

6. Prove that in the pullback and pushout diagrams in Example 1.4.20, if f is one-
to-one (onto), then so is k.

7. Let C be an Abelian category. Argue that

0

P——0
g
B——C

is a pullback diagram if and only if P = Ker g. Now state and prove a dual result
and conclude that cokernels are pushouts.

1.5 Complexes of Modules and Homology
Definition 1.5.1. By a (chain) complex C of R-modules we mean a sequence

02 01 do 01
C:.-->Cr,>Ci—>Cy—>Cy > C_p—---

of R-modules and R-homomorphisms such that d,—1 0 d, = Oforalln € Z. Cis
denoted by ((Cp), (0,)). If F is a covariant additive functor into some category of
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F( F( F(
modules, then F(C) : - — F(Cy) 2 Feey) 8 Fco) "8 Fiey) — -

is also a complex. Similarly if F is a contravariant additive functor, then the sequence

F(d0) F(d1) . .
F(C):---— F(C-1) — F(Cy) — F(Cy)— --- isalso achain complex.

Let C' = ((C,), (9,)) be another complex of R-modules. Then by a map (or chain
map) £ : C — C’ we mean a sequence of maps f, : C, — C,, such that the diagram

On
Cr — G

l fn l fnfl
a/

C/ Hﬂ C/
n n—1

is commutative for each n € Z. f is denoted by ( f5).

We note that if g = (gn) : C — C’ is another map, then (f, + g») : C — C’
isamap. If h : C" — C” is another map of complexes, then we can define a map
hf : C — C” by hf = (h, f,). So we obviously get a category, the category of
complexes of R-modules which is denoted by Comp. It is not hard to see that Comp
is an Abelian category.

Definition 1.5.2. If C = ((Cp), (9,)) is a complex, then Im 9,41 C Ker d,,. The nth
homology module of C is defined to be Ker d,,/ Im d,,+1 and is denoted by H,,(C). So
H,(C) = 0 if and only if C is exact at C,,. Ker d,, Im d,,4+1 are usually denoted by
Z,(C), B,(C) and their elements are called n-cycles, n-boundaries respectively.

0! a°
Definition 1.5.3. A chain complex of the fomC:--- - C2 - C™! —» C% >

1

c! a—> C? — ... is called a cochain complex. In this case, 3" 0 9"~ = 0 foralln €
7. Ker 8", Im 0"~ ! are denoted by Z"(C) and B"(C) respectively and their elements
are called n-cocycles, n-coboundaries, respectively. Ker 8" /Imd"~1 is called the
nth cohomology module and is denoted by H"(C). We note that a cochain complex
is simply a chain complex with C? replaced by C_; and ' by d_;. Consequently, we
will only consider chain complexes in this section.

Now suppose f : C — C’ is a chain map. Then we have a commutative diagram

8n«l»l an
Cht1 —= Cp — Gy

i fn+1 \L Jn l Jn—1
9 5

If x € Ker dy, then 9}, (f»(x)) = fu—1(9,(x)) = 0and so f,(x) € Kerd,. Hence we
get an induced map Ker d,, — Ker 9,. Furthermore, suppose x € Im d,41. Then x =
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In+1(3): ¥ € Cpt1. S0 0y 4y (fat1(0)) = fa@nt1(y)) = fu(x). Thatis, fo(x) €
Imd;,, ;. So we consider the composition Ker d, — Kerd, — Kerd;,/Imd, ,, =

H,(C'). This composition maps Im d,+1 onto zero by the above. So we get an
induced map

H,(C) = Kerd,/Imdy41 — Kerd),/Imd, ,; = Hn(C)

given by x 4+ Im dp41 = f,(x) +Im 0, ;. This map is denoted by H, (f).

We note that if g : C' — C” is another chain map, then H,(g) : H,(C) —
H,(C") maps x’ +1Imd),__, onto g, (x’) +Imd), . Hence H,(g) Hn(f) = Hy(gf).
Also easily Hy(idc) = idg, (c) and if f1,f, : C — C’ are chain maps, then H,(f; +
f>) = H,(f1) + H, (f2). Thus we have the following result.

Theorem 1.5.4. H, : Comp — rMod defined by H,(C) = Ker d,,/Im 9,41 is an
additive covariant functor for each n € Z.

Definition 1.5.5. A complex C’' = ((C,), (9},)) is said to be a subcomplex of a com-
plex C = ((Cp). (9n)) if C, C C, and 0, agrees with ), on C,, (so necessarily
0n(Cy) C C,_;). In this case, we can form a complex ((Cn/C,), (0,)) where
O : Cu/Cyy — Cy—1/C,_, is the induced map given by 9, (x+C,) = 9,(x)+C, _;.
This complex is called the quotient complex and is denoted by C/C’.

Definition 1.5.6. If f : C' — C, g : C — C” are chain maps, then we say that

f g . . Sn g .
C' — C > (" is an exact sequence if C}, =5 C, => C} is exact for each n € Z.

o o .
Now let C = -+ — Cp4q gy C, — Cy,—1 — -+ be a chain complex. Then

Z(C) = -+ —> Kerdy41 Y Ker d, 5 Kerd,—; — --- is a subcomplex of C.

0 0
Similarly, we have a complex B(C) = --- - Imdy4+1 — Imd, —> Imady—y — ---.
Soif 0 - C' — C — C” — 0 is an exact sequence of complexes, then we have a
commutative diagram

0 —=Cyp1 — Gun G 0
A1’ J/ n+1 l Bnt1” i
0 C, Cn cy 0

with exact rows which by the Snake Lemma (Proposition 1.2.16) gives an exact se-
quence 0 > Z,4+1(C') = Zp4+1(C) = Zp4+1(C") — C, /B, (C) — Cp/Bn(C) —
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C)'/B,(C") — 0 for each n € Z. So we have a commutative diagram

0 —=Cpy Cnt1 Clyp —>0

N

0 ——= Z,u(C') ——= Zu(C) — Z,(C")

with exact rows and an induced commutative diagram

Cpi1/Bn+1(C") — Cpy1/But+1(C) — C,/ 1 /Bp+1(C") — 0

%1 i Int1 J{ it i

0 Zy(C) Zn(C) Zn(C")

with exact rows. We now apply the Snake Lemma again to get an exact sequence

= Zp41(C")/Bn11(C') = Zn1+1(C)/Byu11(C) = Zn1+1(C")/Bp+1(C")
— Zn(C/)/Bn(C’) — Z,(C)/B,(C) — Zn(C”)/Bn(C”) — e

So we have proved the following result.

Theorem 1.5.7. If0 — C' — C — C” — 0 is an exact sequence of complexes, then
there is an exact sequence

-+ = Hp11(C') = Hp11(C) — Hyp41(C") - Hy(C') - Hy(C) —
foreachn € 7.

Definition 1.5.8. The homomorphism H,,+1(C") — H, (C') is called the connecting
homomorphism associated with the exact sequence 0 — C' — C — C” — 0 and the
sequence -+ — Hy41(C') - Hy4+1(C) - Hy4+1(C") - H,(C') - H,(C) —
H,(C") — --- is called the long exact sequence. Clearly, amap of the exact sequence
0> C' — C — C” — 0 into an exact sequence 0 - C — C — C" — 0 gives rise
to a map of the long exact sequence associated with the first into that associated with
the second.

Definition 1.5.9. Let C = ((Cy), (3,)) and C' = ((Cy), (9,,)) be chain complexes
of R-modules and f = (f;), 8 = (gx) be maps from C to C". Then f is said to be
homotopic to g, denoted f ~ g, if there are maps s, : C,, — C/ 1 such that for every
n ez,

Jn—8&n = 8;,+15n + Sp—10n.

S = (Sp)neg is called a chain homotopy between f and g.
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We note that f ~ f (let s,, = 0) and if f ~ g then g ~ f (use —s5’s). Now suppose
f ~ g and g ~ h with homotopies s = (s,) and t = (z,) respectively. Then f ~ h
by adding f, — gn = 0,4 Sn + Sn—10n t0 &g — hn = 9}, 1tn + t—10, and using
Sp + 1. Thus ~ is an equivalence relation and we let [f] denote the equivalence class
of f. [f] is called a homotopy class of f.

Proposition 1.5.10. Let C,C’, C” be complexes andf, g : C — C andh : C' — C”
be chain maps. If f ~ g, then hf ~ hg.

Proof. Let s be a chain homotopy between f and g. Then with obvious notation,
fn —8n = 8;,+15n + Sn—lan and so

hn fn —hngn = hn(fu — gn)
= hna;I-HSn + hnsn—lan

= 8Z+1hn+1sn + hpSp—_10n.

Thus t, : C, — C,/ 1 given by fy = hp415y, gives a chain homotopy between hf and
hg. m|

Similarly, we have the following result.

Proposition 1.5.11. Let C,C’, C” be complexes and f: C — C' and h,k : C' — C”
be maps. If h ~ K, then hf ~ kf.

Corollary 1.5.12. [ff ~ gandh ~ K, then th ~ gk.

Hence if f : C — €' and g : C' — C” are maps of complexes, then we can
define [g][f] = [gf]. By the above, this is well-defined. So we get the category of
chain complexes of R-modules with objects the chain complexes as usual but such
that morphisms are homotopy classes [f] where f is a map of complexes.

Proposition 1.5.13. Iff, g : C — C are homotopic, then H,(f) = H,(g) for each n.

Proof. Lets = (sp) be the homotopy connecting f and g so that f;, — g, = 0;, {Sn +
Sn—10, and let x € Kerd,. Then f,(x) — gn(x) = ), (sn(x)) + 5p—1(3n(x)) =
0y 1(sn(x)) € Im0, . Thatis, fy(x) +1Imd, ; = gn(x) +Ima; . Hence
H,(f) = Hu(g). O

A basic tool will be the following elementary result about complexes (essentially
involving the mapping cone of a morphism of complexes, that is, the complex ob-
tained in the following proposition).
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Proposition 1.5.14. Let

d> dq do

D, Dy Dy D_; D_,
d> dy do

G Cq Co C_1 C_»

be a commutative diagram where the rows are complexes. Form the complex --- —

Co®dDy — C1® Dy — Co®D_1 — --- where themap Cp41® D;; — C, @ Dy—q

is the map (x,y) +— (dx + (=1)"pn(y), dy) (it is immediate that this is a complex).

Then this complex is exact at Cp, & Dy—1 if the complex --- — C; — Cop - C_1 —
- isexactat Cy, and --+ — D1 — Do — D_1 — --- isexact at Dy—1.

Proof. By diagram chasing. |

Remark 1.5.15. We see that the construction of the single complex from the diagram
above is compatible with the application of any covariant additive functor. We will
also apply this result to diagrams involving complexes of finite length where we sub-
stitute O for all missing terms. This result implies that if both rows of the diagram are
exact then so is the associated single complex.

We will also use the fact that if C is an exact complex and S C C is a subcom-
plex, then the quotient complex C/S is exact if and only if S is exact. This follows
from applying Theorem 1.5.7 to the exact sequence 0 - S — C — C/S — 0 of
complexes.

Proposition 1.5.16. Given a commutative diagram

1

CO,I . Cl,l . C2,1 ...

]

C0,0 . CI,O o C2,0 ...

of R-modules, suppose that each row and each column is exact. For eachn > 0, let
D" = Ker(C%" — C'") and let E" = Ker(C™° — C™). Then noting that for
each n we get induced maps D" — D"*! and E" — E"*1 such that

D=---50->0->D">D!' - D> ...

and
E=-->0>0>E°>E' 5> E? ...

are complexes, we have that H" (D) = H"(E) for all n.
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Proof. This is an exercise in diagram chasing. One starts by using the diagram to
define a (well-defined) homomorphism H" (D) — H"(E). Then it is simple to check
that the corresponding homomorphism H" (E) — H"(D) is its inverse. i

We note that in this statement we used upper indices in order to avoid using negative
indices.

Exercises

1. Show that a chain homotopy is an equivalence relation.

2.(a) Let M be an R-module and M denote the complex

00 ME M 00—

with M in the 0-th place. For any complex C = ((Cp), (dn)) of R-modules
argue that the set of chain maps M — C is in bijective correspondence with
the set Homg (M, Cy).

(b) Argue that every chain map M — Cis homotopic to the zero chain map.

3. Let C be a complex of R-modules and F be an exact additive functor of R-mod-
ules. Prove that H, (F(C)) = F(H,(C)) foreachn € Z.

4. Argue that Comp admits sums and products.

5.(a) Let C be a complex of R-modules and let x € Z¢(C). Show that we can
define a complex

C’=-~-—>C2—>C1®R—>C0—>C_1—>-~-

in such a way that C is a subcomplex of C" and so that x € Bo(C).

(b) Generalize (a) and argue that for any C, C is a subcomplex of a complex C’
such that Z, (C) C B, (C’) for all n.

(c) Use (b) to argue that every complex C is a subcomplex of an exact complex.
6. Prove Proposition 1.5.14.
7. Complete the proof of Proposition 1.5.16.

1.6 Direct and Inverse Limits

Definition 1.6.1. Let I be a directed set, that is, I is a partially ordered set such that
foranyi, j € [ thereisak € I withi, j < k. Let {M;};cs be a family of R-mod-
ules and suppose for each pairs i, j € [ withi < j there is an R-homomorphism
Jii : M;j — M such that
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(1) fii =idpy, foreachi € 1

(2) ifi < j <k, then fxjo fji = fri-

Then we say that the R-modules M; together with the homomorphisms fj; form a
direct (or inductive) system which is denoted ((M;). (fji)).

Definition 1.6.2. The direct (inductive) limit of a direct system ((M;), (fji)) of R-
modules is an R-module M with R-homomorphisms g; : M; — M fori € I with
gi = gj o fji whenever i < j and such that if (N, {/;}) is another such family, then
there is a unique R-homomorphism f : M — N suchthat f o g; = h; foralli € I.
It is easy to check that the direct limit defined above is unique up to isomorphism.
The direct limit (M, {g;}) is denoted by 11_1‘1)1 M.

Theorem 1.6.3. The inductive limit of an inductive system of R-modules always ex-
ists.

Proof. Let ((M;). (f;i)) be an inductive system of R-modules and U be the disjoint
union of the M;. Define a relation on U by x; ~ x; if there exists k > i, j such that
Jii(xi) = fij(x;) where x; € M;, x; € Mj. Then ~ is an equivalence relation.
Now let M be the set of equivalence classes under this relation and let [x] denote
the equivalence class of x. Define operations on M by r[x;] = [rx;]if r € R and
[xi] + [x;] = [k + yi] where k > i, j and yx = fii(xi), y; = fij(x;). Then M
is an R-module. Now define maps g; : M; — M by g;(x;) = [x;]. Then it is easy to
see that (M, {g;}) is the direct limit. |

Remark 1.6.4.

1. Let S be the submodule of @; M; generated by e; o fji(x;) — e;(x;) where
Xi € M; and e; : M; — @; M; is the ith embedding. Then the map 7 :
lir_)nMi — @P; M;/S defined by t([x;]) = e;(x;) + S is an isomorphism.

2. Let ¥ = ((M;),(fji)) and F' = ((M]), (fj’i)) be inductive systems over the
same set /. Thenamap 7 : ¥ — F’ is a family of R-homomorphisms
T : M; — M] such that fj’i ot; = 1j o fj; wheneveri < j. So T induces
an R-homomorphism 7 : lim M; — lim M/ defined by 7([x;]) = [z (x;)]. T is
. — —
denoted llr_)n 7.

3. If J C I is a subset such that for every i € [ thereisa j € J such thati < j,
then we say J is a cofinal subset of I. If this is the case then we have an induced
inductive system over J. From the proof of Theorem 1.6.3 we easily see that
the inductive limit of the induced system over J is isomorphic to the limit of the
original system over /.
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Example 1.6.5.

1. Let M be an R-module. For any directed set /, set M; = M foreachi € I and
Jji = idp foralli < j. Then ((M), (idps)) is an inductive system called the
constant inductive system. In this case, h_r)n M; =M.

2. Let I be a directed set and M be an R-module and {M;};c; be a family of
submodules of M such that for each pairi, j € I, thereis a k € I with M; +
M; € My. Seti < jif M; € Mj and let f;; : M; — M; be the inclusion.
Then ((M;). (fji)) is an inductive system and im M; = J; M;. If the M;
are all the finitely generated submodules of M ,‘tﬁe condition is satisfied and
J M; = M. Hence every R-module is the direct limit of its finitely generated
submodules.

Theorem 1.6.6. Let ¥/ = (M[). (f};)). ¥ = (M) (fi1). F" = (M}).(f}}))

. . ooy o7} A{ui}
be inductive systems over I and suppose there are maps ¥' = ¥ = F" such that
(oF

, Oi T . .oy oy A,
M; — M; — M/ is exact for each i € I, thatis, ¥' — ¥ — F" is exact, then

li_n;o’,' li_n)lri
imM! = limM; = limM! is exact.
— 4 — — 4

Proof. Let [x] € li_n>1M,~ where x € M; is such that (li_t)n 7;)([x]) = 0. So there is a
Jj = isuchthat f7ot;(x) = 0. But flo7; = 7jo0 fj;. Therefore there is an x’ € M
such that fj; (x) = g;(x’). Butx ~ fji(x). So [x] = [0j(x")] = (limo;)([x']) and
thus [x] € Im(limo;). It is now easy to see that limt; o limo; = 0 and hence we are
done. - - - i

Theorem 1.6.7. Let N be a left R-module and ¥ = ((M;), (fji)) be an inductive
system of right R-modules. Then

lim(M; ® gN) = (lim M;) ® rN

Proof. We note that (M; ® N), (fji ® idy)) is an inductive system. So we have for
each i a homomorphism g; ® idy : M; ® N — lig)lMi ® N where (lir_>n M;,{gi})is
the inductive limit. This induces a homomorphism g : lim(M; ® N) — (lim M;)® N
given by g([x; ® y]) = gi(xi) ® y = [xi] ® y. We claim that gisan is?r)norphism.
For given y € N, we have amap h; y : M; — l_il})l(Mi ® N) defined by h; y(x;) =
[x; ® y]. This induces a map h,, : 1i_r)nM,- — li_r)n(Mi ® N) given by hy([x;]) =
[x; ® y]. But then &y, is balanced on (li_II)l M;)x N. Sowehaveamaph : (li_n)l M) ®
N — lim(M; ® N) given by h([x;] ® y) = hy([x;]) = [x; ® y]. One then easily
checks that 4 is the inverse of g. m|

Definition 1.6.8. Let / be a directed set and {M; };es a family of R-modules. Sup-
pose for each i, j € [ withi < j, there is an R-homomorphism f;; : M; — M;
such that
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(1) fii =idpy, foreachi € 1
(2) ifi < j <k, then fij o fix = fiks
then ((M;), (fij)) is called an inverse system of the R-modules M; indexed by I.

Definition 1.6.9. The inverse (or projective) limit of an inverse system ((M;). (fi;))
is an R-module M with R-homomorphisms g; : M — M; fori € I with g; =
fij o g; whenever i < j and such that if (N, {h;}) is also such a family, then there is
a unique R-homomorphism f : N — M such that h; = g; o f foralli € /. The
inverse limit (M, {g;}) is denoted l(in M, and is unique up to isomorphism.

Theorem 1.6.10. The projective limit of an inverse system always exists.

Proof. Let ((M;), (f;j)) be an inverse system. Then foreachi € I,let; : [[ M; —
M; be the ith projection map. We set M = {(x;); € [[ M; : x; = fi;(xj) whenever
i < j}and define g; : M — M; by gi = m;p. Then (M,{g;}) is an inverse
limit. H

Remark 1.6.11. Let ¥ = ((M;), (fij)) and F" = ((M]"), (fl;/)) be inverse systems
over I. Thenamap T : ¥ — F" is a family of R-homomorphisms 7; : M; — M/’
such that 7; o f;; = fl;}’ o 7j whenever i < j. Thus 7 induces an R-homomorphism
t : limM; — lim M;" defined by 7((x;);) = (ti(x;)); where x; = fi;j(x;) and
7i(x;) = 1 o fij(xj) = fi;-,O‘L'j(Xj) = fi;.’(rj(Xj)) whenever i < j. T is denoted by
lim 7;.

<—

Example 1.6.12.
1. If (M), (idpz)) is the constant inverse system, then 1<£n M; =M.

2. Let {M;};cs be a family of submodules of an R-module M that is ordered by
reverse inclusion, thatis, i < j implies M; D M. Then {M;};e together with
the reverse inclusions form an inverse system and 1<£n M; =\ M;.

Theorem L6.13. Let 7/ = (M), (f})). ¥ = (My). (fi)). ¥ = (M]). (f}).
be inverse systems over the same directed set and suppose there are maps ¥’ {ﬁ)}
F {E)} F" such that 0 — M/ % M; e M is exact for each i, then the induced

sequence
limo; lim t;

0— limM/ = limM; = limM/
P < <« !

is exact. If furthermore the set of indices is N and if the maps fl; are surjective, then
when 0 — M/ — M; — M]" — 0 are exact for each i, the induced sequence

0 — limM! - limM; - limM/ — 0
<« ! <« <« !

is exact.
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Proof. We use the description of the inverse limit given in Theorem 1.6.10. Then
since 7; o 0; = 0 for each i we see that Lii’l‘l,’i o 1<ianri = 0. If (x;) € Ker(l(i£1 7i),

then 7;(x;) = O for each i. By the exactness of 0 — Mi’ % M; e Mi” there is a
x, € M/ such that 0; (x]) = x;. If i < j then fi;(xj) = x; and so f,-j(aj(xj’-)) =
oi(x]). But f;;(o; (x})) = 0;( i} (x})). Since oj is an injection, fl; (xj’-) = x;. Thus
(x}) € l(iLnMi’ and then clearly 1(i£10,‘ (x}) = (xi). So (x;) € Im(l(iLn 0i). Hence the
sequence is exact at 1<Ln M;. It is easy to see that Lln o; 1S one-to-one.

We now let the index set be N and consider the module M = [] M; and the map
Vg 2 M — M defined by Y7 ((xi)) = (xi = fii+1(xi+1)). ThenKer 7 = lim M;.
We can similarly consider modules M" = [[ M/ and M"” = [[ M/ and define maps
V¢ and ¥ ¢~ respectively. So we have the following commutative diagram

0 M’ M M 0
iW}‘/ \LW?’ llﬁfﬁ
0 M’ M M 0

with exact rows. Then we have an exact sequence 0 — Kery g/ — Keryg —
Ker Y ¢» — Coker ¥+ — Coker & — Cokeryz» — 0 by Proposition 1.2.16.
But if i;. are surjective, then ¥ ¢ is surjective and so Coker {/#/ = 0. Thus we are
done. m|

We now state the following result.

Theorem 1.6.14. If N is an R-module, then
(D Hom(N,l(inMi) o~ 1<£1H0m(N, M;)
(2) Hom(lim M;, N) = limHom(M;, N).

— —

Proof. This is left to the reader. m|

Exercises

1. If A is an Abelian group, A is said to be torsion if every element of A has finite
order and forsion free if every element but O has infinite order. Given an inductive
system ((A4;), (fji)) of Abelian groups, argue that h_n)l Aj; is torsion (torsion free)
if every A; is torsion (torsion free).

2. Find an inductive system ((4;), (f;;)) of Abelian groups with A; = 7Z for all i
and such that li)n A; = Q.

3.(a) Let ((M;).(f;i)) be an inductive system of R-modules and let X be a set.
Define an inductive system ((Mi(X)), ( fj(iX))) and argue that

li_r)an.(X) = (lim M;) ™.
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(b) If we consider the inductive system ((MiX ), ( fUX )), show that
. X : X
lim M;™ 2 (lim M;)

can occur.
Hint: Let p be a prime and let Z(p°°) be the subgroup of Q/Z consisting of
all % + Z,m € Z,n > 0. Consider the inductive system described by the
diagram
Z(p™®) 5 Z(p™®) > Z(p®) — -+
Argue that the inductive limit of this system is O but that the limit of the system
Z(p®)N = Z(p>®)N - Z(p>®)N — ... isnot 0.
(c) Argue that the limit of the latter system in (b) is torsion free.
4. Prove part 1 of Remark 1.6.4.
5. Let {Ci : i € I} be a family of complexes. Prove that if / is a directed set, then
Hn(li_n;C’) ~ 11_11)1 H,(C") foralln € Z.

6.(a) Let p be a prime. Consider the inverse system

> Z/(p?) > Z)(pP) > Z/(p") > Z/(p°)

with all maps canonical surjections. The inverse limit is denoted Zp. Argue
that Z,, is uncountable.

d id
(b) Consider the inverse system -+ — Z 57 5 7. Use this system and the
system of (a) to argue that the conclusions of Theorem 1.6.13 can fail to be
true if we drop the hypothesis that the maps f;; are surjective.

7. Prove Theorem 1.6.14.

1.7 I-adic Topology and Completions
Throughout this section, R will be a commutative ring.

Definition 1.7.1. Let / be an ideal of R and M be an R-module. Then M D IM D
1M D I3M D --- and so we have R-homomorphisms f;; : M/I/M — M/I'M
defined by f;j(x + 1/ M) = x + I'M whenever i < j. Thus (M/I*M),(fi;)) is
an inverse system over Z 4 and so has the projective limit Lln M/I' M. We note that
l(iLnM/IiM ={(x1+IM,...): xi + I'M = fijs1(xip1 + I'TIM))
={(x1 +IM,x3+I?M,...): x; = x;31 mod I' M}

It is easy to see that {x +1' M }i>0 is a basis for a topology on M . For clearly it covers
Mandifz € (x+ I'M)N(y+1/M), thenz + XM = (x + I'M)N (y + I/ M)
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where k = max(i, j). The topology generated by {x + I’ M} is called the I-adic
topology of M . It is easy to see that in this topology, addition and scalar multiplication
are continuous, and if M = R, then multiplication is also continuous so that R is a
topological ring.

We note that if N is a submodule of M, then the decreasing sequences (' M N N)
and (/' M 4+ N)/N) determine the subspace topology of N and the quotient topology
of M/N induced by the I -adic topology of M, respectively.

Proposition 1.7.2. M is Hausdorff if and only if (| I M =0

Proof. Suppose M is Hausdorff. Let x € () I* M, x # 0. Then there exist i, j such
that (x4+1*M)NI/M = @. Butthen x ¢ I/ M, a contradiction. Conversely, suppose
(N I'M = 0and x # y. Then there is a k such that x + I*M # y + I*M for
otherwise x—y € I' M foreachi andsox = y. So (x+I*M)N(y+I¥M)=0. O

Remark 1.7.3. If N is a submodule of M, then the closure of N in M with respect
to the I -adic topology of M is defined by N = ((I'M + N). So M/ N is Hausdorff
with respect to the quotient topology if and only if (\(/*M + N) = N and thus if
and only if N is closed in M with respect to the [ -adic topology.

Definition 1.7.4. A sequence {x,} of elements of an R-module M is said to be a
Cauchy sequence in the [-adic topology if given any nonnegative integer k there
exists a nonnegative integer ng such that x; 1 —x; € [ kM wheneveri > no. {xn}
is said to be convergent if there is an x € M such that given any k there is an ng
suchthat x,, —x € 1 kM whenever n > ng. x is called a limit of the sequence {x,}.
We note that the limit is unique if M is Hausdorff (that is, if () I'M = 0 by the
proposition above) and that every convergent sequence is a Cauchy sequence.

An R-module M is said to be complete in its I-adic topology if every Cauchy
sequence in M converges. Now let C be the set of all Cauchy sequences in M in the
I -adic topology. Define addition and scalar multiplication on C by {x,} + {y,} =
{xn + yn}and r{x,} = {rx,} where r € R. Then C is an R-module. Now let Cy be
the subset of C consisting of those Cauchy sequences that converge to zero. Then Cy
is a submodule of C. The quotient R-module C/Cy is called the I-adic completion
of M and is denoted by M . So we have the following result.

Proposition 1.7.5. Let ¢ : M — M be defined by ¢(x) = {x} 4+ Co. Then
(1) @ is an R-homomorphism and Kerp = ) I'M.
(2) ¢(x) = {xn} + Co if and only if x is a limit of {xp}.
(3) ¢ is a monomorphism if and only if M is Hausdorff.
(4) @ is an epimorphism if and only if M is complete.
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Proof. (1) ¢ is clearly a homomorphism. Now let ¢(x) = 0. Then {x} is in Cp and
so x € (1" M. On the other hand, if x € () 1*M, then x € I' M for each i and so
{x} converges to zero. That is, {x} is in Cy and so ¢(x) = Cy. Thus we are done.

(2) We simply note that ¢(x) = {x,} + Cp if and only if {x} — {x,} is in Cy if and
only if {x — x,} converges to zero and if and only if {x,} converges to x.

(3) follows from Proposition 1.7.2 and part (1) above.

(4) ¢ is an epimorphism if and only if for each {x,} in C, there is an x € M such
that ¢(x) = {x,} + Cp if and only if each {x,} converges by part (2) above. |

Remark 1.7.6. We see thatif ¢ : M — M is an epimorphism, then M is com-
plete and M/ (I'M =~ M. Furthermore, ¢ is an isomorphism if and only if M is
Hausdorff and complete. In this case M = M.

Theorem 1.7.7. M = limM/I' M.
%

Proof. Let (x1 + IM,xy +1?M,...) € l(i_r_nM/IiM. Then x; 11 — x; € I'M for
each i > 1 and so {x,} is a Cauchy sequence. Now define a map o : 1(1_rl1 M/T'M —

M by o((x1 + IM,x2 + I?M,...)) = {x} + Co. Then o is well-defined for if
Xp +I"M = y, + I"M, then x,, — y, € I"M for each n and thus {x, — y,}
converges to zero. So {x, — y,} € Cp and hence {x,} + Cp = {yn} + Cp. Clearly,
o is a homomorphism.

Now let {x,} € C. Then for each n there is an integer s(n) such that x; y; — x; €
I"M whenever i > s(n). Sox; + I"M = xj + I"M fori, j > s(n). Thus we
have a well-defined map 7’ : C — Lln M/I'M given by o' ({x,}) = (x; + I"M)
where i > s(n). 7’ is an R-homomorphism. But if {x,} is in Co, then x; € I' M
for all sufficiently large i. So t/({x;}) = (x; + I"M) where x; € I'M C I"M

for sufficiently large i. Thus t’({x,}) = (0) and so t’ induces a homomorphism
T M — 1<i_r11M/I’M defined by t({xn} + Co) = (x; + I"M) where i > s(n). It
is now standard to argue that t = o~ 1. O

In view of Theorem 1.7.7, we will refer to 1(£n M/I'M as the I -adic completion of
M and simply write M = l(iLnM/IiM.

Example 1.7.8.

1. Let M = R =Z and I = (p), p a prime. In this case Z/(p' 1) — Z/(p') is
the natural map r + (p'*1) > r + (p') and Zp = @Z/(pi) = {(r1 + (p),
ra+(p?),...) 1 = riy1 mod p'}. We note that (r1 +(p), r2+(p?),...) has
a unique representation (ao—+(p), a0+a1p+(p2), apg+aip+arp*+(p3)....)
with 0 < a; < p. Hence to each element in Z,, we can associate a unique
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p-adic number Zioio a; p' where 0 < a; < p. Zp is called the ring of p-adic

integers.
2. Let R = S[x1,...,x,] with S any ring and I = (x1,...,x5). Then R =
Sx1,- .., xal]
Exercises

1. Prove Remark 1.7.3.

2. If I C R is afinitely generated ideal of the commutative ring R, prove that
(a) I™ is finitely generated for each n > 1.
(b) If (My)ses is a family of R-modules, then I [[;cg My = [[jeg(I Ms).

(c) Let M = [[ieg M and M be the I-adic completion of M and Ms that of
M for each s. Show that M = [[,cg M.

3. Usmg the hypotheses and notation of (2), let N = P g M, and argue that

N % @, Ms can happen.
Hint: Let R = Z, S = N, M, = Z/(p"), and I = (p). Argue that N is not

countable.

4. Letn = p1pa...ps where p1, pa -+, ps are distinct primes of Z. Use the fact
that Z/(n*) =~ Z/(p]f) PH - P Z/(pé‘) fork > 1to argue that if Z is the
completion of Z with the (n) adic topology, then 7 = Z p X 7 py X oo X Z Ds-

5. Let I C R be an ideal of the ring R. Suppose that R is complete with respect to
the 7 -adic topology. Prove that for every r € I, 1 + r is a unit of R.

6. Let J C I C R beideals of R such that R is complete with respect to the 7-adic
topology.

(a) Argue that R is complete with respect to the J-adic topology.

(b) If the R-module R/J is Hausdorff with respect to the /-adic topology, argue
that R/J is complete with respect to the I /J-topology.

7. Prove Example 1.7.8(2).



Chapter 2
Flat Modules, Chain Conditions and Prime Ideals

2.1 Flat Modules
We start with the following

Definition 2.1.1. An R-module P is said to be projective if given an exact sequence

A E) B — 0 of R-modules and an R-homomorphism f : P — B, there exists an
R-homomorphism g : P — A such that f = i o g, that is, such that

P

v
v
/,/g lf

A—B ——0

¥

is a commutative diagram. Thus every free module is projective. So every R-module
M has a projective resolution, that is, an exact sequence -+ - Py — Pp > M — 0
with each P; projective by Remark 1.2.14.

Theorem 2.1.2. The following are equivalent for an R-module P :
(1) P is projective.
(2) Hom(P, —) is right exact.
(3) Every exact sequence 0 - A — B — P — 0 is split exact.

(4) P is a direct summand of a free R-module.

Proof. (1) = (2) is clear.

(2) = (3) follows from Proposition 1.2.18 since if B % P — 0is exact then
Hom(P, B) — Hom(P, P) — 0 is exactand so B — P — 0 splits.

(3) = (4) follows from Proposition 1.2.6 easily.

(4) = (1). Let P be a direct summand of a free R-module F. Then there is a
map s : ' — P suchthatsoi = idp wherei : P — F is the inclusion. Now let

A i B — Obeexactand f : P — B be an R-homomorphism. Then there is a map
g:F — Asuchthat yog = fos.Butthenyogoi = fosoi = f. Thus P is
projective. m|
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Definition 2.1.3. An R-module F is said to be flat if given any exact sequence 0 —
A — B of right R-modules, the tensored sequence 0 - A ® rF — B ® rF is
exact.

Proposition 2.1.4. The direct sum @, c; F; is flat if and only if each F; is flat.

Proof. This easily follows by Proposition 1.3.7. m|

Corollary 2.1.5. Every projective module is flat.

Proof. Let P be projective. Then P is a summand of a free by Theorem 2.1.2. But R
is a flat R-module and so every free R-module is flat by Proposition 2.1.4 above. Thus
P is adirect summand of a flat module and hence is flat again by Proposition 2.1.4. O

Definition 2.1.6. It follows from the above that every R-module has a flat resolution,
that is, an exact sequence --- — F; — Fo — M — 0 with each F; flat.

Proposition 2.1.7. If F is a flat R-module and I is a right ideal of R, then | ® F =
IF.

2

Proof. We consider the exact sequence 0 —- I — R. Then 0 — I ® F — F is
exact. But the image of / ® F in F under this embedding is / F'. So we are done. O

Let--- - P; — Pp — M — 0 be a projective resolution of a right R-module
M and N be a left R-module. Then the ith homology module of the complex - - —
P1®N — Py® N — 0is denoted Tor? (M, N). Note that TorX (M, N) = M ® N
since PLON — P @ N - M ® N — 0is exact, and Tor; (M, F') = 0 for all flat
left R-modules F'. TorlR (M, N) can also be computed using a projective resolution
of N and is independent of the projective resolutions used, and moreover given an
exact sequence 0 — M’ — M — M"” — 0 of right R-modules there exists a long
exact sequence --- — Tory(M",N) > M QN - M @ N - M" ® N — 0 (see
Chapter 8 for details). Using such a long exact sequence and Theorem 1.6.7, one can
easily show by induction that Tor commutes with direct limits (see Exercise 4).

Theorem 2.1.8. The following are equivalent for an R-module F :
(1) F isflat.
(2) — ® RF is left exact.
3) ToriR(M, F) = 0 for all right R-modules M and for all i > 1.
4) Tor{e (M, F) = 0 for all right R-modules M .
(5) Tor{e (M, F) = 0 for all finitely generated right R-modules M.
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Proof. (1) = (2) = (3) is clear from the above while (3) = (4) = (5) is trivial.
(5) = (4) since Tor commutes with direct limits.
(4) = (1). We consider the exact sequence 0 - A — B — C — 0 of right
R-modules. Then we have an exact sequence 0 = Torf(C, F) > A® pF —
B® rF — C® rF — 0. Thus F is flat. O

Remark 2.1.9. Since Tor commutes with direct limits, we also see that any direct
limit of flat R-modules is also flat.

We now recall the following natural identity and leave its proof as an exercise.

Theorem 2.1.10. Let R and S be rings, A a left S-module, B an (R, S)-bimodule,
and C a left R-module. Then the map

¢ : Homg (A, Homg (B, C)) - Homg(B ®s A,C)

defined by o(f)(b ® a) = (f(a))(b) where f € Homg(A,Hompg(B,C)), a € A,

b € B, is an isomorphism.

Theorem 2.1.11. Let R and S be commutative rings and let R — S be a ring ho-
momorphism that makes S into a flat left R-module. If M and N are R-modules,
then

TorlR(M,N) ® rS gTorlS(M ® rRS.N ® RrS)

foralli > 0.

Proof. Let .-+ — P; — Py — M — 0 be a projective resolution of M. Then

- —> PiI® RS - Php® RS > M ® rS — Oisexact. But P; ® grS is a
projective S-module for each i. For if A — B — 0 is an exact sequence of S-mod-
ules, then Homg (S, A) — Homg (S, B) — 0 is an exact sequence of R-modules.
But then Hompg(P;, Homg (S, A)) — Homg(P;, Homg (S, B)) — 0 is exact since
P; is projective. Hence Homg(P; ® rS,A) — Homg(P; ® rS, B) — 0 is exact
by the theorem above. So -+ — P11 ® RS — Pp® RS - M ® grS — Ois
a projective resolution of the S-module M ® gS. Thus if P, denotes the deleted
complex --- — P1 — Pg — 0 of M, then since — ® grS commutes with homology
(see Exercise 2 of Section 1.4) we have that

TorR(M,N) ® rS = H;(Pe ® RN) ® RS
=~ Hi(Pe ® RN) ® RS)
= Hi(Pe ® RS) ®s (N ® RrS))
=~ Torf (M ® rS.N ® gS). m
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Definition 2.1.12. An R-module F is said to be faithfully flat if 0 - Agr — Bpg is
an exact sequence of R-modules if and only if 0 > A ® gF — B ® gF isexact. It
is easy to see that every free R-module is faithfully flat.

Lemma 2.1.13. The following are equivalent for a left R-module F :
(1) F is faithfully flat.
(2) F is flat and for any right R-module N, N @ F = 0 implies N = 0
(3) F isflat and mF # F for every maximal right ideal m of R.

Proof. (1) = (2). We consider the sequence 0 - N — 0. 0 > N ® F — 0is
exact by assumption and so 0 — N — 0 is exact by (1).

(2) = (3). This follows from the fact that F/mF =~ (R/m) ® RrF.

(3) = (2). Suppose N # Oandletx € N, x # 0. Then xR = R/ for some right
ideal I of R. Let mt be a maximal right ideal containing /. Then F % wmF D IF by
assumption. SOxR® F = F/IF # 0. But F isflatandso0 - xRQ F - N Q F
is exact. Hence N ® F # 0.

(2) = (1). Suppose 0 — A 1) B is a sequence of R-modules. If 0 > A ® F —
B ® F is exact, then (Ker /) ® F = 0 since F is flat. So Ker f = 0 by assumption
and hence 0 — A — B is exact. O

Exercises

1. Give an example of a projective module that is not free.
Hint: Consider R = Z /67 = Z./27 & Z./3Z.

2. Prove that if f : M — P is an epimorphism with P projective, then M =~
Ker f & P.

3. Prove Proposition 2.1.4.
4. Let ((M;), (fji)) be inductive system of right R-modules and N be a left R-mod-
ule. Prove that lim Tor,If (M;,N) = Tor,If (lim M;, N). Hint: Use a dimension
— —
shifting argument, that is, an induction argument on 7 involving the long exact

sequence corresponding to a short exact sequence 0 - K — P — N — 0 with
P projective.

5. Prove that if every finitely generated submodule of M is flat, then M is flat.

6. Prove that if R is an integral domain, then every flat R-module is forsion free
(thatis, rx = Oforr € R, x € M implies r = 0 or x = 0). Conclude that
Z/nZ is not a flat Z-module for n > 2.

7. Prove that the quotient field of an integral domain R is a flat R-module.
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8. Consider the exact sequence 0 — M’ — M — M"” — 0 of R-modules. Prove
that if M " is flat, then M is flat if and only if M is flat. Give an example to show
that M’ and M can be flat without M" being flat.

9. Let M be an (R-S)-bimodule and N be a left S-module. Prove that if M is a flat
R-module and N is a flat S-module, then M ®g N is a flat R-module.

10. (Schanuel’s Lemma) If 0 - K; - P > M — 0and 0 — K, — P, —
M — 0 are exact with Py, P, projective, then K1 & P, = K, & P;.

11. Prove Theorem 2.1.10.
12. Show that the Z-module Q is flat but not faithfully flat.

13. Prove that if R’ is a subring of R, then R/R’ is a flat R’-module if and only if R
is a faithfully flat R’-module.

2.2 Localization

In this section, R will denote a commutative ring.

Definition 2.2.1. Let S be a multiplicative subset of R, thatis, 1 € S and S is closed
under multiplication. Then the localization of R with respect to S, denoted by S~! R,
is the set of all equivalence classes (a,s) witha € R, s € S under the equivalence
relation (a, s) ~ (b, t) if there is an s’ € S such that (at — bs)s’ = 0. It is easy to
check that this relation is indeed an equivalence relation. The equivalence class (a, 5)
is denoted by a/s.

We now define addition and multiplication on S~ R by

a/s +b/t = (at + bs)/st
(a/s)(b/t) = ab/st.

These operations are well-defined and S ™! R is then a commutative ring with identity.

Remark 2.2.2. We note that ST'R = 0 if and only if 0 € S. The map ¢ : R —
S~!R defined by ¢(a) = a/1 is a homomorphism with Ker¢p = {a € R : as’ = 0
for some s’ € S}. As a consequence, if S has no zero divisors, then ¢ is monic.
Moreover, if R is a domain, then S ™! R is the quotient field of R when S is the set of
all nonzero elements of R.

Definition 2.2.3. Let S C R be a multiplicative set and M be an R-module. Then the
localization of M with respect to S, denoted S™! M is defined as for ST R. S™1 M is
an Abelian group under addition and is an ™! R-module via (a/s) - (x/t) = ax/st.



Section 2.2 Localization 47

Proposition 2.2.4. Let S C R be a multiplicative set. Then
(1) If f : M — N is an R-module homomorphism, then S™' f : STIM — STIN
defined by (S~! f)(x/s) = f(x)/s is an S~' R-module homomorphism.
Q) IfM' = M — M" isexactat M, then S™'M’ — S™'M — S™YM" is exact
at STIM.

(3) If N C M are R-modules, then S™'(M/N) = S™'M/S™IN.
(4) If M is an R-module, then ST'R ® pM = S™'M.
(5) ST'Ris aflat R-module.

Proof. The proof of (1) and (2) are left to the reader.

(3) follows from (2) by considering the exact sequence 0 - N - M — M /N — 0.

(4)Defineamapg : ST'R® M — S™I'M by ¢((a/s)®x) = (ax)/s. Then ¢ is
a well-defined S~! R-homomorphism. ¢ is clearly onto. Now suppose (ax)/s = 0.
Then there is an s’ € S such that as’x = 0. So (a/s) ® x = (as'/ss') ® x =
(1/ss") ® as’x = 0. Thus ¢ is one-to-one.

(5) follows from parts (3) and (4). O

Remark 2.2.5. It is now easy to see that if M is a free (projective) R-module, then
S~IM is a free (projective) S ! R-module, and that if M is a finitely generated R-
module, then S~ M is also such as an S~! R-module. Moreover since S™!M =~
S™IR @ M, if M is a flat R-module, then it is easy to check that STIM is a flat
S~ R-module.

Lemma 2.2.6. Let S C R be a multiplicative set. If J is an ideal of ST'R, then
J = 1S7'R = S™I for some ideal I of R.

Proof. Let I = J N R (or, more precisely, / is the inverse image of J under R —
S~!R). Then I is an ideal of R. Clearly IST'R C J. Now leta = r/s € J.
Then a = (r/1)(1/s). So it suffices to show that r € I. For thena € IS~!R. But
r/1 = (a/1)(s/1) € Jandsor € JNR =1.Thus J = IS™'R. But IS7!R =~
S~'R ® I by Proposition 2.1.7 since S~ R is a flat R-module by Proposition 2.2.4.
So IS7'R =~ S~ again by Proposition 2.2.4. O

Proposition 2.2.7. Let S C R be a multiplicative set. Then there is a one-to-one
order preserving correspondence between the prime ideals of S~'R and the prime
ideals of R disjoint from S given by S~'p < p.

Proof. Let J be a prime ideal of S™'R, and let p = J N R. Then p is a prime
ideal of R. But then J = pS~!R = S~ !p by Lemma 2.2.6. If p N S # @, then
l1e S_lp = J, a contradiction. Hence p N S = @.

Now suppose p is a prime ideal of R disjoint from S. We claim that S™!p is a
prime ideal. But 1 ¢ S™!p since p N S = @. Moreover, if (a/s) - (b/t) € S™!p with
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s,t € S,then (a/s) - (b/t) = c/r forsomec € p,r € S. So there is an s’ € S such
that (abr —stc)s’ = 0. Butstcs’ € p. Soabrs’ € p where rs’ € S. Butthenab € p
andsoa € porb € p. Thatis,a/s € S~'porb/s € S~!p. Hence S~!p is a prime
ideal of ST!R. o

Definition 2.2.8. Let p be a prime ideal of R. Then S = R — p is a multiplicative
subset of R. In this case ST'R, S~™'M, and S~! f are denoted by Ry, My, and f,
respectively where M is an R-module. We say that M, is the localization of M at p.

As a consequence of Proposition 2.2.7, we have the following result.

Theorem 2.2.9. Let p be a prime ideal of R. Then there is a one-one order preserving
correspondence between the prime ideals of Ry and the prime ideals of R contained

inp.

Remark 2.2.10. Let p be a prime ideal of R. Then pRy, is a prime ideal of R}, from
the above. But if J is an ideal of Ry, then J = IR, where [ is an ideal of R such
that / N (R—p) = 0. Sol C pand hence J = IR, C pRy. Thus pRy is the
maximal ideal of Rj.

We recall that a ring R is said to be local if it has only one maximal ideal. So the
localization of R at a prime ideal p is a local ring with maximal ideal pRy,. The field
Ry /PRy, is called the residue field of Ry and is denoted by k(p).

Exercises

Prove that the relation in Definition 2.2.1 is indeed an equivalence relation.
Prove that the operations in Definition 2.2.1 are well-defined.
Prove parts (1), (2), (5) of Proposition 2.2.4.
Prove Remark 2.2.5.
. Let My, M5 be submodules of M. Prove that
(@ STY(My + M) =S""M; +S7'M,
b)) ST M N M) =S""M;nS™IM,
6. Let ((M;), (fji)) be a direct system of R-modules. Prove that

N

limS™'M; =~ S~ im M;.
— —>

7. Let M and N be R-modules. Prove that
(@) M = 0if and only if My, = 0 for all maximal ideals 1 of R.
(b) An R-homomorphism f : M — N is monic(epic) if and only if fy : My —
Ny, is monic(epic) for all maximal ideals mt of R.

(c) M is aflat R-module if and only if My, is flat for all maximal ideals 1 of R.
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2.3 Chain Conditions

In this section, we introduce some of the basic concepts concerning Artinian and
Noetherian rings and modules.

Definition 2.3.1. An R-module M is said to be Noetherian (Artinian) if every as-
cending (descending) chain of submodules of M terminates.

Remark 2.3.2. It is easy to see that an R-module M is Noetherian (Artinian) if and
only if every nonempty set of submodules of M has a maximal (minimal) element.
For suppose there is a nonempty set of submodules of M that has no maximal element.
Let M be an element of this set. Then M/ is not maximal. So there is an element
M5 in the set such that M| C M». Repeat the argument to get a chain of submodules
My & My € Ms3--- of M that never terminates. The converse is easy to see.

The proof for Artinian modules is similar.

Proposition 2.3.3. An R-module M is Noetherian if and only if every submodule of
M is finitely generated.

Proof. Suppose there is a submodule S of M that is not finitely generated. Let x; €
S. Then S # (x1). Solet xo € S — (x1). Then (x1) € (x1,x2) & S. Repeat the
process to get a strictly increasing chain of R-modules that never terminates.

Now suppose M1 C M, C --- is an ascending chain of submodules of M. Then

S = Uj2; M; is a submodule of M and so is finitely generated by assumption.

Let § = (x1,x2,...,x,) for some x1,...,x, € M. Then each x; € M, for
some m;. So let m = max(my,my,...,my). Then x1,...,x, € My, andso § =
(x1,...,xn) C My, C S. Thus M,, = S and hence the chain terminates. O

Definition 2.3.4. A ring R is said to be left (right) Noetherian (Artinian) if it is
Noetherian (Artinian) as a left (right) module over itself. Noetherian (Artinian) will
always mean left Noetherian (left Artinian).

We now have the following

Corollary 2.3.5. A ring R is Noetherian if and only if every left ideal of R is finitely
generated.

Lemma 2.3.6. Let0 — M — M — M" — 0 be exact with M’ c M, M" =
M/ M’ with obvious maps. Suppose S1, Sy are submodules of M such that S1 C S»
and S1NM' =S, N M. If(M/-i-Sl)/M/: (M/-i-Sz)/M/, then S1 = S».

Proof. This is left to the reader. m|
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Proposition 2.3.7. Let 0 —- M’ — M — M"” — 0 be an exact sequence of R-
modules. Then M is Noetherian (Artinian) if and only if M' and M" are Noetherian
(Artinian).

Proof. We can suppose the sequence is as above. If M is Noetherian (Artinian), then
clearly so are M’ and M”. Now suppose {M; } form an ascending (descending) chain
of submodules of M. Then {M; N M’} and {(M’ + M;)/ M’} form an ascending
(descending) chain of submodules of M’, M" respectively. If these chains terminate,
then so does the chain for {M;} by Lemma 2.3.6 above. Thus the result follows. O

Remark 2.3.8. It now easily follows that if R is Noetherian (Artinian), then every
quotient R/ is Noetherian (Artinian) and if R is furthermore commutative then every
localization S ! R is also Noetherian (Artinian).

Corollary 2.3.9. A finite direct sum of Noetherian (Artinian) R-modules is also
Noetherian (Artinian).

Proof. Let {M;}7_, be a family of Noetherian R-modules. Then we consider the

exact sequence 0 — M, — @i_, M; — @:’;11 M; — 0. Then @}_, M; is
Noetherian by induction on n. Similarly for Artinian. O

Corollary 2.3.10. A finitely generated module over a Noetherian (Artinian) ring is
Noetherian (Artinian). In particular, if R is Noetherian, then an R-module M is
Noetherian if and only if M is finitely generated.

Proof. A finitely generated R-module M is a quotient of R” for some n. But R"
is Noetherian (Artinian) by the corollary above. So M is Noetherian (Artinian) by
Proposition 2.3.7. The second part now follows by Proposition 2.3.3. m|

Corollary 2.3.11. A ring R is Noetherian if and only if every submodule of a finitely
generated R-module is finitely generated.

Proof. Let S be a submodule of a finitely generated R-module M. Then S is finitely
generated by Proposition 2.3.3 since M is Noetherian by the corollary above. The
converse is clear from Corollary 2.3.5. m|

Remark 2.3.12. It is now easy to see that if R is Noetherian, then every finitely
generated R-module M has a free resolution - -- — F; — Fo — M — 0 where each

F; is finitely generated.

Theorem 2.3.13 (Hilbert Basis Theorem). If R is Noetherian, then so is R|[x].
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Proof. Suppose R[x] is not Noetherian. Then let / be a left ideal of R[x] that is not
finitely generated. Let f; be a nonzero polynomial in / of minimal degree. Then
(f1) € I and so let f, be a nonzero polynomial in / — { f;) with minimal degree.
Then (f1) € (f1, f2) and deg f1 < deg f>. Repeat this procedure to get ideals
(1) S (fi. f2) © (fis fou f3) G -~ in T such that deg fi < deg fi+1.

Now let a; be the leading coefficient of f;. Then (a) C (aj,az) C --- is an
ascending chain of ideals of R. It now suffices to show that (ai,...,ax) € (a1, a2,
...,0k11). Suppose not. Then apyq = Zf;lr,-a,- for some r; € R. One then

considers the polynomial i = fryq — Z{;l rix"k+171 fi where n; = deg f;.

Note that & ¢ (fi,..., fx) for otherwise fr+1 € (f1,..., fr), a contradiction.
But rjx"k+17" fi = xR (g x™ + -.0) = rja; x"k+1+ lower terms. So
h = fr41 — ) ; riaix™ +1—lower terms = fx41 — ag41x"%+1— lower terms. So
hel—{(f1,f2, ..., fx)anddegh < np,1, acontradiction. Hence (ai,...,ar) &
(ai,...,ax+1) and so R is not Noetherian. |

Corollary 2.3.14. If R is Noetherian, then so is R[x1, ..., Xx,].

Proof. By induction on n. O
Remark 2.3.15. Likewise, R[[x1, ..., X»]] is Noetherian whenever R is.

Definition 2.3.16. A chain of R-submodules M = My D M; D --- D M, = 0is
said to be a composition series of M if M;/M;+1 is a simple R-module for each i,
that is, M; /M;+1 = R/m; for some maximal left ideal w; of R.

The length of a composition series of M does not depend on the choice of the series
(in the sense of Jordan—Holder theorem), and every chain of submodules of M can be
refined to a composition series. The common length of the composition series of M
is denoted lengthp M or simply length M .

Theorem 2.3.17. An R-module M has finite length if and only if M is Artinian and
Noetherian.

Proof. If M has finite length, then any composition series is finite and so all the
chains are stationary. Conversely suppose M is Artinian and Noetherian. Since M is
Noetherian, it has a maximal proper submodule M;. We note that M/ M is simple.
But M is Noetherian since M is. So let M, be a maximal proper submodule of M.
Repeat this procedure to get a strictly descending chain M = My D My D M D ---
of submodules of M such that M; /M;; is simple. But M is Artinian and so the
chain stops. Hence length M < oo. m|

Definition 2.3.18. An R-module M is said to be semisimple if it is a direct sum of
simple modules. A module M is semisimple if and only if every submodule of M is
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a direct summand (see Exercise 6). Thus every submodule and homomorphic image
of a semisimple is also semisimple. It easily follows from the definition that the direct
sum of semisimple modules is also semisimple. A ring R is said to be semisimple if
it semisimple as an R-module.

Lemma 2.3.19. The following are equivalent for a semisimple R-module M :
(1) M is Artinian.
(2) M is Noetherian.
(3) M is a direct sum of finitely many simple modules.
(4) M is a finitely generated R-module.

In particular, a semisimple ring R is a direct sum of finitely many simple modules.

Proof. (1),(2) = (3). If M is a direct sum of infinitely many simple modules, then
M has ascending and descending chains of submodules of M that are not stationary.

(3) = (1), (2). We simply note that a simple module is of finite length.

(3) = (4) is trivial since simple modules are cyclic.

(4) = (3). Let x1,x2,...,x, be generators of M and M = ; S; where S; are
simple submodules of M. But then there are finitely many simple submodules, say
Siys..., S, such that each x; € §;;, +---+ S;,,. So M C @;"zl Si; and we are
done. m|

Proposition 2.3.20. Suppose R is a ring such that R/rad(R) is semisimple and
rad(R) is nilpotent. Then an R-module M is Noetherian if and only if M is Artinian.

Proof. Let J = rad(R). Then J" = 0 for some n. We then consider the descending
chain M > JM > J?M > --- D J"'M > J"M = 0. The quotient mod-
ules JiM/Ji+1M, 0 <i <n—1,can be viewed as R/J-modules. But R/J is a
semisimple ring by assumption. So each J*M/J**t1M is a semisimple R/J-mod-
ule since it is a homomorphic image of a free R/J-module. Thus if M is Artin-
ian or Noetherian, then each J? M/J*+1 M is of finite length as an R /J-module by
Lemma 2.3.19, and thus as an R-module. But then M is of finite length by Proposi-
tion 2.3.7. O

Lemma 2.3.21. A ring R is semisimple if and only if R is Artinian and rad(R) = 0.
In particular, if R is Artinian, then R/ rad(R) is semisimple.

Proof. If R is semisimple, then R is a direct sum of finitely many simple modules and
so R is Artinian and rad(R) = 0. Conversely suppose R is Artinian and rad(R) = 0.
Consider the set S of all finite intersections of maximal ideals of R. Then S has a
minimal element, say /, by Remark 2.3.2. So if m is a maximal ideal of R, then
m N I = [ by the minimality of / and so / C m. Thus / C rad(R). Butthen / =0
since rad(R) = 0. Hence there are finitely many maximal ideals, say my,..., u,
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such that ﬂ?zlmi =1 =0. Butthemapgp : R — 1—[?:1 R /w; defined by
@(r) = (r + m;) has Kerp = ('_; m; = 0. So ¢ embeds R into a semisimple
module. Thus R is semisimple.

Since rad(R/rad(R)) = 0, we see that the second part follows by applying the
lemma to R/ rad(R). O

Proposition 2.3.22. If R is Artinian, then R/rad(R) is semisimple and rad(R) is
nilpotent.

Proof. The first part follows from the lemma above.

Now let J = rad(R) and consider the descending chain J D J2 D> J3 O ...,
Then J” = J"T1 for some n since R is Artinian. Suppose J” # 0. Then let I be
the minimal left ideal such that J”I # 0. Then J™*(JI) = J"T1I = J"I # 0. But
JI C J and [ is a minimal left ideal such that J”I # 0. So JI = [. Butlisa
principal ideal. So / = 0 by Nakayama Lemma, a contradiction. Hence J" = 0. O

Corollary 2.3.23. An Artinian local ring is complete.

Proof. Let m be the maximal ideal of R. Then m is nilpotent by the proposition
above. SOR:l(i_lllR/ml = R. |

Corollary 2.3.24. If R is Artinian, then an R-module M is Noetherian if and only if
M is Artinian.

Proof. This follows from Propositions 2.3.20 and 2.3.22. m|

Corollary 2.3.25. A ring R is Artinian if and only if length g R < oo.

As another consequence of Propositions 2.3.20 and 2.3.22, we get the following
characterization of Artinian rings.

Theorem 2.3.26. A ring R is Artinian if and only if R/ rad(R) is semisimple, rad(R)
is nilpotent, and R is Noetherian.
Exercises

Prove Remark 2.3.2 for Artinian modules.

Prove Lemma 2.3.6.

1.
2.
3. Prove that if R is a commutative Noetherian ring, then so is its localization S ~! R.
4. Prove Remark 2.3.15.

5.

Let M be a Noetherian R-module and ¢ : M — M be a homomorphism. Prove
that if ¢ is surjective, then ¢ is an automorphism.
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6. Prove that a module M is semisimple if and only if every submodule of M is a
direct summand (Rotman [163, page 15]).

7. Suppose an R-module M has length n. Prove that every composition series of
M has length n and every chain of R-submodules of M can be refined to a
composition series.

8. Prove thatif 0 - M’ — M — M" — 0 is an exact sequence of R-modules,
then length M = length M’ + length M.

2.4 Prime Ideals and Primary Decomposition

Throughout this section, R will denote a commutative ring.

Definition 2.4.1. If M is an R-module, then the annihilator of M, denoted Ann(M ),
is defined by Ann(M) = {r € R : rx = Oforall x € M}. The annihilator of an
element x € M is defined by Ann(x) = {r € R : rx = 0}. Ann(M) is an ideal of
R. Moreover, if [ is an ideal of R such that / C Ann(M), then M is an R/I-module
via scalar multiplication (r + I)x = rx. This is well-defined forifr + 1 = s + I,
thenr —s € I C Ann(M) and so (r — s)x = 0. In particular, we have that M is
always an R/ Ann(M )-module.

Definition 2.4.2. Let M be an R-module. A prime ideal p is said to be an associated
prime ideal of M if p = Ann(x) for some x € M. Itis easy to see that this is equiv-
alent to M containing a cyclic submodule isomorphic to R/p. The set of associated
prime ideals of M is denoted by Ass(M ).

Proposition 2.4.3. If R is Noetherian and M is an R-module, then M = 0 if and
only if Ass(M) = 0.

Proof. If M = 0 then Ass(M) = @. Let M # Oand x € M, x # 0. If Ann(x) is a
prime ideal we are through. If not let rs € Ann(x) with r, s ¢ Ann(x). Then rx # 0
and s € Ann(rx). So Ann(x) € Ann(rx). If Ann(rx) is not a prime ideal then we
can repeat the procedure. If the procedure did not stop we would contradict the fact
that R is Noetherian. Hence the procedure stops and we see that Ass(M) # @. |

Remark 2.4.4. >From the proof we see that for x € M, x # 0, Ann(x) C p for
some p € Ass(M). Hence (U eass(ar) P is the set of all zero divisors on M, that is,
allr € Rwithrx =0foranx € M, x # 0.

Proposition 2.4.5. Let R be Noetherian, M an R-module, and p a prime ideal of R.
Thenp € Ass(M) if and only if pRy € Assg,(Mp).
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Proof. If p € Ass(M), then R/p =~ Rx for some x € M, x # 0. So R/p is
isomorphic to a submodule of M. Thus Ry/pRy is isomorphic to a submodule of
My. Hence pRy € Assg,(Mp). Conversely, if pRy € Assg,(My), then pRy =
Anng, (5) where 7 € M, for some x € M andt € R — p. Since p is finitely
generated, let p = (aj,as,...,ay). Then “T’ . ’t—‘ = 0 for each i. So there is an
ri € R —psuchthat r;a;x = 0 foreachi. Nowsetr =ry-rp---r,. Thenrax =0
for all @ € p. Thus p C Anng(rx). If a € Anng(rx), then arx = 0 and so
17 = 0. Butthen § € pRy. Consequently a € p. Thus Anng(rx) C p. Hence
p = Anng(rx) and so p € Assgr(M). |

Definition 2.4.6. The spectrum of R, denoted Spec R, is the set of all prime ideals of
R. The set of maximal ideals is called a maximal spectrum of R and is denoted by
mSpec R.

Lemma 2.4.7. Let R be a Noetherian ring. If M # 0 is a finitely generated R-
module, then there exists a chain 0 = Mo C My C --- C M,y C M, = M
of submodules of M such that for each 1 < i < n, Mj/M;_; = R/p; for some
pi € Spec R.

Proof. Let p; € Ass(M). Then R/p; is isomorphic to a submodule of M. That
is, there is a submodule M; of M such that My =~ R/p;. If M; = M, then we
are done. Otherwise let p» € Ass(M/Mj). Then there is a submodule M, of M
containing M such that M5/ M1 = R/p». One then repeats this procedure to get the
required submodules noting that the process stops since M is Noetherian. |

Lemma 2.4.8. Let0 — M’ — M — M" — 0 be an exact sequence of R-modules,
then
Ass(M) C Ass(M") U Ass(M").

Proof. Letp € Ass(M). Then R /p is isomorphic to a submodule Rx of M for some
XeEM, x #0. If Rx N M' #0,lety € Rx N M', y # 0. Then p = Ann(x) is
equal to Ann(y) since p is a prime ideal. Thus p € Ass(M’). If Rx N M’ = 0, then
the image of Rx in M" is (Rx + M')/M’ =~ Rx =~ R/p. Thus p € Ass(M”). O

Theorem 2.4.9. If R is Noetherian and M is a finitely generated R-module, then
Ass(M) is finite.

Proof. We consider the chain 0 = My ¢ M; C -+ C My—1 C My, = M
of Lemma 2.4.7. Then we have short exact sequences 0 — M;_; — M; —
M;/M;—y — O0fori =1,2,...,n.So Ass(M;) C Ass(M;—1) U Ass(M;/M;_) by
Lemma 2.4.8 above. Thus inductively,

Ass(M) C Ass(My/Mp—1) U Ass(Mp—1/My—2) U---U Ass(M>/ M) U Ass(My).
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But each M;/M;_; =~ R/p; for some p; € Spec R by Lemma 2.4.7. So Ass(M) C
{p1,P2,...,pn}since Ass(R/p) = {p} for each p € Spec R. Hence we are done. O

Definition 2.4.10. The support of an R-module M, denoted Supp(M ), is the set of all
prime ideals p of R such that My, # 0. If M # 0 we see that Supp(M) # @. For let
x € M, x # 0, then Ann(x) C p for p a maximal ideal of R. Then p is a prime ideal
of R. But T # 0in My and so p € Supp(M). Furthermore, if 0 — M' — M —
M" — 0 is an exact sequence R-modules, then Supp(M) = Supp(M’) U Supp(M”).

Remark 2.4.11. If R is Noetherian and p € Ass(M), then pR, € Ass(Mp) by
Proposition 2.4.5. So Ry, /pR), is isomorphic to a submodule of M;. Hence M, # 0
and so p € Supp(M ). Thus Ass(M) C Supp(M).

Theorem 2.4.12. Let R be Noetherian and M be an R-module. If p is a minimal
element in Supp(M), then p € Ass(M).

Proof. Let p be a minimal element in Supp(M ). By Proposition 2.4.5, it suffices to
prove the result for a local ring R with maximal ideal p and a nonzero R-module M.
Since p is minimal, we further assume that My = O for all prime ideals g contained
in p. So Supp(M) = {p}. But Ass(M) C Supp(M) by the remark above. So
p € Ass(M) since Ass(M) # 0. O

Definition 2.4.13. The height (ht) of a prime ideal p is the supremum of the lengths
s of strictly decreasing chains p = po D p1 D -+ D Ps—1 D Ps of prime ideals of R.

The Krull dimension of R, denoted dim R, is defined by
dim R = sup{htp : p € Spec R}

It follows from the definitions above that ht p+dim R/p < dim R and ht p = dim R,,.
If dim R = 0, then every prime ideal of R is minimal, and if R is a principal ideal
domain which not a field, then dim R = 1.

Definition 2.4.14. Now let V' be a subset of Spec R. Then the Krull dimension of
V, denoted dim V/, is defined to be the supremum of the lengths of strictly decreasing
chains po D p1 D -+ D Ps—1 O ps of prime ideals of V. In particular, the Krull
dimension of R is dim Spec R. The dimension of an R-module M, denoted dim M,
is defined by dim M = dim Supp(M). So dim M < dim R.

Remark 2.4.15. If M is finitely generated, then Supp(M) = {p € SpecR :
Ann(M) C p}. Forif M = mj R+myR+---+myR forsomemy,my,...,m, € M,
then p € Supp(M) if and only if there is an i such that % # 0in M,. But
this means that there is an i such that Ann(m;) C p. But this holds if and only if
Ann(M) = (72, Ann(m;) C p. Hence if M is finitely generated, then dim M =
dim R/ Ann(M).
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We now recall the following.

Definition 2.4.16. The radical of an ideal I of R, denoted +/T, is defined by v/T =
{r € R:r" e I for some n > 0}. We note that I C +/I.If I = 0, then /T is called
the nilradical. 1t is easy to see that the nilradical is the set of all nilpotent elements
of R.

Proposition 2.4.17. /T is the intersection of all prime ideals containing I.

Proof. Let p be a prime ideal containing /. If r € VI, thenr" € I C p and so
r € p. Hence /I C (Np>r - Now let x ¢ V1. Then x” ¢ I for eachn > 0. So
S = {1,x,x2,...} is a multiplicative set disjoint from /. Then the set of ideals J
such that / D I and J N § = @ has a maximal element g by Zorn’s Lemma. We
claim that g is a prime ideal. We first note that if x ¢ g, then (q + Rx) NS # 0
for otherwise ¢ + Rx would contradict the maximality of q. So x € q if and only
if (9 + Rx) NS = 0. Thus x; ¢ g, x» ¢ q implies that (¢ + Rx;) NS # @. So
((q@ + Rx1)(g + Rx2)) NS # @. But (¢ + Rx1)(q + Rx2) C (g + Rx1x2). So
(¢ + Rx1x2) NS # @ and thus x;x2 ¢ q. So g is a prime ideal. Hence x ¢ ﬂpDI .

Thus /T = (MNp>1 P- o
Corollary 2.4.18. The nilradical of R is the intersection of all prime ideals of R.

Definition 2.4.19. An ideal / of R is said to be primary if ab € I and a ¢ I implies
that b" € I for some integer n > 1. It is easy to see that / is primary if and only if
every zero divisor of R/ is nilpotent.

Remark 2.4.20. If ] is a primary ideal, then VT isa prime ideal. For if ab € VI,
then a”b" € I for some n > 0. Ifa ¢ /I, then a” ¢ I. But I is primary.
So (b")y" e I for some m > 0. Hence b € +/I and we are done. It follows
from Proposition 2.4.17 that if I is primary, then /7 is the smallest prime ideal
containing /.

Definition 2.4.21. If / is a primary ideal and p = VT, then [ is said to be p-primary.

Lemma 2.4.22. [f VT is a maximal ideal, then I is primary. In particular, if m is a
maximal ideal, then m" is wa-primary for each n > 0.

Proof. Let m = +/I. Then since /1 is the intersection of prime ideals p of R
containing /, we have that / C m C p. But m is maximal. So Spec(R/[) = {m/I}.
But then X € m// implies X is nilpotent and X ¢ m /[ implies that it is a unit. So if
x + I is a zero divisor of R/I, then x € m and so x + [ is nilpotent. Hence zero
divisors of R/I are nilpotent. That is, / is primary. The second part is now clear
since ~/m” = m. O
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Lemma 2.4.23. If R is Noetherian and I is an ideal of R, then (v/I)" C I for some
n > 0.

Proof. Since R is Noetherian, let VI = (r1,...,7s). Then rini € [ for some n; > 0.
Letn = (ny — 1) + (na — 1) + -+~ + (ng — 1) + 1. Then (+/1)" is generated by
monomials r{"'ry"? -+ r¢"* where n = Y i_; m; and m; > n; for some i. Thus
P2 e Tand so (V1) C 1. |

Proposition 2.4.24. If R is Noetherian, then the nilradical is nilpotent.

Proof. We simply let / = 0 in Lemma 2.4.23 above. m|

Proposition 2.4.25. Let R be Noetherian, mi a maximal ideal of R, and I an ideal of
R. Then I is wi-primary if and only if m" C I C w for some n > Q.

Proof. If I is m-primary, then +// = m and so I C w since I C +/I. Thus the
conclusion follows from Lemma 2.4.23. Conversely, ~/m” = mandsom” C I C m
implies that m = /m” C /I C /i = m. ]

Remark 2.4.26. Let R be Noetherian and M be a finitely generated R-module. The
number of minimal elements of Supp(M ) is finite since the sets of minimal elements
of Supp(M) and Ass(M) are the same by Theorem 2.4.12 and Ass(M) is finite by
Theorem 2.4.9. Such elements are called isolated associated primes of M while the
remaining primes in Ass(M) are said to be embedded. So by Remark 2.4.15, the
isolated associated primes of M are precisely the minimal prime ideals that contain
Ann(M). So \JAn(M) = (\y5aman P = (i1 p; where p}, ..., p} are isolated
associated primes of M. Elements of Ass(R /) are sometimes called prime divisors
of I and so isolated associated primes of R/[ are referred to as minimal prime divi-
sors of 1. Hence minimal prime divisors of [ are precisely the minimal prime ideals
that contain /.

Theorem 2.4.27. A ring R is Artinian if and only if R is Noetherian and dim R = 0.

Proof. If R is Artinian, then R is Noetherian by Theorem 2.3.26. Now let p be a
prime ideal of R and 7 € R/p, 7 # 0. Then (7)* = ()" for some n since R/p is
Artinian. So 7" = #"*1 .5 for some 5§ € R/p. Butthen 1 = 7 - § since R/p is an
integral domain. That is, R/p is a field and so p is maximal. Hence every prime ideal
is maximal and so dim R = 0.

Conversely, if dim R = 0, then each p € Spec R is both minimal and maximal. But
R is Noetherian. So by Remark 2.4.26, there are only finitely many minimal divisors
of the zero ideal, say p1, p2, ..., pr. Hence p1, p2,..., p, are the maximal ideals of
R. Thusrad(R) = ([, pi = V0. So rad(R) is nilpotent by Proposition 2.4.24. But
R/rad(R) = R/(\j—, pi is isomorphic to the semisimple R-module [];_; R/p;.
Hence R is Artinian by Theorem 2.3.26. m|
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As an application, we have the following result.

Theorem 2.4.28 (Principal Ideal Theorem). Let R be Noetherian and p be a minimal
prime ideal containing a principal ideal I # R. Thenhtp < 1.

Proof. We first note that ht p = dim R, by Definition 2.4.13 and pRy, is a minimal
prime ideal of the principal ideal I Ry. Thus we may assume that R is a local ring
with maximal ideal mt such that m is minimal over a principal ideal I of Ry.

Now let g be a prime ideal such that ¢ & m. We then consider the ideals q° R4 of
Rg and set q(i) to be the preimage of g’ Rg under the natural map R — Rg. Then
I+ q(i+1) cl+ q(i) for each i > 0 and so we get a descending chain of ideals
of R. But mi// is the only prime ideal of R/I since m is minimal over /. Hence
dimR/I = 0 and so R/I is Artinian by the theorem above. Therefore there is an
n > Osuchthat I 4+ q@+D =1 4 @™,

We now claim that if 7 = (a), then ¢ = aq® + q®**D. Clearly aq™ +
q@ D < g™ Now let x € ¢ Then since I + ¢+ = I + ¢ we have that
x =ra+ x" with x" € q(”‘H) reR,andra € q(”) But m is minimal over / and
g & m. Soa ¢ q. Butq" R, is c;Rq -primary by Lemma 2.4.22 and hence easily its
preimage q( ") is g-primary. So a' ¢ q(”) for any i > 0 and hence r € q(”) Thus
ra € ag™ and hence ™ = aq® + g *D),

But g € m and so ¢ = q(”"'l) by Corollary 1.3.14 and so q" Ry = q" 1R,
over Rq. Hence ¢ Rq = 0 by Nakayama Lemma (Proposition 1.3.13). Thus qRq
is nilpotent and so Rg is Artinian by Proposition 2.3.20. But then dim R; = 0 by
Theorem 2.4.27 above. Hence htq = O for all primes ¢ & m. Thatis,htm <1. O

Remark 2.4.29. Since minimal prime ideals of R consist of only zero divisors of R
by Remarks 2.4.4 and 2.4.26, we see that if a is not a zero divisor of R, then any
minimal prime ideal p containing / = {(a) is not a minimal prime ideal of R. Hence
htp > 1. But then ht p = 1 by the theorem above.

Theorem 2.4.30 (Generalized Krull Principal Ideal Theorem). Let R be Noetherian
and p be a minimal prime ideal containing an ideal 1 generated by n elements. Then
htp < n.

Proof. By induction on n. The case n = 1 is Theorem 2.4.28 above. We may again
assume R is local with maximal ideal mt which is minimal over an ideal / generated
by n elements, say aj,dz,...,a,. Suppose htm > n. Then there is a descending
chain of prime ideals mt = po D p1 D p2:-- D Pn. We may assume that there is no
prime ideal p’ such that p; € p’ € m. So I is not contained in p; because of the
minimality of mu. Thus some a;, say ai, is not an element of p;. We note that m is
minimal over p; + (a;) and so v/p1 + (a1) = m by Remark 2.4.20. Hence there is
ant > 0 such that m’ C p; + {(a1). Soforeachi = 2,3,--- ,n, af = b; + riaq
where b; € py, i € R. Nowset J = (bs,...,by). Then J C p;. Buthtp; > n. So
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by the induction hypothesis, p; is not minimal over J since J is generated by n — 1
elements. Hence there is a prime ideal g such that / C q < pjp. It is clear from
al = b; + riay above that g + (a1) contains a power of /. But then m is a minimal
prime ideal of g + (@) by minimality of mt. So the ideal /g of R/q is minimal over
the principal ideal (q + (@1))/q. Hence ht(tu/q) < 1 by Theorem 2.4.28 above. But
R/q has a chain of prime ideals mi/q D p1/g D 0 of length 2, a contradiction. |

Corollary 2.4.31. If R is Noetherian, then every prime ideal of R has finite height.
In particular, the Krull dimension of a semilocal ring is finite.

Proof. The first part easily follows from the theorem above. For the second part, we
simply recall that a ring is semilocal if it has finitely many maximal ideals, and so the
Krull dimension of a semilocal ring is the maximum of the heights of finitely many
maximal ideals and hence is finite by the above. m|

Corollary 2.4.32. A Noetherian ring satisfies the descending chain condition on its
prime ideals.

We now prove a converse of the Generalized Krull Principal Ideal Theorem.

Theorem 2.4.33. Let R be Noetherian and p be a prime ideal of R of height n. Then
there exist elements ay,as, . .., an in p such that p is minimal over I = {(ay, ..., ay).

Proof. If n = 0, there is nothing to prove. So we assume n > 1. By Theorem 2.4.12,
R has a finite number of minimal prime ideals, say pi, p2,...,pr. Buthtp > 1.
So p is not contained in any p; and thus p ¢ Jj_; pi- Soleta; € p —J/_; »i
and set R = R/{a1), P = p/{a1). Then dim R < n — 1 and so by the induction

hypothesis there exist a sequence dy, .. ., d, in p such that p is minimal over the ideal
(@z,...,an)in R. Buta; = a; +(a,) forsomea; € p,i =2,...,n. So p is minimal
over /. i

We now generalize the notion of primary ideals to modules.

Definition 2.4.34. A submodule N of an R-module M is said to be a primary sub-
module if N % M and xy € N and x ¢ N implies y" M C N for some n > 0. It is
easy to see that N is a primary submodule of M if and only if every zero divisor r of
M/ N is nilpotent for M/ N, that is, r*(M/N) = 0 for some n > 0, or equivalently

reAnn(M/N).

Remark 2.4.35. We note that if M is a finitely generated R-module, then /Ann(M) =
() » over primes p containing Ann(M) by Proposition 2.4.17. But then \/Ann(M) =
(1p over p € Supp M by Remark 2.4.15. So if M is finitely generated, then a
submodule N of M is a primary submodule if and only if each zero divisor of M /N

is an element of (", esupp(ar/n) P-
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Proposition 2.4.36. Let R be Noetherian and M be a finitely generated R-module.
Then a submodule N of M is primary if and only if Ass(M/N) = {p} for some
p € Spec R. In this case, Ann(M/N) is a primary ideal of R and /Ann(M/N) = p.

Proof. 1f Ass(M/N) = {p}, then p is the only minimal element of Supp(M/N) by
Theorem 2.4.12. Hence /Ann(M/N) = p. If r is a nonzero divisor of M/N, then
r € p by Remark 2.4.4 and so r € \/Ann(M/N). So the conclusion follows from
Definition 2.4.34.

Conversely, suppose N is a primary submodule of M. Then | Upeassar/ny P =

v Ann(M/N). But minimal elements of Ass(M/N) and Supp(M/N) coincide. So

N v= N s=vamam- J »

peAss(M/N) pESupp(M/N) peAss(M/N)

But then Ass(M/N) = {p}.

We now show that Ann(M/N) is primary. Let ab € Ann(M/N) and a ¢
Ann(M/N). Then ab(M/N) = 0 and a(M/N) # 0. Thus b is a zero-divisor
for M/N and so b € \/Ann(M/N). That is, b"* € Ann(M/N) for some n > 0. So
Ann(M/N) is a primary ideal and moreover /Ann(M/N) = p from the above. 0O

Definition 2.4.37. If N is a primary submodule of M and Ass(M/N) = {p}, then
we say that N is a p-primary submodule of M.

Lemma 2.4.38. If R is Noetherian, then the intersection of a finite number of p-
primary submodules of an R-module is also p-primary.

Proof. Tt suffices to prove the result for two p-primary submodules Nj, N» of an
R-module M. We consider the obvious exact sequence 0 — M/(N1 N Np) —
M/N1@M/N,. Then Ass(M/(N1NN3z)) C Ass(M/N1®M/N,) C Ass(M/N1)U
Ass(M/N>) = {p} by Lemma 2.4.8 and so we are done. |

Definition 2.4.39. A submodule N of M is said to be irreducible if N = N1 N N,
where Ny, N are submodules of M implies N = Ny or N = Ns. Itis easy to see
that N is an irreducible submodule of M if and only if 0 is irreducible in M/N.

Proposition 2.4.40. Let R be Noetherian. Then every irreducible proper submodule
of a finitely generated R-module is primary.

Proof. Let N be an irreducible submodule of a finitely generated R-module M with
N # M. By Proposition 2.4.36, it suffices to show that Ass(M/N) consists of a
single prime ideal. Suppose to the contrary Ass(M/N) has two distinct prime ideals
p1 and pp. Then M/N has distinct submodules A and B such that A =~ R/pq,
B = R/p>. Butthen AN B = R/p; N R/p2 = 0. So it follows from the definition
above that A = 0 or B = 0, a contradiction. Thus the result follows. O



62 Chapter 2 Flat Modules, Chain Conditions and Prime Ideals

Proposition 2.4.41. Let M be a Noetherian R-module. Then every proper submodule
N of M is an intersection of finitely many irreducible submodules of M .

Proof. Let € be the set of all proper submodules A of M that are not a finite inter-
section of irreducible submodules of M. We claim that € = @. For if not, then €
has a maximal element Ag. But Ag is not irreducible and so A9 = A N B for some
submodules A, B of M with Ay # A, Ag # B. So Ay is strictly contained in A and
B. Thus A, B ¢ €. Hence A, B are finite intersections of irreducible submodules
and so is Ag, a contradiction. O

Definition 2.4.42. A primary decomposition of a submodule N of M is the finite
intersection N = N1 N Np N --- N N, where each N; is a primary submodule of M.
A primary decomposition N = ﬂ;=1 N; is said to be reduced if

(1) Njis p;-primary fori = 1,2,...,r implies p; # pj fori,j =1,....,r

2) Nin---NANi—1NONig1N---NN £ Nj fori =1,...,r.

We note that given any primary decomposition, we can get a reduced one by com-
bining the N;’s with the same prime ideal p; using Lemma 2.4.38 and by dropping
redundant p;’s one by one. So the two propositions above give the following impor-
tant result.

Theorem 2.4.43. Let R be Noetherian and M be a finitely generated R-module. Then
every proper submodule N of M has a reduced primary decomposition. Further-
more, if N = N1y N Ny N - N N, is a reduced primary decomposition of N with
Ass(M/N;) = {pi}, then Ass(M/N) = {p1,....pr} and \J/Ann(M/N) = (i_, p;
where p|, 5. ...,y are the minimal elements in {p1, ..., p,}. The decomposition of
N therefore depends only on N and M.

Proof. The first part follows from Proposition 2.4.40 and 2.4.41 and the remarks
above. We now embed M/ N into @;_; M/N;. Then

-
Ass(M/N) C | J Ass(M/N;) = {p1.....p/}.
i=1
Conversely, let N/ = Ny N ---N Nj—y N Nigg N---N Np. Then N'/N =
N'/(N'" N N;) = (N' + N;)/N; C M/N;. So Ass(N'/N) C Ass(M/N;) = {pi}.
That is, Ass(N'/N) = {p;}. But N'//N C M/N. So p; € Ass(M/N). Thus
{p1,...,pr} C Ass(M/N). Hence Ass(M/N) = {p1,...,pr}. The last part fol-
lows from Remark 2.4.26. |

Corollary 2.4.44. Let R be Noetherian. Then every proper ideal I of R has a re-
duced primary decomposition I = Iy N I, N --- N I, where each I; is p;-primary.
Furthermore, Ass(R/1) = {p1,...,p,} and VT = (i_, p; where ', ... p; are
the minimal elements in Ass(R/1).
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Exercises

1.

Let p be a prime ideal of R. Prove that p € Ass(M) if and only if M contains a
submodule isomorphic to R/p.

2. Let p be a prime ideal of a Noetherian ring R. Prove that Assg(R/p) = {p}.

Prove that if 0 - M’ — M — M" — 0 is an exact sequence R-modules, then
Supp(M) = Supp(M") U Supp(M").

Let R be Noetherian and M be a finitely generated R-module. Prove that the set
of minimal elements of Assg(M) and Supp(M) coincide.

Let R be Noetherian and M be a finitely generated R-module. Prove that the
following are equivalent.

(@) dimM =0

(b) R/ Ann(M) is an Artinian ring.

(c) M is of finite length.

(d) Every p € Ass(M) is a maximal ideal of R.
(e) Every p € Supp(M) is a maximal ideal of R.

Let R be Noetherian and M be an R-module of finite length. Prove that
Ass(M) = Supp(M).

. Prove that an ideal / of R is primary if and only if every zero divisor of R/I is

nilpotent.

8. Prove that if p € Spec R, then /p”" = p.

9. Show that if p € Spec R, then a power p” is not necessarily a primary ideal even

though /p” is a prime ideal.

Hint: Consider R = k|[x, y,z]/(z? — xy) where k is a field and let X, y,Z be
images of x, y,z in R. Then show that p = (¥,Z) € Spec R and p? is not a
primary ideal.

2.5 Artin—-Rees Lemma and Zariski Rings

In this section, all rings are commutative.

Aring S is said to be an R-algebra if there is a ring homomorphism ¢ : R — S. It

is easy to see that S is an R-module via rs = ¢(r)s. For example, every ring is a Z-
algebra.

Definition 2.5.1. A graded ring is aring R together with subgroups R, of the additive
group of R, n > 0, such that R = @,y Ry and Ry R, C Ryyyp forallm, n > 0.
In particular RoRg C Rp. So Rp is a sﬁbring of R. Thus a graded ring R is an Ro-
algebra. It is easy to see that if R is a graded ring, then Ry = @,,. ¢ Rn is an ideal
of Rand R/R4+ = Ry.
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Now let R be a graded ring. Then a graded R-module is an R-module M together
with subgroups M, of M, n > 0, such that M = @, ., M, and R,yM,, C M4y
for all m, n > 0. Each element x € M, is said to be homogeneous of degree n.

We state and prove the next result for completeness.

Proposition 2.5.2. Let R be a graded ring. Then R is Noetherian if and only if Ry is
Noetherian and R = Ry[x1,...,Xx;] for some x1,...,xr € R.

Proof. If R is Noetherian, then Ry =~ R/R is also Noetherian. Now since Ry is an
ideal of R, Ry = (x1,...,x;) for some x1,...,x, € R. Clearly, Ro[x1,...,x;] C
R. To show R C Ry[xy,...x,], we argue by induction that for each n > 0,
R, € Ro[x1,...,xr]. The case n = 0 is trivial. Now suppose n > 0 and R C
Ro[x1,...,xr] forall k < n — 1. Assume each x; is homogeneous of degree «;. If
y € Ry,theny € Ry andso y = Z;zl a;x; where a; € R, o, taking Ry, =0
ifa; >n. Buta; > 0. Son —a; <n—1andthus each a; € Ry[xy,...,x;] by the
induction hypothesis. Thus y € Rg[x1,...,x;] and hence R = Ro[x1,..., X,].

The converse follows from the Hilbert basis theorem. O

Definition 2.5.3. Let M be an R-module. Then a decreasing sequence (M},) of sub-
modules of M is called a filtration of M. If I is an ideal of R, then the filtration (M,,)
of M is said to be an I -filtration if IM,, C My, 1. An [ -filtration of M is said to be
stable, or according to Bourbaki, /-good, if there is an integer ng such that I M, =
My, 1 for all n > ng. It is clear that the filtration M = I°M > IM D I?M > ---
is a stable 7 -filtration. We recall that this filtration determines the /-adic topology of
M generated by {x + "M }.

Now let x be an indeterminate and / be an ideal of R, then R’ = R + Ix +
I?x2 4 .- is a graded subring of the polynomial ring R[x]. Furthermore,

M =M+ (IM)x + (I°M)x? + ---

is a subgroup of M ® g R[x] noting that M’ =}, o M, ® Rx" where M,, = [" M.
But

(I"x™) (M, ® rRx™) C I"™M, ® rRx"™" C My1n ® Rx™",
So M’ is a graded R’-module. With this notation, we have the following result.

Lemma 2.5.4. Let [ be an ideal of R and (M) be an I -filtration of an R-module
M such that each My, is a finitely generated submodule of M. Then the filtration is
stable if and only if M’ is a finitely generated R'-module.

Proof. From the above, M’ is a graded R’-module. Suppose M’ = (y1,¥2,..., Vr)
where y; € M,;i = M,, ® Rx"i. We note that each y; = m; ® x" for some
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m; € My,. Now let ng = max{n;},i = 1,...,r. If n > no and m € M,, then
m®@ x" =3 a;(m; ® x"') where a; € R’. But then we may assume a; = b; x" ™"
where b; € I"7". Som ® x" = (}_; bim;) ® x" and therefore m = ), bjm; €
1" " M,,. Hence if n > ng, M, C 1"7"°M,,. But clearly ["7"°M,, C M,.
Hence M, = 1" "°M,,. But then M,, = I M,_; whenever n > ng. That is, (M,)
is stable.

Now suppose My, = IMy—y forn > no. If n < no, let My = (yn;,...,¥yn,,)
Then My ® rRx" = (yn, ® x",..., yn,, ® x") as an R-module for each n < ny.
Ifn > no, then M, ® gRx" = IMy_1 @ Rx" = --- = I"7"M,, ® Rx". Thus
M’ is generated by {yn; ®x"}for0 <n <mngand1 < j <rpasan R’-module. O

Lemma 2.5.5. If R is Noetherian, then so is R’.

Proof. Since R" = R+1x+1?x?>+---,weseethat R'/Rg = Ry = Ix+1%2x?>+--.
where Ry = R. But [ is finitely generated. So I = (ai,...,a,). But then Ry =
(a1x,azx,---arx). Thus R" = Rlayx,...,a,x] as in the proof of Proposition 2.5.2
above. Hence R’ is Noetherian. O

Theorem 2.5.6 (Artin—Rees Lemma). Let R be a Noetherian ring, I an ideal of R,
M a finitely generated R-module and N a submodule of M. If (My) is a stable I -
filtration of M, then (M, N N) is also a stable I -filtration. In particular, there exists
an integer r such that

(I"M)YNN=I""(I"M)NN)
foralln >r.

Proof. We have M, " N) C IM, "IN C My4+1 N N. So (M, N N)isan I-
filtration which defines a graded R’-module N' = )", (M, N N) ® Rx" which is
an R’-submodule of M’. But (M,,) is stable. So M’ is a finitely generated R’-module
by Lemma 2.5.4. Hence N’ is a finitely generated R’-module since R’ is Noetherian
by Lemma 2.5.5 above. But then (M, N N) is stable again by Lemma 2.5.4.

In particular, if we set M, = I" M, then (/" M) N N) is a stable /-filtration since
(I"M) is. So there is an integer r such that I(I"M)N N) = (I"T'M) N N. Thus
if n > r, then

"TATM)ON) = 1N AT M)A N) = = (I"M) NN, D

Theorem 2.5.7 (Krull Intersection Theorem). Let R be Noetherian, I an ideal of R,
M a finitely generated R-module and N = ﬂnzO I"M. Then N = IN.

Proof. There exists an integer r suchthat N = (/" M)NN = I"""((I"M)NN) C
IN C N by the Artin—Rees Lemma. Hence /N = N. m|
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Corollary 2.5.8. Let R be Noetherian, I an ideal of R, and M a finitely generated
R-module. If I C rad(R), then M is Hausdorff and every submodule of M is closed
with respect to the I-adic topology on M.

Proof. By Proposition 1.7.2, to show M is Hausdorff it suffices to show that
(oo I"™™M = 0. Solet N = (),-oI"M. Then N = IN by the theorem above.
But / C rad(R). So N = 0 by Nakayama Lemma. Now if N is a submodule of M,
then M/ N is Hausdorff with respect to the quotient topology. Hence N is closed in
M by Remark 1.7.3. m|

Lemma 2.5.9. Stable I -filtrations of an R-module M determine the same topology
on M, namely the I -adic topology on M.

Proof. Let M, = I"M . Then (M,) is a stable [ -filtration of M that determines the
I -adic topology on M. Now let (M) be a stable [-filtration. Then IM, € M, _,
and so M, = I"M < M, since My = M. Thus M4, = I"M, C M, for
all n > 0. But there is an integer r such that /M, = M, _, foralln > r. So
M, , =1"M; C I"M = M, foralln > 0. Hence (M,) and (I" M) induce the
same topology on M. m|

Theorem 2.5.10. Let R be a Noetherian ring, I an ideal of R, M a finitely generated
R-module, and N a submodule of M. Then the I -adic topology of N coincides with
the subspace topology induced by the I -adic topology of M.

Proof. We simply note that (/" N) is a stable /-filtration of N. But (/"M) N N)
is also a stable 7 -filtration of N by the Artin—Rees Lemma (Theorem 2.5.6). So the
result follows from Lemma 2.5.9 above. O

Theorem 2.5.11. Let R be Noetherian, I an ideal of R, and 0 — M’ Z) M i
M" — 0 be an exact sequence of finitely generated R-modules. Then the sequence of

I -adic completions N N n
0O—-M —-M-—->M'—-0

is also exact.

Proof. The filtration (/™ M) determines the /-adic topology on M. So the filtration
(e~ '(I"M)) = ((I"M)NM’') determines the 7 -adic topology on M’ by the theorem
above and (W (I"M)) = ((I"M + M')/ M) determines the [ -adic topology on M".
Thus we consider the exact sequence
0— M /)(I"M)NM')— M/I"M — M" )y (I"M) — 0.
But the natural maps M'/(I" T 'M)YNM' — M'/(I" M) N M’ are clearly surjective.
So taking inverse limits gives the exact sequence
. / n / . n . " n
0—>1<lnM/(I MyYNnM —>1(£nM/I M—>1<£nM JUv(I"M) — 0
by Theorem 1.6.13. But then the result follows by Theorem 1.7.7. m|
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Corollary 2.5.12. If0 - M’ — M — M"” — 0 is an exact sequence of finitely
generated R-modules, then (M/M")" =~ M /M.

If we set M" = I"M, then M" = M/I"M has the discrete topology and so
M" = M". Hence we have the following.

Corollary 2.5.13. 1" M is an R-submodule of M and M /T"M =~ M/I" M.

Theorem 2.5.14. Let R be a Noetherian ring, I an ideal of R and M a finitely gen-
erated R-module. If M, R denote the I-adic completions of M and R respectively,
then

R® rM =~ M.
In particular, if R is complete, then so is M.

Proof. By Remark 2.3.12, M has an exact sequence F; — Fp — M — 0 with
F1, Fy finitely generated and free. So we have the following commutative diagram

R® RFi —> R® rFp —> R® gM —— 0

! i |

A A A

Fy Fo M 0

with exact rows. But the first two vertical maps are isomorphisms. So R® RM = M.
O

Corollary 2.5.15. If R is Noetherian and R is the I -adic completion of R, then
(1) Ris a flat R-algebra.
2) IR~1® gRx=1.
(3) The topology of R is the I -adic topology.
4) I C rad(R).

Proof. (1) Let M be a finitely generated R-module. Then there is an exact sequence
0 - K — P — M — 0with P projective and K, P finitely generated. So there is
an exact sequence 0 — T01r1 (R.M) > R® RK > R® gP - R® rM — 0.
But0 > K > P — M — 0Ois exact by Theorem 2.5.11. So Torf(R M) = 0 by
Theorem 2.5.14. Hence R is a flat R- -algebra by Theorem 2.1.8.

(2) Since Ris flat, 1 R~I® RI% by Proposition 2.1.7. So the result follows from
the theorem above.

(3) Since I R = 1, the topology of R is determined by (1" R) = (I™).

(4) We note that Ris complete inits / -adic topology Soifx € I, then (1-x)"! =
1+x+x2+--- converges in R. Thus 1— —Xy is a unitin R for all y € R.Sox € rad(]é)
by Definition 1.3.12. That is, Ic rad(R). |
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Corollary 2.5.16. If R is Noetherian, then the I-adic completion R is also Noether-
ian.

Proof. Let I = (ay,az,...,ar). Suppose S = R[x1,...,x;]and J = > [ _;(x; —
a;)S. Then S/J = R and so S/J is an S-algebra. Furthermore, if I; = ) /_; x; S,
then the /-adic topology on the S-algebra S/J coincides with the 7-adic topology
on R and so with respect to these topologies, we have (S/J)" = R. But (§/J)" =
S/J =8/JS =~ R[[x1,....x/]]/(x1 —ai....,xr —ay). So the result follows since
R[[x1,...,x,]] is Noetherian. |

Lemma 2.5.17. Let ¢ : R — S be a ring homomorphism and S be a faithfully flat
R-module, that is, S is a faithfully flat R-algebra. Then

(1) If M is an R-module, then the map ¢ - M — M ® RS defined by p(x) = x®1
is a monomorphism. In particular ¢ is a monomorphism.

(2) If I is an ideal of R, then ISN R = 1.

(3) The map ¥ : Spec S — Spec R defined by y(p) = ¢~ '(p) = pN R is
surjective.

(4) If m is a maximal ideal of R, then there exists a maximal ideal m' of S such
that ' N R = m, that is, m’ lies over m.

Proof. (1) Suppose x € M, x # 0. Then 0 # Rx ® RS C M ® RS since S is
faithfully flat. So Rx ® gS = (x ® 1)S # 0 and thus x ® 1 # 0.

(2) We simply note that R/] — R/I ® rS = S/IS is an embedding by part (1)
above since R/I ® RS is a faithfully flat R//-module. So I = IS N R by Lemma
2.1.13.

(3) Let ¢ € SpecR. Then § ® rRq = Sq is a faithfully flat Rq-module. So
S¢ # qS by again the lemma above. Therefore there exists a maximal ideal m of
Sg that contains q.Sgq. So mt N Rgq D qRy. But q Ry is maximal. Som N Ry = qRy.
Wenowletp =mNS. Thenp € SpecS and y(p) =pNR=@mNS)NR =
mNR=mNR;)NR=qR; "R =q.

(4) Since m € Spec R, we have that there is a p € Spec S such that p N R = m
by part (3) above. Now let m’ be a maximal ideal of S containing p. Then /N R D
p N R = m. But m is maximal. Som’ N R = m. |

Theorem 2.5.18. Let R be Noetherian and I be an ideal of R. Then the following
are equivalent:
(1) I Crad(R).
(2) Every finitely generated R-module is Hausdorff with respect to the I -adic topol-
0gYy.
(3) If M is a finitely generated R-module, then every submodule of M is closed
with respect to the I -adic topology on M.
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(4) Every ideal of R is closed with respect to the I -adic topology.
(5) Every maximal ideal of R is closed with respect to the I -adic topology.
(6) The I-adic completion Risa faithfully flat R-module.

Proof. (1) = (2) = (3) by the proof of Corollary 2.5.8.

(3) = (4) = (5) is trivial.

(5) = (6). Risaflat R-module by Corollary 2.5.15. Now let m be a maximal ideal
of R. Then mR = 1t is the closure of m in R. But m is closed. So mR N R = m
and thus mR #* R. Thatis, R is faithfully flat by Lemma 2.1.13.

(6) = (1). Let mt be a maximal ideal of R. Then by Lemma 2.5.17, there exists a
maximal ideal m’ of R such that m’ N R = m. But / C rad(R) by Corollary 2.5.15.
Sol/ cm'.Hence ] CINRCw/NR=m. Thus I C rad(R). O

Definition 2.5.19. A Zariski ring is a Noetherian ring R with an /-adic topology
that satisfies the equivalent conditions of Theorem 2.5.18 above. In this book, we
will from time to time be concerned with an important class of Zariski rings, namely,
Noetherian local rings (R, m, k) with the m-adic topology. In this case, R is a local
ring with maximal ideal mR and residue field R / mR (R/Am) = k.

Theorem 2.5.20. Let R be a semilocal ring and vy, 1y, ..., m; be its maximal
ideals. If I = rad(R), then the I-adic completion R is a direct product of local
rings Ry, . That is,

A

R =~ Ry X Ry X+ X Ry,

Proof. I = mjmy---m, = ﬂ;zl m; since I = rad(R). So foreachn > 0, I" =
mim?} ---m} where m’s are pairwise coprime. Hence R/I" = R/m’ x R/m’ x
<X R/m}. But R/mf is local and so R/m} = (R/m})y; = Ruy;/(mt; Ryy;)".

Thus lim R/m” = Ry,. But R = lim R/I". So the result follows. O
< l 1 <«
Exercises

1. Prove that if R is a graded ring, then Ry = €D, Ry is an ideal of R.
2. Let R be a Noetherian ring and / = rad(R). Prove that (), /" = 0.
3. If R is Noetherian and R is its I -adic completion, prove that (7'7) >~ (f ).
4. Let R be a Zariski ring and R be its completion. Prove that
(@) R C Rand I RN R = I for any ideal I of R.

(b) There is a bijective map ¥ : mSpec R — mSpec R given by ¥ (m) = mR
where mR N R = m.

(c) If R is alocal ring, then R is also a local ring.
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. Prove that if R is a Noetherian ring, then R[[x1,--- , x,]] is a faithfully flat R-

module.

Let R be Noetherian, / be an ideal of R such that / C rad(R), M and N be
finitely generated R-modules, and ﬁ, M , N denote I -adic completions. Argue
that an R-homomorphism f : M — N is an isomorphism if and only if f :
M — N isan isomorphism.

Let R be Noetherian,AI be an ideal of R and M, N be R-modules. Prove that
TorlR (M, N)N =~ TorlR (M N ) for all i > 0 where ”* denotes the [ -adic comple-
tion.



Chapter 3
Injective and Flat Modules

3.1 Injective Modules
We recall the following

Definition 3.1.1. An R-module E is said to be injective if given R-modules A C B
and a homomorphism f : A — E, there exists a homomorphism g : B — E such
that g|4 = f, that is, such that

« > B
v
v

Vay
V1

<

is a commutative diagram.

Theorem 3.1.2. The following are equivalent for an R-module E:

(1) E is injective.

(2) Hom(—, E) is right exact.

(3) E is a direct summand of every R-module containing E.
Proof. (1) = (2) is clear.

(2) = (3). We consider the exact sequence 0 - £ — B — C — 0 of R-mod-
ules. Then Hom(B, E) — Hom(E, E) — 0 is exact and so FE is a direct summand

of B.
(3) = (1). Let A C B be R-modules. Then we consider the pushout diagram

1
0 — - >

S v

<
A<~

J
_—

of Example 1.4.20. But then j is one-to-one and thus 0 — E LCis split exact. So
there isamap s : C — E such thatso j = idg. Then g = s o f’ is an extension of
fsince goi =so f'oi =so0jo f = f.Hence E is injective. i
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Theorem 3.1.3 (Baer’s Criterion). An R-module E is injective if and only if for all
ideals I of R, every homomorphism f : I — E can be extended to R.

Proof. Let A C B be R-modules and f : A — E be a homomorphism. Now let
€ be the collection of all pairs (C, g) such that A C C C B and g|4 = f. Then
€ #£ @ since (A, f) € €. Now partially order € by (C, g) < (C',g’)if C C C' and
glc = g. Then € is an inductive system and hence has a maximal element (Co, go)
by Zorn’s Lemma.

Suppose Co # B. Thenlet x € B—Cpandset I = {r € R:rx € Cp}. Then
I is a left ideal of R. Defineamap h : I — E by h(r) = go(rx). Then h is a
homomorphism and thus can be extended to &’ : R — E by assumption. We now
defineamap g : Co+Rx — E by g(co+rx) = golco)+h'(r). If co+rx = cy+r'x,
then co —cy = (' —r)x andso r’ —r € I. Thus go(co — ¢j) = go((r' —r)x) =
h(r"—r) = h'(r" —r) and so go(co) + h'(r) = go(cgy) + h'(r"). Hence g is a well-
defined homomorphism. Furthermore g(a) = go(a) = f(a) for all a € A and so
(Co + Rx, g) € €. This contradicts the maximality of (Cp, go) since Co & Co + Rx.
Hence Cyp = B and we are done. O

Theorem 3.1.4. Let R be a principal ideal domain. Then an R-module M is injective
if and only if it is divisible.

Proof. Letx € M and r € R be a nonzero divisor. Then we define a map f : (r) —
M by f(sr) = sx. f is a well-defined homomorphism since r is a nonzero divisor.
If M is injective, then we can extend the map f to amap g : R — M such that
x = f(r) = g(r) = rg(1). Thus M is divisible. Conversely, let / be an ideal
of Rand f : I — M be an R-homomorphism. By Baer’s Criterion, it suffices to
extend f to R for I # 0. But R is a principal ideal domain and so I = (s) for some
s € R,s # 0. If M is divisible, then there is x € M such that f(s) = sx. Now
define an R-homomorphism g : R — M by g(r) = rx. Then g|; = f forif r’ € R,

then g(r's) = r'sx = r' f(s) = f(r's). O
Corollary 3.1.5. Every Abelian group can be embedded in an injective Abelian group.

Proof. Let G be an Abelian group. Then G = (P Z)/S C (P Q)/S. But (P Q)/S
is divisible since Q is and so we are done by the theorem above.

Proposition 3.1.6. If R — S is a ring homomorphism and if E is an injective left R
module, then Hompg (S, E) is an injective left S module.

Proof. Note that S is an (R, S)-bimodule. Let A C B be a submodule of the left
S-module B. Then by Theorem 2.1.10, Homg (A, Homg(S, E)) =~ Hompg(S ®
sA,E) =~ Hompg(A4, E) and likewise for Homg (B, Homg(S, E)). So we have
that Homg (B, Homg(S, £)) — Homg(A4,Hompg(S, E)) — 0 is exact since
Hompg (B, E) — Hompg(A, E) — 01is exact. Hence Homg (S, E) is injective. |
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We note that it follows from the above that Homg (R, G) is an injective left R-mod-
ule for any ring R when G is a divisible Abelian group.

Theorem 3.1.7. Every R-module can be embedded in an injective R-module.

Proof. Let M be an R-module. Then M can be embedded into an injective Abelian
group G by Corollary 3.1.5. But M can be embedded in Homyz (R, G) by the map
¢ : M — Homg(R, G) defined by ¢(x)(r) = rx since ¢(x) = 0 implies x =
@(x)(1) = 0. Hence we are done by Proposition 3.1.6 above. O

Remark 3.1.8. It follows from the theorem above that every R-module N has an
exact sequence 0 - N — E® — E! — ... with each E’ injective. This sequence
is called an injective resolution of N .

Let--- - P - Py — M — 0 be a projective resolution of a left R-mod-
ule M and consider the deleted projective resolution -+ — P; — Po — 0. Then
the ith cohomology module of the complex 0 — Hom(Py, N) — Hom(P;, N) —

- is denoted Ext"R(M, N). Note that Ext%(M, N) = Hom(M,N) since 0 —
Hom(M, N) — Hom(Py, N) — Hom(P;, N) is exact. Ext"R(M, N) can also be
computed using a deleted injective resolution of N and is independent of the pro-
jective and injective resolutions used, and moreover given an exact sequence 0 —
M' — M — M" — 0 there exists a long exact sequence 0 — Hom(M"”,N) —
Hom(M, N) — Hom(M’, N) — Ext'(M”,N) — --- (see Chapter 8 for details).

We can now characterize injective modules as follows.

Theorem 3.1.9. The following are equivalent for an R-module E:

(1) E is injective.

(2) Ext'!(M, E) = 0 for all R-modules M and for all i > 1.

(3) Ext!(M, E) = 0 for all R-modules M.

(4) Ext'(R/1, E) = 0 for all ideals I of R and for alli > 1.

(5) Ext'(R/I, E) = 0 for all ideals I of R.
Proof. (1) = (2). Let--- — Py — Py — M — 0 be a projective resolution of M.
Then 0 — Hom(M, E) — Hom(Py, E) — Hom(Py, E) — --- is exact since E is
injective and so (2) follows.

(2) = (3) = (5) and (2) = (4) = (5) are trivial.
(5) = (1) follows from Baer’s Criterion (Theorem 3.1.3). |

Corollary 3.1.10. A product of R-modules | [;c; Ei is injective if and only if each
E; is injective.
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Definition 3.1.11. If M is a submodule of an injective R-module £, then M C E is
called an injective extension of M . It therefore follows from Theorem 3.1.7 that every
R-module has an injective extension.

Definition 3.1.12. Let A C B be R-modules. Then B is said to be an essential
extension of A if for each submodule N of B, N N A = 0 implies N = 0. In this
case, A is said to be an essential submodule of B.

We note that if A C B C C are modules and C is an essential extension of A4, then
B is an essential extension of A and C is an essential extension of B. If A C B is a
direct summand, then B is an essential extension of A if and only if A = B.

Definition 3.1.13. An injective module £ which is an essential extension of an R-
module M is said to be an injective envelope of M .

Theorem 3.1.14. Every R-module has an injective envelope which is unique up to
isomorphism.

Proof. Embed an R-module M into an injective R-module £ by Theorem 3.1.7, and
let € be the collection of all essential extensions of M in E. € # @ since M € €.
Partially order € by inclusion. Then € is an inductive system and so has a maximal
element £’ by Zorn’s Lemma. We claim that £’ is a maximal essential extension
of M. For let E” be an essential extension of M that contains E£’. Then we have a
commutative diagram

El c E//

since E is injective. But Kergp N E’ = 0 and E’ C E” is an essential extension. So
Kerg = 0 and thus ¢ is an embedding. Therefore, ¢(E") is an essential extension
of M contained in E, that is, p(E") € €. Thus ¢(E”) = E’ andso E” = E’. We
now want to argue E’ is injective. We do this by arguing E’ is a direct summand of
E. Consider the submodules S C E with £/’ NS = 0. Using Zorn’s Lemma we
see that there is a maximal such S. We claim then that (E’ + S)/S C E/S is an
essential extension. For if 7/S is a nonzero submodule of £/S then S € T. But by
the maximality of S, E'NT # 0. So (E'+ S)/S)N(T/S) = ((E'+S)NT)/S =
((E'NT)+ S)/S # 0. The canonical isomorphism (E’ + S)/S — E’ can be
extended to a necessarily injective f : E/S — E. Since (E’ + §)/S is essential in
E/S weget f((E'+S)/S) = E’isessential in f(E/S). But then by the maximality
of E', f(E/S) = E’, thatis, f((E' + S)/S) = f(E/S). Since f is injective this
implies (E’ + S)/S = E/S. This means that E/ + S = E. Since E'N'S = 0 we
get that £’ is a direct summand of E and so is injective.
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Now suppose E’, E” are injective envelopes of M. Then since E” is injective, the
inclusion map M — E" can be extended toamap ¢ : E' — E”. But M C E’is an
essential extension. So ¢ is an embedding as in the above. Thus @(E’) is an injective
extension of M and ¢(E’) is a direct summand of E£”. But then ¢(E’) = E” since
M is essential in E” and so ¢ is an isomorphism. O

Remark 3.1.15. We can construct an exact sequence 0 —- M — E* — E! — ...
with each E* injective using injective envelopes by the theorem above. This sequence
is called a minimal injective resolution of M .

Notation. An injective envelope of an R-module M is denoted by E(M). We
easily see that if M C E with E injective then E contains an injective envelope of
M (just extend the identity M — E to E(M) — E).

Lemma 3.1.16. Let R be left Noetherian, M be a finitely generated R-module, and
lirl)l Nj be a direct limit of R-modules. Then

Extg (M. lim N;) = lim Ext} (M. Nj)
foralli > 0.

Proof. By Remark 2.3.12, M has an exact sequence -+ — F; — Fp - M — 0
with each F; finitely generated and free. We consider the complex

0— Hom(M,llr_>an) — Hom(Fo,lir_>an) — Hom(Fl,llr_I;Nj) — -

and note that Hom(F;, 111})1 Nj) = @&N; = l_ir_)nHom(Fi, Nj). Thus the result follows
since h_r)n commutes with homology. m|

Theorem 3.1.17. The following are equivalent for a ring R:
(1) R is left Noetherian.
(2) Every direct limit of injective R-modules is injective.

(3) Every direct sum of injective R-modules is injective.

Proof. (1) = (2). Let E = h_r)nE ; where each E; is an injective R-module, and /
be a left ideal of R. Then Ext!(R/I, E) = li_rr)lExtl(R/I, E;) by the lemma above.

Hence Ext!(R/I, E) = 0. Thus E is injective by Theorem 3.1.9.

(2) = (3) is trivial since a direct sum is a direct limit of the finite sums which are
injective.

(3) = (1). Suppose R is not Noetherian. Then there exists a strictly ascending
chain I1 C I, C --- of left ideals of R that never stops. Let I = U?i1 I;. Then
I is an ideal of R and I/1I; # O for each i. Now let f; be the composition of the
natural map 7; : [ — [I/I; and the inclusion //I; C E(I/I;). Then define a map
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fil > @2, E(I/I;) by f(a) = (fi(a)). We note that for eacha € I, 7i(a) =0
for sufficiently large i. So f(/) is indeed contained in the direct sum.

If @72, E(I/1;) is injective, then f extends toamap g : R — @Pje; E(I/1I;).
Now let r; : @72, E(I/1;) — E(I/I;) be the projection map. Then for sufficiently
large i, 7r; o g(1) = 0. So foreacha € I, fi(a) = nj o f(a) = 7w o gla) =
a(m; o g)(1) = 0 for sufficiently large i. So for such i, the map f; : [ — E(I/I;)
is a zero homomorphism, a contradiction. Hence ;< E(I/1I;) is not injective and
the result follows. i

Theorem 3.1.18 (Eakin—Nagata Theorem). If R C S is a subring of the commutative
ring S and if S is a finitely generated R-module, then R is Noetherian if and only if
S is Noetherian.

Proof. If R is Noetherian then S is a Noetherian R-module by Corollary 2.3.10 and
so clearly S is a Noetherian ring.

Now suppose S is Noetherian. Let (E;);e; be an arbitrary family of injective
S-modules. By Theorem 3.1.17 above it suffices to prove that @ E; is injective.
Let @) E; C E be an injective envelope. Since P E; is essential in E (as R-mod-
ules), we claim Hompg (S, € E;) is essential in Homg(S, E) as S-modules. For if
f € Homg(S, E), f # 0, then since S is a finitely generated R-module and P E;
is essential in E, there is an r € R such that rf(S) C @ E; with rf(S) # 0.
Thus rf # 0 and rf € Hompg(S, & E;). Hence Hompg(S,&p E;) is essential in
Hompg(S, E) as R-modules and so also as S-modules.

Now since S is a finitely generated R-module, Homg (S, PE;) = @GHompg(S, E;)
(naturally). By Proposition 3.1.6, Hompg (S, E;) is an injective S-module and since S
is Noetherian, @ Homg (S, E;) and so also Homg (S, € E;) are injective S-modules
by the preceding theorem.

But by the above Hompg (S, €p E;) is essential in Homg(S, E). By Theorem 3.1.2
Hom(S, PE;) is a direct summand of Homg (S, E) and so in fact Homg (S, PE;) =
Hompg(S, E).

It only remains to show that this equality implies @ E; = E, that is, that P E;
is injective. But if x € E, the function R — E that maps r to rx has an R-linear
extension f : S — E. So f € Homg(S, E) = Homg(S, D E;). But then f(1) =
xe@E;.Hence E; =E. ]

Definition 3.1.19. The sum of all simple submodules of M is called the socle of M
and is denoted by Soc(M). If M has no simple submodules, we set Soc(M) = 0.
Clearly Soc(M) is the largest semisimple submodule of M and Soc(M) = M if and
only if M is semisimple. It is also easy to see that Soc(M) = {x € M : Ann(x) is
the intersection of finitely many maximal left ideals of R}. In particular, if R is local
with maximal ideal m, then Soc(M) = {x € M : Ann(x) = m} is a vector space
over the residue field k = R/wm.
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Proposition 3.1.20. Let A C B be R-modules. Then Soc(A) C Soc(B) and equality
holds if B is an essential extension of A.

Proof. Soc(A) C Soc(B) is trivial. Now let S be a simple submodule of B. When B
is an essential extension of 4, then SN A # Osince A C Bisessential. So SNA =S
and thus S C A. O

Corollary 3.1.21. If M is an R-module, then Soc(M) = Soc(E(M)).

Proposition 3.1.22. [f M is an Artinian R-module, then M is an essential extension
of Soc(M).

Proof. Let N be a nonzero submodule of M. Then N is Artinian and so the collec-
tion of all nonzero submodules of N has a minimal element, say S. S is a simple
submodule and so N N Soc(M ) # 0. Hence Soc(M ) is essential in M . O

Exercises

1. Let R be an integral domain. Prove that a torsion free R-module is injective if
and only if it is divisible.

2. Let R be an integral domain and K be its field of fractions. Prove that a torsion
free R-module is divisible if and only if it is a vector space over K. Conclude
that every torsion free R-module can be embedded in a vector space over K,
and hence in particular every finitely generated torsion free R-module can be
embedded in a finitely generated free R-module.

3. Prove thatif R is a commutative Noetherian ring, then an R-module E is injective
if and only if Ext! (R /p, E) = 0 for all p € Spec R.
Hint: Use Lemma 2.4.7 and Baer’s Criterion.

4. Let (M;);es be a family of R-modules and N be an R-module. Prove
(a) Ext"(N,[[; M;) = []; Ext"(N, M;) foralln > 0.
(b) Ext"(6D; M;, N) = [[; Ext"(M;, N) foralln > 0.

Hint: By induction on n using the long exact sequence corresponding to a short
exact sequence 0 - N — E — C — 0 with E injective and Propositions
1.2.10 and 1.2.11.

5. Prove Corollary 3.1.10.
6. Let A C B C C be modules. Prove

(a) C is an essential extension of A if and only if C is an essential extension of
B and B is an essential extension of A.

(b) If B and C are both essential extensions of A, then C is an essential extension
of B.
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7. Prove that an R-module M is injective if and only if it has no proper essential
extension.

Hint: If M has no essential extension, let M C E be an injective extension and
S C E be maximal with respect to M N S = 0 (by Zorn’s Lemma). Argue that
M =M+ S)/S C E/S is essential.

8. Let M be a submodule of E. Prove that the following are equivalent.
(a) E is an injective envelope of M.
(b) E is a maximal essential extension of M.
(c) E is a minimal injective extension of M.
9. Let R be an integral domain. Show that E(R) is its quotient field.
10. Prove that the following are equivalent.
(a) R is semisimple.
(b) Every R-module is semisimple.
(c) Every R-module is injective.
(d) Every exact sequence 0 —- A — B — C — 0 of R-modules is split exact.
(e) Every R-module is projective.
11. Let (M;);es be a family of R-modules. Prove

(a) If N; is an essential extension of M; for each i, then €D;; N; is an essential
extension of P, c; M;.

(c) If I is finite or R is Noetherian, then E(D,;c; M;) = D, E(M;).

12. Prove that Soc(M) = {x € M : Ann(x) is the intersection of finitely many
maximal left ideals of R}.

13. Prove that if R is a local ring with maximal ideal m and residue field k, then
Soc(M) is a vector space over k.

14. State and prove Schanuel’s Lemma for injective modules.

3.2 Natural Identities, Flat Modules, and Injective Modules
We start with the following

Theorem 3.2.1. Let R and S be rings, A a left R-module, and B an (S, R)-bimodule.
If C is an injective left S-module, then

Extg (4, Homg (B, C)) = Homg (TorX (B, 4), C)

foralli > 0.
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Proof. The case i = 0 is the natural identity in Theorem 2.1.10. Now let P, denote a
deleted projective resolution of A. Then

H'(Hompg(P., Homg (B, C))) = H'(Homg(B ® grP.,C))
~ Homg (H;(B ® grP.,C))

since H! commutes with Homg (=, C)if C isinjective (see Exercise 2 of Section 1.4).
So we are done. We also note that this theorem easily follows from Theorem 8.2.11
of Chapter 8. O

Definition 3.2.2. An R-module M is said to be finitely presented if there is an exact
sequence F; — Fp — M — 0 where Fy and F; are finitely generated free R-mod-
ules.

Remark 3.2.3. It is easy to see that an R-module M is finitely presented if and only
if there is an exact sequence 0 - K — F — M — 0 where F and K are finitely
generated R-modules and F is free. In particular, every finitely presented R-module
is finitely generated and the converse holds if R is left Noetherian by Corollary 2.3.11.

Lemma 3.2.4. Let R and S be commutative rings, S be a flat R-algebra and M, N
be R-modules. If M is finitely presented, then

Homgzp(M,N) ® rS =~ Homg(M ® RS,N ® RrS).

Proof. Since M is finitely presented, we have the following commutative diagram
with exact rows

0 —— Hom(M,N)® S Hom(Fy,N) ® S Hom(F{,N)® S

| | |

0 — Hom(M ® S,N ® §) — Hom(Fo ® S,N ® §) — Hom(F; ® S,N ® S)

where the maps ¢ are given by ¢( f ®s)(x®t) = s(f(x)®t). But the last two vertical
maps are isomorphisms since Fy and Fj are free and finitely generated. Hence the
first ¢ is also an isomorphism. m|

Theorem 3.2.5. Let R and S be commutative rings, S be a flat R-algebra, and M, N
be R-modules. If R is Noetherian and M is finitely generated, then

Extie(M,N) ® S = Exts(M ® gS.N ® gS)

foralli > 0.
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Proof. By Remark 2.3.12, M has a projective resolution --+ — Py — Py > M — 0
with each P; finitely generated (and hence finitely presented). But then --- — P; ®
RS — Py ® RS — M ® RS — 0 is a projective resolution of the S-module
M ® RrS. Soasin Theorem 2.1.11,

Exth(M,N) ® rS = H'(Homg(Ps, N)) ® rS
~ H'(Homg(Ps, N) ® rS)
~ H'(Homg(Pe ® grS.N ® rS))
~ Exts(M ® rS,N ® rS). o

Corollary 3.2.6. Let R, M, and N be as in the theorem above. Then
Extr(M, N)p = Extp (Mp, Np)
forall p € Spec R and all i > 0.

Definition 3.2.7. An injective R-module E is said to be an injective cogenerator
for R-modules if for each R-module M and nonzero element x € M, there is
f € Hompg(M, E) such that f(x) # 0. This is equivalent to the condition that
Hompg(M, E) # O for any module M # 0. Forif x € M, x # 0, any g €
Hompg(Rx, E) with g # 0 has g(x) # 0. And such a g has an extension f €
Hompg (M, E). The group Q/Z is an injective cogenerator for Abelian groups. Hence
if M is a nonzero right R-module, then the character module M + of M defined
by MT = Homgz(M,Q/Z) is a nonzero left R-module. Moreover, if M is any
left R-module, then Homg(M, RT) = M™ by Theorem 2.1.10. Hence R™ =
Homgz(R,Q/Z) is an injective cogenerator for left R-modules since R™ is injec-
tive by Proposition 3.1.6. Thus there exists an injective cogenerator for R-modules
for any ring R.

Lemma 3.2.8. Let R and S be rings and E be an injective cogenerator for R-mod-
ules. Then a sequence 0 — A ‘B i C — 0of (R, S)-bimodules is exact if and

only if the sequence 0 — Hompg(C, E) ﬂ Homg(B, E) LN Homg(A, E) — 0 of
left S-modules is exact.

Proof. The ‘only if” part is clear since E is an injective R-module. For the ‘if” part,
we show that Im ¢ = Ker ¥. Suppose Im ¢ ¢ Ker . Then choose b € Im ¢ —Ker .
So ¥ (b) # 0. But ¢ (b) € C. So there is an f € Homg(C, E) such that f(y¥ (b)) #
0 since E is an injective cogenerator. But b = ¢(a) forsome a € A. Thus foyop #
0. But then (¢* o ¥*)(f) # 0, a contradiction. So Im ¢ C Ker . Now suppose
Img € Kery. Thenletb € Keryy —Im ¢. So b + Im ¢ is nonzero in B/ Im ¢. Thus
there is an f € Homg(B/Im ¢, E) such that f(b+Im¢) # 0. Hence the composite
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map g : B 5B /Img L E where t is the natural homomorphism is such that
g(b) # 0. But ¢*(g) = go @ = Osince f(Img) = 0. So g € Kergp* = Imy™.
That is, g = ¥*(h) = h o ¢ for some h € Homg(C,E). But b € Kery. So
g(b) = h(¥ (b)) = 0, a contradiction since g(b) # 0. |

Theorem 3.2.9. The following are equivalent for an (R, S)-bimodule F :
(1) F is aflat left R-module.
(2) Homg (F, E) is an injective right R-module for all injective right S-modules E.

(3) Homg (F, E) is an injective right R-module for any injective cogenerator E for
right S-modules.

Proof. (1) = (2). Let I be aright ideal of R. If F is flat, then 0 — | ® F —
R ® F is an exact sequence of right S-modules. But then Homg(R ® rF, Eg) —
Homg(/ ® rF,Es) — 0 is exact for any injective right S-module E. Hence by
Theorem 2.1.10, Homg (R, Homg (F, E)) — Hompg(/,Homg (F, E)) — 0 is exact.
Thus Homg (F, E) is injective by Baer’s Criterion.

(2) = (3) is trivial.

(3) = (1). Let A C B be right R-modules. By (3), Homg (B, Homg (F, E)) —
Hompg(A,Homg(F, E)) — 0 is exact. So Homs(B ® gF,E) — Homg(4 ®
RF,E) — Oisexact. Butthen0) > A ® rF — B ® grF isexact by Lemma 3.2.8
above. O

Theorem 3.2.10. The following are equivalent for an R-module F :
(1) F isflat.
(2) The character module F ™ is an injective right R-module.
3) Tor{e (R/1, F) = 0 for all finitely generated right ideals I of R.
4) 0> 1® RF — F isexact for all finitely generated right ideals of R.

Proof. (1) < (2) follows from Theorem 3.2.9 above.

(1) = (3) = (4) is trivial.

(4) = (2). Every ideal is a direct limit of finitely generated ideals and direct limits
preserve exact sequences. Hence (4) means that 0 — I ® rF — F is exact for all
rightideals / of R. So F* — (I ® gF)T — 0is exact. But then Homg(R, F ) —
Homg (I, FT) — 0 is exact for all ideals / of R. So (2) follows by Baer’s Criterion.

O

We now consider yet another natural identity.

Theorem 3.2.11. Let R and S be rings, A be a finitely presented right S-module, B
an (R, S)-bimodule, and C an injective left R-module. Then the natural homomor-
phism

7:A® sHomg(B,C) — Homg(Homg (A, B),C)
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defined by t(a® f)(g) = f(g(a)) is an isomorphism wherea € A, f € Hom(B, C),
and g € Hom(A, B). If A is a finitely presented left R-module, B an (R, S)-
bimodule, and C and injective right S-module, then

Homg(B,C) ® rA =~ Homg(Homg(4, B),C)
where the isomorphism is given by t(f ® a)(g) = f(g(a)).

Proof. We consider the exact sequence F; — Fy — A — 0 with Fy, F finitely
generated and free. Then we have the following commutative diagram

F; ® Hom(B, C) Fo ® Hom(B, C) A®Hom(B,C) —= 0

| | |

Hom(Hom(Fy, B),C) — Hom(Hom(Fy, B),C) — Hom(Hom(4, B),C) — 0

with exact rows. But the first two vertical maps are isomorphisms. So 7 is an isomor-
phism. The second isomorphism follows similarly. m|

As an application, we have the following result.

Proposition 3.2.12. A finitely presented flat R-module is projective.

Proof. Let F be a finitely presented flat right R-module and B — C — 0 be
an exact sequence of right R-modules. We want to show that Homg(F, B) —
Hompg(F,C) — 0 is exact, or equivalently 0 — Hompg(F, C)t — Homg(F,B)*
is exact by Lemma 3.2.8. But then we have the following commutative diagram

0 F®RC+ F®RB+

i |

0—— HOHIR(F,C)+ I HomR(F, B)+

where the first row is exact since F is flat. But the vertical maps are isomorphisms
by Theorem 3.2.11 above since F is finitely presented. Hence the second row is also
exact and thus we are done. O

Theorem 3.2.13. Let R and S be rings. If R is left Noetherian, A a finitely presented
left R-module, B an (R, S)-bimodule, and C an injective right S-module, then

TorR (Homg (B, C), A) = Homg (Extiy (A, B), C)

foralli > 0.
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Proof. This follows from Theorem 3.2.11 as in the proof of Theorem 3.2.1 since A
has a deleted projective resolution with each term finitely presented. m|

Theorem 3.2.14. Let A be a finitely presented left R-module, B and (R, S)-bimodule
and C a left flat S-module. Then the natural map t : Homg(4,B) ® sC —
Hompg (A, B ® sC) defined by t(f ® ¢)(a) = f(a) ® ¢ is an isomorphism.

Proof. The proof is similar to that of Theorem 3.2.11. m|

Theorem 3.2.15. Let R, S, A, B and C be as in Theorem 3.2.14 above. If R is left
Noetherian, then

Extg(4, B) ® sC = Extp(4, B ® sC)
foralli > 0.

Proof. This is also similar to the proofs of Theorems 3.2.1 and 3.2.13. m|

Theorem 3.2.16. Let R be left Noetherian. Then the following are equivalent for an
(R, S)-bimodule E:

(1) E is an injective left R-module.
(2) Homg (E, E’) is a flat right R-module for all injective right S-modules E’.

(3) Homg (E, E’) is a flat right R-module for any injective cogenerator E’ for right
S-modules.

4) E ® sF isaninjective left R-module for all flat left S-modules F.
(5) E ® sF isaninjective left R-module for any faithfully flat left S-module F.

Proof. (1) = (2). Let I be a left ideal of R. Then [ is finitely presented since R is
Noetherian. But E is injective. So

0 — Homg (Homg(/, E), E') — Homg(Homg(R, E), E')

being exact means 0 — Homg (E, E') ® gl — Homg(E, E’) is exact by Theorem
3.2.11. Hence (2) follows by Proposition 3.2.10.

(2) = (3) and (4) = (5) are trivial.

(3) = (1) follows by reversing the proof of (1) = (2) and using the fact that £ is
an injective cogenerator.

(1) = (4). Homg(R, E)® s F — Homg (I, E)® sF — 0is exact for an ideal /
of R since g E is injective. But then Homg (R, E® s F) - Homg(/, E®Q sF) — 0
is exact by Theorem 3.2.14 since g F is flat. Hence (4) follows.

(5) = (1) follows by reversing the proof of (1) = (4) above and using the fact
that g F' is faithfully flat. m|
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Corollary 3.2.17. Let R be left Noetherian. Then a left R-module E is injective if
and only if the character module E™ is a flat right R-module.

Definition 3.2.18. An R-module M is said to have injective dimension at most n,
denoted injdim < n, if there is an injective resolution 0 - M — E° — El —
-+« —> E™ — 0. If n is the least, then we set injdim M = n. The flat dimension and
projective dimension of an R-module are defined similarly using flat and projective
resolutions, respectively. These are denoted flatdim M and proj dim M, respectively.
We note that flatdim M < projdim M and equality holds if R is left Noetherian and
M is finitely generated.

Now using Theorems 3.2.1, 3.2.13, and 3.2.15, we get the following results of
Ishikawa.

Theorem 3.2.19. Let M be an (R, S)-bimodule and E an injective cogenerator for
right S-modules. Then flatdim gM = injdim g Homg (M, E). If furthermore R is
left Noetherian, then injdim g M = flatdim g Homg (M, E).

Theorem 3.2.20. Let M be an (R, S)-bimodule and F be a faithfully flat left S-mod-
ule. If R is left Noetherian, then injdim gM = injdim gM ® s F.

Now let M be aright R-module and (A} ) be a family of left R-modules over some
index set A. Then we define a map

‘EZM®RHAA—>1_[M® RA,,
A A
by 1(x®(ay)) = (x®ay,). If A;, = R foreach A, then we have amap v : M @ R* —
MA given by 7(x ® (ry)) = (xry). It is easy to see that 7 is an isomorphism when
M is finitely generated and free.

Lemma 3.2.21. The following are equivalent for a right R-module M :
(1) M is finitely generated.

2) t: M[[pAx — [Iao M ® Ay is an epimorphism for every family (A)) A of
left R-modules.

3)t:M®RAr > M2 isan epimorphism for any set A,
4) t: M ®RM — MM is an epimorphism.

Proof. (1) = (2). Let0 - K — F — M — 0 be exact with F finitely generated
and free. Then we have the following commutative diagram

KQ[[pAr —= FR[[pAr —= M R[[p 41 — 0

ml lrf lw

with exact rows. But tx is an isomorphism. So 737 is onto.
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(2) = (3) = (4) is trivial.

(4) = (1). Let (xx)pr € MM . Then since 7 is onto, (xx)pr = t(3_r—; Xi ® (rix))
where x; € M, rix € R. So (xx)pm = (37— Xirix). Hence x = Y 7| x;rix and
thus x1, x2, ..., x, are generators of M. O

Theorem 3.2.22. The following are equivalent for a right R-module M :
(1) M is finitely presented.

(2) t: M R[]\ Ax = [[a M ® Ay, is an isomorphism for every family (A)) A of
left R-modules.

(3) t: M ® R™ — M™ is an isomorphism for any set A.

Proof. (1) = (2). Let F; — Fy — M — 0 be exact with F, F; finitely generated
and free. Then we get a commutative diagram similar to the one in the proof of the
lemma above where g, and T, are isomorphisms. Thus 757 is an isomorphism.

(2) = (3) is trivial.

(3) = (1). M is finitely generated by the lemma above. Solet0 - K — F —
M — 0 be exact with F finitely generated and free. It now suffices to show that K is
finitely generated. But for any A, we have a commutative diagram

KQRMN — FQRA — = MQRA —= 0

| -

0 KA FA MA — -0

with exact rows where tF and 737 are isomorphisms. So tx is onto and hence K is
finitely generated again by Lemma 3.2.21. |

Definition 3.2.23. A ring R is said to be right coherent if every finitely generated
right ideal of R is finitely presented. It follows from Remark 3.2.3 that every right
Noetherian is right coherent.

We are now in position to prove the following characterization of coherent rings.

Theorem 3.2.24. The following are equivalent for a ring R:
(1) R is right coherent.
(2) Every product of flat left R-modules is flat.
(3) R is a flat left R-module for any set A.

(4) Every finitely generated submodule of a finitely presented right R-module is
finitely presented.
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Proof. (1) = (2). Let (F))A be a family of flat left R-modules. If / is a finitely
generated right ideal of R, then / ® [[; F) = [[, I ® F; by Theorem 3.2.22. But
I ® F) C F) since F) is flat. So we have an embedding I ® [[, Fy < []; F, for
each finitely generated right ideal / of R. Hence [ [, F) is flat by Theorem 3.2.10.
(2) = (3) and (4) = (1) are trivial.
(3) = (4). Let M be a finitely presented right R-module and N be a finitely
generated submodule of M. We now consider the following commutative diagram

0 N ® RA M ® RA
o o
0 NA MA

with exact rows. But 7 is an isomorphism by Theorem 3.2.22. So ty is one-to-one.
But N is finitely generated. So 7 is surjective by Lemma 3.2.21. Hence ty is an
isomorphism and thus N is finitely presented. O

Remark 3.2.25. Suppose M is a finitely presented right R-module. Then there is an
exact sequence 0 - K — Fp — M — 0 with Fp and K finitely generated and
Fy free. If R is right coherent, then K is finitely presented by the theorem above.
Thus continuing in this manner, we see that if R is right coherent then every finitely
presented right R-module M has a free resolution - -+ — Fy — Fyp - M — 0 with
each F; finitely generated and free.

Theorem 3.2.26. Let R be right coherent, M be a finitely presented right R-module,
and (A)) A be a family of left R- modules. Then

Torf(M,l_[Ao ~ l_[Tor,If(M, Ay)
A A
foralln > 0.

Proof. The case n = 0 is Theorem 3.2.22 and the rest is left as an exercise. m|

Remark 3.2.27. Lemma 3.1.16 and Theorems 3.2.5, 3.2.13, and 3.2.15, hold without
the Noetherian hypothesis if we assume that the left R-module M (or A) has a pro-
jective resolution - - - — P; — Po — M — 0 with each P; finitely presented. Hence
by Remark 3.2.25 above, these results together with Theorems 3.2.19 and 3.2.20 hold
if we assume R is right coherent.
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Exercises

1. Prove Remark 3.2.3.
2. Prove that the group Q/Z is an injective cogenerator for Abelian groups.

3. Aring is said to be left semihereditary if its finitely generated left ideals are pro-
jective. Prove that if R is a left semihereditary ring, then every finitely generated
submodule of a free R-module is a direct sum of finitely many finitely generated
left ideals.

4. Prove that the following are equivalent for a ring R.
(a) R is left semihereditary.

(b) Every finitely generated submodule of a projective R-module is projective.
Moreover if R is a domain, then the above statements are equivalent to

(c) Every finitely generated torsion free R-module is projective.

5. A semihereditary integral domain is called a Priifer domain. Prove that if R is a
Priifer domain, then an R-module is flat if and only if it is torsion free.

Hint: Use Exercises 5 and 6 of Section 2.1.
Prove Theorem 3.2.13.

Prove Theorem 3.2.14.

Prove Theorem 3.2.15.

Prove Theorems 3.2.19 and 3.2.20.

10. Prove Theorem 3.2.26.

11. Prove Remark 3.2.27.

12. Let R be a commutative Noetherian ring, / be an ideal of R, and M, N be R-
modules. Prove that if M is finitely generated, then

v o 3o

i A~ i a7 X
Extp(M. N)" = Ext,(M,N)

for all i > 0 where " denotes the I -adic completion.

3.3 Injective Modules over Commutative Noetherian Rings

In this section, R will denote a commutative Noetherian ring. We start with the fol-
lowing result.

Proposition 3.3.1. Let S C R be a multiplicative set. If A C B is an essential
extension of R-modules, then so is S 14 ¢ S71B as R-modules (and so also as
S~ R-modules).
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Proof. Let N be a nonzero finitely generated submodule of S™!B. Then N = S~ B’
for some finitely generated submodule B’ of B. Suppose N N S™'4 = 0. Then
S~H(B'NA) = NNS~!'A4 = 0. Thus since B’N A is finitely generated, 1 (B'NA) = 0
for some t € §. Now let / = Rt. Then by Artin—Rees Lemma, there is an r such that

(I"BYN(B' NA)=I1""(I"B)YN(B'NA)=0

forall n > r since I(B'N A) = 0. But ({"B’)NA = (I"B')N (B'N A). So
(I"B’)NA = 0, a contradiction since I” B’ # 0 and A C B is an essential extension.
Hence S~! A is an essential submodule of S™! B. i

Proposition 3.3.2. Let S C R be a multiplicative set. If E is an injective R-module,
then STLE is an injective S™' R-module.

Proof. Let J be anideal of S™!'R. Then J = S~!I for some ideal / of R by Lemma
2.2.6. So

Extg_ o(ST'R)/J. ST'E) = Exty_, o (ST (R/1).ST'E)
~ ST ExtR(R/I, E)

by Theorem 3.2.5. So the result follows from Baer’s Criterion (Theorem 3.1.9). O

Theorem 3.3.3. S™'Eg(M) = Eg-1x(S™' M) for any R-module M.

Proof. STVER(M) is an injective S~ R-module by the proposition above. But then
S~™YER(M) is an essential injective extension of S™!M by Proposition 3.3.1. Thus
STLER(M) is an injective envelope of S™1 M. |

Remark 3.3.4. It follows from the above that if 0 — M — E® — E! — ... isan
injective resolution of an R-module M, then 0 — S™!M — S™1E® — S~1E!

- is an injective resolution of the S™! R-module S™! M. Similarly for the minimal
injective resolution of M .

Definition 3.3.5. An R-module M is said to be indecomposable if there are no non-
zero submodules M1 and M, of M such that M = M & M,.

Lemma 3.3.6. An injective R-module M is indecomposable if and only if it is the
injective envelope of each of its nonzero submodules.

Proof. Let N be a nonzero submodule of M. Then M =~ E(N) @& N’ for some R-
module N’. Thus N’ = 0 since M is indecomposable. Conversely, suppose M =
My @ M. If My # 0, then My C M is an essential extension by assumption. But
Mi N My =0.So M, =0 and we are done. O
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Theorem 3.3.7. The following properties hold:
(1) E(R/p) is indecomposable for all p € Spec R.

(2) If E is an indecomposable injective R-module, then E = E(R/p) for some
p € Spec R.

Proof. (1) Suppose there are nonzero submodules £ and E, of E(R/p) such that
E(R/p) = E1 ® E>. Then E; N R/p # Ofori = 1,2since R/p C E(R/p) is
an essential extension. So let x; € E; N R/p be a nonzero element. Then x1x; €
(E1 N R/p)N(E2N R/p). But (E1 N R/p) N (Ex; N R/p) = 0. So x1,xp are
nonzero elements in R /p such that x;x, = 0. This contradicts the fact that R /p is a
domain. Hence E(R/p) is indecomposable.

(2) Let p € Ass(E). Then R/p is isomorphic to a submodule of E. Thus F =
E(R/p) by Lemma 3.3.6 above. O

Theorem 3.3.8. Let p,q € Spec R. Then
(1) Ifr € R —p, then r is an automorphism on E (R /p).
(2) E(R/p) = E(R/q) ifand only if p = q.
(3) Ass E(R/p) = {p}.
(4) If x € E(R/p), then there exists a positive integer t such that p'x = 0.

(5) Hom(E(R/p). E(R/q)) # 0 if and only if p C g.
(6) If S C R is a multiplicative set, then

E(R fSNp=10
S—lE(R/p):{O( /) Z:SQE;AQ)

(7) Homg, (k(p), E(R/p)) = k(p).

Proof. (1) Let ¢ : E(R/p) — E(R/p) be the map multiplication by r. Then ¢ is
one-to-one on R/p. So Kero N R/p = 0. But R/p C E(R/p) is essential. So
Ker ¢ = 0 and thus ¢ is one-to-one. But then ¢(E(R/p)) is an injective summand of
E(R/p). So ¢ is an isomorphism since £(R/p) is indecomposable by Theorem 3.3.7.

(2) Suppose p # g. Let p & a. Then r € p — g is an automorphism on E(R/q)
but noton E(R/p). So E(R/a) £ E(R/p).

(3) Let g € Ass(E(R/p)), then R /g is isomorphic to a submodule of E(R/p) and
so E(R/p) =~ E(R/q). Hence p = g by (2).

(4)Letx € E(R/p), x # 0. Then Rx =~ R/ Ann(x). But Ass E(R/p) = {p} by
(3). So Ass(Rx) = {p}. But then p is the unique minimal element in Supp(Rx). But
Supp(Rx) = {q € Spec R : Ann(x) C g} by Remark 2.4.15. Hence p is the radical
of Ann(x). That is, Ann(x) is p-primary and we are done.
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(5) If p C q, then we have a map R/p %R /q induced by the inclusion p C q.
Now embed R/q into E(R/q). Then the composition of ¢ and the inclusion R/q C
E(R/q) can be extended to a nonzero map in Hom(E(R/p), E(R/a)).

Now let ¢ € Hom(E(R/p), E(R/q)) be nonzero. Then let x € E(R/p) be such
that ¢(x) # 0. If r € p, then r’x = 0 for some ¢ > 0 by (4) above. So ' € Ann(x).
But Ann(¢(x)) C q by (3). Therefore Ann(x) C Ann(¢(x)) C q. So r! € g and
thus r € g. Hence p C q.

(6) This follows from parts (1) and (4).

(7) E(R/p) = E(R/p)p by (6) above. So E(R/p) = Eg,(k(p)) by Theo-
rem 3.3.3. So Homg, (k(p), E(R/p)) = Hompg, (k(p), Er, (k(p))) = k(p). i

Remark 3.3.9. We see from Theorems 3.3.7 and 3.3.8 above that there is a bijective
correspondence between the prime ideals p of R and the indecomposable injective
modules given by p <> E(R/p).

Example 3.3.10. Let k be a field and k[X] denote k[xy,...,xq4] where x; are vari-
ables. Recall that (x1, ..., Xg) is a maximal ideal in k[x1, ..., x4] and hence a prime
ideal. Thus k = k[x1,...,x4]/(x1.....x4) and so k can be viewed as a k[X]-
module. Furthermore, by Theorem 3.3.7 above, E(k) = E(k[X]/(x1.,...,xq)) is
indecomposable.

Now let R = k[[x7! x5t ..., xq_l]] denote the ring of formal power series in
xl_l xz_l,...,xq_1
Bxi'xy " xg " where B € k and v;’s are nonnegative integers. Then R can be
considered as a k[X]-module where the product of terms is given by

with coefficients in k. Terms in the series are of the form

—(v1— —(v2— —(vg—itq)
((,Y)CIMXMZ ")(ﬂx_vl —vs “x—vq) _ (Olﬂ)xl (1 Ml)x2 (v2—u2) Xy Vg—Hq
o2 ? 0 ifany pu; > v; foranyi.
Now consider the k[X]-module Homy (x[x7k[X]. k[x7k) and let A be a k[X]-mod-
ule. Then since A = A ®x] k[X], we have that

Homy (A, k) = Homy (A k[X] k[X], k)
= Homk[X] (A, Homk(k[X], k))

So Homy (—, k) and Homgx)(—, Homy (k[X], k)) are equivalent as functors from
k[X]-modules to Abelian groups.

Since k is injective as a k-module, if A C B are k[X]-modules, then Homy (B, k) —
Homy (A,k) — 0 is exact as groups. But then Homy[x)(B, Homy (k[X]. k)) —
Homy[x1(A, Homg (k[X],k)) — 0 is exact and so Homy (k[X], k) is an injective
k[X]-module. Now define a map

¢ : Homy (k[x]. k) — k[[x; x5t ox ]
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by o(f) = 2,50 f(x" .. xg)x7" .. xg . Then @ is an isomorphism of Abel-
ian groups. As k[X]-modules, let « € k, f € Homy(k[X], k), and h € k[X], then
set ((axt'xb2 o xl ) f)(h) = flaxtxt? ... x5 - h) where ;s are nonnegative
integers. Thus

PUaxl a2 o) f) = 3 af T g

v; >0

and ¢ is an isomorphism as k[ X]-modules. Hence k[[)cl_1 , xz_l, e xq_l]] is an injec-

tive k[ X]-module.

But k£ C k[xl_l,...,xq_l] C k[[xl_l,xz_l,...,xq_l]] where k[xl_l,...,xq_l] is
the inverse polynomial ring which can also be viewed as a k[X]-module. Let i €
klxyt, ... ,xq_l], h # 0 and suppose ax; "' x; "2 - - xq_v‘f is a nonzero term in & with
the largest sum vy + vy + -+ + vg. Let Bx ™! ...xq_uq be any term in /4, then
M1+ p2 4+ -+ g < vi+v2+ -+ v5and so u; < v; for some i. Thus
g (ax M xg M) = 0in k! ...,xq_l]. So (x}'...x;)h = a # 0.
Thus k is an essential submodule of k[xl_l, ... ,xq_l]. So E(k[xl_l, .. ,xq_l]) =
E(k)andissuchthatk[xy,...,xg]/(x1,....x4) =k C k[xl_l,...,xq_l] C Ek) C
k[[xl_l,...xq_l]].

Now let h € E(k), h # 0. Then h € k[[x]!,.. .,xq_l]]. But by Theorem 3.3.8,

there exists a positive integer s such that x;h = 0 fori = 1,2,....,9. Soh €
klxyt, ... ,xq_l]. Thatis, E(k) = k[x]!,.. .,xq_l] as k[X]-modules.

Now let k[[X]] denote the power series ring k[[x1, ..., x4]]. Then k[x~ !, ..., xq_l]
and k are also k[[X]]-modules and again k[xl_l, ceen Xy 17is an essential extension of

k. If E' = E(k[x{',.. .,xq_l]) as k[[X]]-modules, then E’ = E(k) and so is an
indecomposable k[[X]]-module.

But viewing k[x7!,.. .,xq_l] and E’ as k[X]-modules, then we see that £’ =
k[xl_l,...,xq_l] @ E” for some k[X]-submodule E” since k[xl_l,...,xq_l] is an
injective k[X]-module from the above. Butif f € k[[X]] and h € E”, h # 0, then
Ann(h)is (x1,...,xg)-primary. So f = f1+ f2 where f1 € k[X]and f> € Ann(h).
Thus fh = fih € E”. Thatis, E” is also a k[[X]]-module. But then E” = 0 since
E’ is indecomposable as a k [[X]]-module. Hence k[x7 !, ..., xq_l] is also an injective
envelope of k when regarded as k[[X]]-modules.

Theorem 3.3.11. Every injective R-module E is a direct sum of indecomposable R-
modules. This decomposition is unique in the sense that for each p € Spec R, the num-
ber iy of summands isomorphic to E(R /p) depends only on p and E. In fact, j1, =
dimy () Hompg,, (k(p). Ep) and E = @yespec  E(R/D) X where Card X = jup.

Proof. We assume E # 0. Let € be the class of submodules of E that are direct
sums of indecomposable injective modules. € # @ since E has an indecomposable
injective summand. For if p € Ass(E), then E(R/p) is an indecomposable summand
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of E. Now partially order € by inclusion. Then € is an inductive system and so it
has a maximal element Eg. But R is Noetherian. So Ej is an injective R-module by
Theorem 3.1.17. Thus E =~ Eg @ E’ for some injective E’. If E’ = 0, then we are
done. If not, let p € Ass(E’). So E’ =~ E(R/p) ® E”. But then Eq & E(R/p)
contradicts the maximality of Eo. Hence E’ = 0.

Now let E = P, ; E; where the E; are indecomposable. Then E; = E(R/p) for
some p € Spec R by Theorem 3.3.7. Butif p,q € Spec R, then E(R/q)p = 0ifq ¢
p by Theorem 3.3.8. So for each p € Spec R, Ey = (D; Ei)p = Dqcyp E(R/q)p-
Butif g # p, then r € p — g is an automorphism on E(R/q) and is zero on k(p) and
so Homg, (k(p). E(R/q)p) = 0. Thus using Lemma 3.1.16 and Theorem 3.3.8, we
have

Homp, (k(p). Ey) = Homg, (k). €D E(R/a); )
qCp

=~ (P Homg, (k(p), E(R/a)p)

aCp

~ EB Homg, (k(p), E(R/p))
P

= k(p)™*)
where Card Xy, is the number of copies of E(R/p) in E. |

Corollary 3.3.12. If M is an R-module, then E(M) =~ @ E(R/ p) &) over p €
Spec R where Card Xy = dimy ) Hompg,, (k(p), Mp) = dimy ) Homg(R/p, M)y.
In particular, if M is finitely generated, then Card X, < oo for each p € Spec R.

Proof. It suffices to show that Hom(k (p), M) = Hom(k(p), Ep) where E = E(M).
But clearly Hom(k(p), M) C Hom(k(p), Ep). Now let 0 # f € Hom(k(p), Ep).
Then f is one-to-one since k(p) is simple and so Ker f = 0. Therefore f(k(p)) is a
simple submodule of E,. But M, C Ej is essential and so f(k(p))NM, = f(k(p)).
Hence f(k(p)) C M, and thus Hom(k(p), Ep) C Hom(k(p), My). Now the result
follows from the theorem above. O

Theorem 3.3.13. Let F be a flat R-module and p € Spec R. Then F ® rE(k(p)) =
E k()X for some set X.

Proof. F ® gpE(k(p)) is an injective Ry-module by Theorem 3.2.16 and so F' ®
rRE(k(p)) = EBE(k(q))(Xq) overg C p. Ifq € p,letr € p, r ¢ g. For each
w e F Q E(k(p)), w # 0, there exists an n > 0 such that r*w = 0 by Theorem
338. If w € @ E(k(q))X), then multiplication by r” is an automorphism of
P E(k(q))X+) and thus r"w # 0. Hence p = q. O
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Theorem 3.3.14. If E and E' are injective R-modules, then

Homg(E. E') = [ [ Hom(E (k(p)). E (k(p)) *»)
for some sets Xy, p € Spec R.

Proof. E can be written as @ E (k(p))(XP) over p € Spec R by Theorem 3.3.11
above. So

Hom(E. E') 2 [ [ Hom(E (k(p)). E)*» = [ [ Hom(E (k(p)). E'**)

by Propositions 1.2.10 and 1.2.11. Hence we consider the modules Hom(E (k(p)), G)
for G injective. We have

Hom(E (k(p)), G) = Hom(E (k(p)) ® Ry, G) = Hom(E (k(p)). Hom(Ry, G)).

But Hom(Ry, G) is injective over Ry. So Hom(Ry, G) = ®E (k(q))X) over g C
p. Butif ¢ € p, then Hom(E (k(p)), E(k(g))) = 0. Hence Hom(E (k(p)), G) =
Hom(E (k(p)), E (k(p))*»)). O

Remark 3.3.15. The R,-module Hom(E (k(p)), E (k(p)) X)) is denoted by T}, and
so Homg(E, E') = []espec g Tp- In the next section, we will use Matlis duality to
show that T, is the p Rp-adic completion of a free Ry-module (Theorem 3.4.1 (7)).

Exercises

1. Let E be an injective R-module. Prove that the following are equivalent.
(a) E is indecomposable.
(b) 0 is not the intersection of two nonzero submodules of E.
(¢) Hompg(E, E) is a local ring.

2. Prove part (6) of Theorem 3.3.8

3. Prove Remark 3.3.9.

4. Prove that @meSpec E(R/wm) is an injective cogenerator of R.

3.4 Matlis Duality

Throughout this section, R will denote a commutative local Noetherian ring with max-
imal ideal m and residue field k. MV will denote the Matlis dual Homg (M, E (k))
of the R-module M. There is a natural homomorphism ¢ : M — M?? defined by
ex)(f) = f(x)forx € M, f € M. We call this map the canonical homomor-
phism. We will say that an R-module M is Matlis reflexive (or simply reflexive) if
M = M"Y = (M?)? under the canonical homomorphism M — M"".
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We start with the following result.

Theorem 3.4.1. Let R be the m-adic completion of R. Then
(1) E(k) is an injective cogenerator for R.
(2) The canonical map ¢ : M — M"Y is an embedding.
(3) If M is an R-module of finite length, then length M = length MV and M is
reflexive.
(4) R® RE(k) = E(k).
(5) E(k) = E, (R/ W) as an R-module.
(6) R = Homg(E(k), E(k)).
(7) Hompg(E (k), E(k)X)) =~ E(X\), the m-adic completion of a free R-module.
(8) If M is a finitely generated R-module, then M = M.
(9) E(k) is Artinian as an R and R-module.

Proof. (1) Let M be an R-module and x € M, x # 0. Then Rx =~ R/ Ann(x) and
so we have a nonzero map g : Rx — E (k) which is obtained from the canonical map
R/ Ann(x) — k = R/m and the inclusion k C E (k). But g can be extended to a
map f € M. So f(x) # 0. Thus E(k) is an injective cogenerator.

(2) Let x € M, x # 0. Then there is an f € MY such that f(x) # 0 by part (1).
So p(x)(f) = f(x) # 0. Thus ¢ is one-to-one.

(3) By induction on length M. If length M = n, then M has a submodule N
of length n — 1 where M/N is a simple R-module. So we have an exact sequence
0—>k—> M"—> NV — 0where (M/N)" = k" = k. Butlength NV = n — 1 by
the induction hypothesis. Hence length MV = n. Thus length M = length M V. So
the embedding ¢ : M — MUY of part (2) above is an isomorphism.

(4)Let S, = {x € E(k) : m"x = 0}. Then E(k) = |J S, by Theorem 3.3.8. But
S1 C Sy C---andso E(k) = li_rI>1Sn. Now we consider the exact sequence 0 —
m"R — R — Ié/m”l@ — 0. Then m”ﬁ@Sn — ﬁ®Sn — (Ié/m”]é)@S,, — 0is
exact. Butm”R® S, — R®S,, is the zero map and R/m" R = R /m™ by Corollary
25.13. SOR® S, = (R/m"R) ® S, =~ R/m" ® S, = S,. Hence taking limits
gives the result.

(5) By part (4), E(k) is an R-module and so E (k) is an injective R-module that
contains k = Ié/tﬁ by Theorem 3.2.16. Now it is easy to show that E (k) is an
indecomposable R-module. Hence E #(k) is an injective envelope of R /1 as an

R-module.
(6) Let S, be as in the above. Then Hom(R /m”, E(k)) =~ S, and so

Homg (E(k), E(k)) = Homg(lim Sy, E(k)) = lim Hom(S,, £(k))

1 n\v __ 1; n_ p
_1<£1(R/m) _LlnR/m = R.
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(7) We again let S, be as in the above and note that S, =~ Hom(R/m", E(k)) is of
finite length. So

Homg (E (k), E(k)*®)) = lim Hom(S}, E (k)
o~ (X)
o l(lr_nHom(S,,, E(k))

~ 1§ n (X)
= lim(R /m")

(8) If M is finitely generated, then

MV’ =~ Hom(M?", E(k))
~ M ® gHom(E(k), E(k)) by Theorem 3.2.11
=M RI% by part (6) above
=M by Theorem 2.5.14.

(9) By part (4), E(k) is an R-module and the R-submodules of E (k) coincide with
the R-submodules. Hence we may assume R is complete.

Let E(k) = No D N1 D --- be a descending chain of submodules of E (k). Then
Hom(N;, E(k)) = R/I; for some ideal I; of R and so we have an ascending chain
Iop C Iy C I C --- of ideals of R. But R is Noetherian, so there is an integer ng
such that I; = I; 4 foralli > ng. So R/I; = R/I;4, foralli > ng. We claim that
this implies that N; = Njy1 foralli > ng. Forif N; #% Nj+1and R/I; = R/Ii+1,
then N;/Ni+1 # 0 with Hom(N;/Nj+1, E(k)) = 0, a contradiction since E (k) is
an injective cogenerator by part (1) above. m|

Example 3.4.2. It follows from Examples 1.7.8 and 3.3.10 and the theorem above
thatif k[x7 1, ..., x; 1] is viewed as a k[x1, ..., x,]-module, then

Homk[xl,m,xn](k[xl_l, .. .,x;l],k[xl_l, o ,x;l]]) =~ k[[x1,...,xa]].

Proposition 3.4.3. An Artinian local ring R with residue field k is self injective if and
only if dimg Soc(R) = 1.

Proof. If dimg Soc(R) = 1, then k is an essential submodule of R by Proposi-
tion 3.1.22 and so an extension R — E(k) of the embedding k — E(k) is an in-
jection. But since the lengths of R and E (k) are the same by Corollary 2.3.25 and
Theorem 3.4.1 above, R — E (k) is an isomorphism and so R is injective.
Conversely, if R is injective then dimg Soc(R) = 1. For if k & k C R, then
E(k ®k) = E(k)® E(k) C R and R would not be indecomposable. O
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Theorem 3.4.4. An R-module M is Artinian if and only if it is finitely embedded,
that is, M C E (k)" for somen > 1.

Proof. E(k) is Artinian by Theorem 3.4.1 above and so the “if” part is clear.

Now suppose M is Artinian and M # 0. Then since E(k) is an injective co-
generator, the set of nonzero R-homomorphisms from M to E (k) is nonempty. We
now consider the set of all possible maps f : M — E(k)" where i > 1. Since M
is Artinian, we can find an f : M — E (k)" with minimal kernel. We claim that
f is one-to-one. For if not, let x € Ker f, x # 0. Then there is a nonzero map
g : M — E(k) such that g(x) # 0 as in proof of part (1) of the theorem above. Thus
h=(fg): M — E(k)" & E(k) is an R-homomorphism such that Ker# < Ker f.
But this contradicts the minimality of Ker f. So f is one-to-one. m|

Corollary 3.4.5. An R-module M is Noetherian if and only if M is Artinian.

Proof. If M is Noetherian, then there is an exact sequence R" — M — 0. But then
MY C E(k)" and so MV is Artinian by the theorem above. Conversely, if MV is
Artinian, then MV C E (k)" for some n > 1. But then we have an exact sequence
(RMPY — M?PY — 0. Thus the map R — M — 0 is exact since E(k) is an
injective cogenerator. That is, M is Noetherian. m|

Corollary 3.4.6. If MV is Noetherian, then M is Artinian.

Proof. 1If M is Noetherian, then M"? is Artinian by the above. But the canonical
homomorphism M — MUY is an embedding. So M is Artinian. m|

Lemma 3.4.7. Let R be complete. If an R-module M is Noetherian or Artinian, then
M is reflexive.

Proof. If M is Noetherian, then we have an exact sequence R — R" — M — 0.
Thus we have the following commutative diagram

R™ R" M 0
(Rm)UU N (Rn)UU MUU O

with exact rows. But the first two vertical maps are isomorphisms since E(k)V =
R=R. SoM = M"".
Similarly for Artinian modules. m|

Theorem 3.4.8. If R is complete, then an R-module M is Artinian if and only if MV
is Noetherian.
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Proof. Suppose M is Artinian, then M C E(k)" for some n > 1. But then we have
an exact sequence R” — MV — 0 since R is complete and so E(k)” = R. Thus
M7 is Noetherian. The converse follows from Corollary 3.4.6. m|

Exercises

1. Let S, = {x € E(k) : m"x = 0}. Prove that Hom(R /m", E(k)) = Sj.

2. Prove that if 0 - M’ — M — M” — 0 is an exact sequence of R-modules,
then M is reflexive if and only if M, M" are reflexive.

3. Let N be a submodule of M and set N* = {9 € MV : ¢(N) = 0}. Prove
that if M is reflexive, then the map N +— N gives a one-to-one correspon-

dence between all submodules of M and all submodules of MV which reverses
inclusions.

Hint: Note that N* = Ker(M? — NV).

4. Prove that if R is complete, then there is a one-to-one correspondence between
all submodules of E (k) and all ideals of R given by N — Ann N.

5. Prove Lemma 3.4.7 for Artinian modules.

6. Enochs [53, Proposition 1.3]. Let R be complete. Prove that an R-module M is
reflexive if and only if it contains a finitely generated R-submodule N such that
M/ N is Artinian.



Chapter 4
Torsion Free Covering Modules

In this chapter, R will denote an integral domain, K will denote its field of fractions,
and module will mean an R-module. We recall that an R-module M is said to be
torsion free if rx = Oforr € Rand x € M impliesr = 0 or x = 0. M is said to
be a torsion module if for each x € M, thereisanr € R, r # 0 with rx = 0. Each
module M has a largest torsion submodule, denoted ¢ (M), and M/t(M) is torsion
free. Furthermore, the canonical map M — M/t(M) is universal in the sense that
any linear map M — G where G is a torsion free module, the diagram

M ——= M/t(M)

N

G

can be completed uniquely to a commutative diagram. Clearly the module M/t(M)
and the map M — M/t (M) are characterized up to isomorphism by these properties.

In general, given an R-module M, there does not exist a torsion free module 7" and
amap T — M satisfying the dual condition, that is, given any linear map G — M
where G is torsion free, the diagram

G
|

| \
y
T — M
can be completed uniquely to a commutative diagram.

However, if the requirements on 7 and T — M are weakened, their existence and
uniqueness can be proved.

4.1 Existence of Torsion Free Precovers

Definition 4.1.1. A linear map ¢ : T — M where T is a torsion free module is called
a torsion free cover of M if
(1) for every torsion free module G and linear map f : G — M there is a linear
map g : G — T suchthatpog = f
(2) Ker ¢ contains no nonzero pure submodule of 7" (here S is a pure submodule of
T means thataS = aT N S foralla € R).
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Definition 4.1.2. If ¢ satisfies (1) and maybe not (2) above, it is called a torsion free
precover of M.

The existence of a torsion free precover of M is a consequence of the following
lemmas:

Lemma 4.1.3. If ¢ : T — M is a torsion free precover of M and S C M is a
submodule, then ¢~ 1(S) — S is a torsion free precover.

Proof. Immediate. m|

Lemma 4.1.4. If M is divisible, then ¢ : T — M is a torsion free precover (where
T is torsion free) if and only if for every linear map f : K — M (recall that K is the
field of fractions of R) there is a linearmap g : K — T withpog = f.

Proof. The condition is clearly necessary. Let G — M be linear with G torsion free.
Since G is a submodule of a torsion free and divisible module G’ and G — M can
be extended to G’ — M, we can assume G is itself divisible. But then G is the direct
sum of modules isomorphic to K and hence the condition is sufficient. O

Lemma 4.1.5. If M is a divisible R-module, then there is a torsion free precover
o: T — M.

Proof. By the preceding lemma, it suffices to let 7 = KX) where X = Hompg (K, M)
and ¢ : T — M be the evaluation map defined by ¢((x5)s) = Y. 0(xs), 0 €
Hom(K, M). |

Corollary 4.1.6. Every module M has a torsion free precover.

Proof. We only need note that M is a submodule of a divisible module and then
appeal to Lemmas 4.1.5 and 4.1.3. m|

Exercises

1. Prove thatif 7 is torsion free, then S is a pure submodule of 7" if and only if 7'/ S
is torsion free.

2. Prove Lemma 4.1.3.

3. Prove that every torsion free R-module is a submodule of a torsion free divisible
R-module.

4. Ifeach ¢, : T) — M, for A € A is atorsion free precover, argue that [ [, . o ¢ :
[175 — [] M), is also a torsion free precover.



100 Chapter 4 Torsion Free Covering Modules

5. Let n > 1 be a natural number. Argue that the canonical surjection o : Z —
Z/(n) is not a torsion free precover (here R = Z).

Hint: Let T C Q consist of all rational numbers that can be written a/b with
gcd(b,n) = 1. Argue that Z — Z/(n) canbe extendedtoamap ¢ : T — Z/(n).
Then argue that there isnomap f : T — Z except 0.

6. Argue that a torsion free precover is necessarily surjective.

7. Leta € R where R is an integral domain and a is not a unit of R. Let b € R
be such that b + (a) is a unit of R/(a). Show that if the canonical surjection
R — R/(a) is a torsion free precover then (b) + (a) = R.

8. If ¢ : T — M is a torsion free precover over some integral domain R and M is
torsion free, show that 7 =~ M @ N for some R-module N.

9. Leto : T — M be a torsion free precover. Show by an example that in general
@[x] : T[x] — M [x] is not a torsion free precover over R[x].

10. If M = My & M5, and M admits a torsion free precover ¢ : T" — M, argue that
both M; and M, admit torsion free precovers.

11. If ¢ : T — M is a torsion free precover and ¢ = Yy o p withp : T — U,
Y : U — M where U is torsion free, argue that ¢ : U — M is also a torsion
free precover.

12. If ¢ : T — M is a torsion free precover, argue that ¢[[x]] : T[[x]] — M[[x]] isa
torsion free precover over R[[x]].
Hint: If G is torsion free over R[[x]] and n > 1, then G/x"G is torsion free
over R. Use the previous problem to get that

T[[x]l/x"T[[x]] — M[x]]/x" M][x]]

is a torsion free precover over R.

4.2 Existence of Torsion Free Covers

Theorem 4.2.1. For each module M there exists a torsion free cover ¢ . T — M.
Furthermore if ¢’ : T' — M is also a torsion free cover, then anymap g - T — T’
such that ¢’ o g = @ is an isomorphism.

Proof. By Corollary 4.1.6, there is a torsion free precover ¢ : T — M. Now let the
submodule S C T be maximal such that

(a) S CKerg

(b) S is a pure submodule of 7.
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Then a quick check shows that the induced map 7/S — M is a torsion free cover
of M.

Nowletg : T — M and ¢’ : T" — M be torsion free covers. If g : T — T’
is such that ¢’ o g = ¢, then Kerg C Ker¢ and since T’ is torsion free, Ker g is
pure in 7. Hence by hypothesis, Kerg = 0 and so g is an injection. This means
Card T < Card T’ and so reversing the argument we see that Card T = Card T’. We
must show g is a surjection.

Now let X be a set such that X D T, X D 7" and such that Card X > Card T'. Let
F be the set of all pairs (T, ¢9) where Ty is a torsion free module whose elements
are elements of X and where ¢g : T9 — M is a torsion free cover. Partially order
F by setting (T, po) < (T1,¢1) if Ty is a submodule of Ty and ¢1|Ty = @o. Then
F has maximal elements, for if € is a chain of %, let 7* be the union of the first
coordinates of the pairs in € with the unique structure of a module such that for each
(To, o) € €, Ty is a submodule of T*. Let ¢* : T* — M be such that ¢*|Ty = ¢o
for each such (7o, ¢o). Then clearly ¢* : T* — M is a torsion free precover. If
N C T* is a pure submodule with N C Ker ¢*, then for each (T, ¢9) € €, N N Ty
is a pure submodule of Ey contained in the kernel of ¢g, so N N Tp = 0. Hence
N = 0andso (T*, ¢*) belongs to ¥ and is an upper bound of €.

So assume (T*, ¢*) is a maximal element of . Let f : T* — T be such that
@ o f = ¢*. Asabove, f is an injection. To show that it is a surjection, let Y C X
be such that CardY = Card(T — f(T*)) and such that T* N'Y = @. Sucha Y is
available since Card X > Card7 = CardT*. Let T = T*UY andleth : T — T
be a bijection with #|T* = f. Then T can be made into a module such that g is an
isomorphism. But then (7', ¢ o h) is an element of ¥ and (T*,¢*) < (T, ¢ o h).
Since (T*, ¢*) is maximal, ¥ = @. So f is a surjection and thus an isomorphism.
But then the same argument gives that go f : T* — T — T is an isomorphism and
so that g is an isomorphism. This completes the proof. O

Using the fact that the Pontryagin dual of a compact Abelian group is torsion free
if and only if the group is connected (see [159]), we get the following result.

Corollary 4.2.2. Every compact Abelian group G can be embedded uniquely up to
isomorphism in a connected compact Abelian group G’ in such a way that every con-
tinuous homomorphism of G into a connected compact Abelian group can be extended
into G’ and such that G’ has no closed connected proper subgroups containing G. G’
is uniquely determined up to isomorphism by these properties.

Exercises

l. Letn > land 0 : Z — Z/(n) be the canonical surjection. Prove that there are
an infinite number of morphisms f : Z — Z with o o f = o which are not
automorphisms of Z. Conclude that o is not a torsion free cover.
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2. Letg : T — M be a torsion free cover. Show that if U is a torsion free module
thenp @idy : T & U — M @ U is a torsion free cover.

3. Leta € R where R is an integral domain. Suppose that R — R/(a) is a torsion
free cover. Show that if » € R and (b) 4 (@) = R, then b is invertible in R.

4. If ¢ : T — M is atorsion free cover and ¢’ : T’ — M a torsion free precover,
argue that T is isomorphic to a direct summand of 7.

5. Letg; : T; — M; fori = 1,2 be torsion free covers. Show that for every
morphism f : My — M, there is a morphism g : 71 — T3 such that ¢, 0 g =
f o @1. Then argue that if f is such that g is an isomorphism for some g with
@20g = f o, then any morphism g : 71 — T> with ¢ 0 g = f o ¢ is an
isomorphism.

6. Let ¢ : T — M be a torsion free precover and let U = ¢~ !(t(M)). Note that
U — t(M) is a torsion free precover. Show that if U — ¢(M) is a cover, then
soisgp: T — M.

7. Letp : T — M be a torsion free cover. Argue that if L C Ker(g) is a direct
summand of 7', then L = 0.

4.3 Examples

The proof of the existence of torsion free covers in the previous section does not give
much information about a torsion free cover ¢ : T — M of a given module M. The
next proposition is useful in this respect.

Proposition 4.3.1. Let M be a module and let E(M) be its injective envelope. Let
T C Hom(K, E(M)) consist of all o such that 6(1) € M and let ¢ : T — M be the
evaluation map 0 — o(1). Then ¢ : T — M is a torsion free cover of M.

Proof. Hom(K, E(M)) is a vector space over K and so T is torsion free. Let G be
torsion free and let f : G — M be linear. Since G is torsion free, G = G ® R —
G ® K is an injection. Hence G — M can be extended to G ® K — E(M). By
the natural isomorphism Hom(G ® K, E(M)) =~ Hom(G,Hom(K, E(M))), we get
amap G — Hom(K, E(M)). But then a quick check gives that the image of G is in
T andthemap g : G — T issuchthatgo g = f.

To argue that no pure submodule of T is in the kernel of ¢, let o € Kerg, o # 0.
Then o (K) # 0. If 6 (%) # 0, withr,s € R, s # 0, then Lo ¢ Ker ¢. Hence the pure
submodule of T generated by o is not contained in Ker ¢. |

Remark 4.3.2. The first part of the proof of the above Proposition gives a quick proof
of Corollary 4.1.6. The two proofs are included since the two different approaches
may be of interest.
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Example 4.3.3. If R =7, p € Zisaprime, and T — Z/(p) is a torsion free cover,
then T = Zp since by the above T C Hom(Q, Z(p°°)) consists of those o with
o(l) € Z(p)(= Z/(p)). Butthen o(p) = 0. Hence T = Hom(Q/pZ, Z(p*°)).
But Q/pZ =~ @ Z(q°) (over all positive primes ¢) and Hom(Z(¢*°), Z(p*°)) = 0
if ¢ # p and Hom(Z(p®>°), Z(p*°)) = Zp. We note that this construction carries
through if R is any principal ideal domain and p € R is a prime. So the natural map
IQI, — R/(p) is a torsion free cover. For example, if k is a field and we let R = k[x]
with p = x, then k[[x]] — k in a torsion free covering where xk = 0 and the map is
f — f(0) for f € k[[x]]. It is natural to ask whether the similar map k[[x, y]] — k
over R = k[x, y] is a torsion free cover. But as will be shown below in Corollary
4.3.11, this is not the case.

Now given maps f : S — P and g : S — M of modules, we can form the
pushout diagram
M
G

as in Example 1.4.20. We will be interested in the case when g is the canonical
injection. G will then be denoted M &, P. We note that the map P — M &¢ P
which maps y onto the coset of (0, y) is an injection in this case. So identifying P
with its image gives M @ P/P = M/S. Any submodule of M @& P containing P
is of the form M’ @7 P where S C M" C M. Also it is easy to see that f : § — P
can be extended to M if and only if P is a direct summand of M @y P.

g
—_—

~
N <— 0

e

Proposition 4.3.4. Let ¢ : T — M be a torsion free cover and let S C G be a
pure submodule of a torsion free module G. If a linear map f : S — T is such that
po f 1S — M can be extended to G, then f : S — T can be extended to G so that
the extension G — T lifts the extension G — M.

Proof. The hypothesis guaranteesamap G&¢T — M suchthatG — G&sT — M
is the given extensionand 7 — G @y T — M is ¢. Since S is pure in G, G/S is
torsion free. But G @y T/T = G/S by the above. So G @ T is torsion free.
Therefore, the map G @y T — M can be lifted toamap g : G &y T — T since
¢ : T — M is a torsion free cover. Then ¢ o (g|T) = ¢ and so by Theorem 4.2.1,
g|T is an automorphism of T'. Replacing g with (g|7)~! o g we see that we can
assume g|7 = idr. Then the composition G — G & T — T gives the required
extension. O

Corollary 4.3.5. Any linear map S — Ker ¢ can be extended to G.
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Proof. The map § — Kerg C T gives the zero map S — M and so can be trivially
extended to G. If G — M extends S — M and lifts the zero map, we get the required
extension G — Ker ¢. m|

Corollary 4.3.6. Ext"(G,Ker¢) = 0 and Ext"(G,T) — Ext"(G, M) is an isomor-
phism for all torsion free groups G and n > 1.

Proof. Let0 — S — F — G — 0beexact with F a free module. Then by Corollary
4.3.5, Hom(F, Ker ¢) — Hom(S, Ker ¢) — 0is exactand so 0 — Ext! (G, Ker ¢) —
Ext!(F,Ker¢) = 0 is exact since F is free. Thus Ext!(G, Kerg) = 0. Since F is
free, Ext" (F,Ker @) = 0 for all n > 1 and so Ext" (S, Ker ¢) — Ext" (G, Ker ¢) is
an isomorphism for n > 1. But S is torsion free. So by the above, Ext! (S, Ker¢) = 0
and hence Ext?(G, Ker ¢) = 0. Proceeding in this manner we get Ext" (G, Ker¢) =
0 for all n > 1. The fact that Ext"(G,T) — Ext"(G, M) is an isomorphism for
all n > 1 then follows from the fact that Ext” (G,Kerg) = 0 for n > 1 and that
Hom(G, T) — Hom(G, M) — 0 is exact. |

Definition 4.3.7. A map of modules /' : M — M’ is said to be neat if given any
submodule S of a module G and any map o : § — M, o has a proper extension in
G whenever f o o does. Diagrammatically /' : M — M’ being neat means that a
commutative diagram

S—=HCG

),

M — M

with S # H always guarantees the existence of a commutative diagram

S—=HCG

|/

M — M

(with, perhaps a different H with S # H). It is not hard to see that in order to check
whether M — M is neat, it suffices to restrict ourselves to the case G = R by using
the type of argument one uses to prove Baer’s Criterion for the injectivity of a module
(see Theorem 3.1.3).

Example 4.3.8. If R = Z and M’ is a subgroup of the group M, then M’ — M is
neat if and only if pM’ = (pM) N M’ for all primes p. To show that the condition is
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necessary, note that any x € M’ N pM, say x = py, gives a commutative diagram

(p) ——Z

|

M —— M
Then by hypothesis, there is a commutative diagram

(p) —=12

e

M/
showing that x € pM’. In a similar manner we see that the condition is sufficient.

Proposition 4.3.9. If ¢ : T — M is a torsion free cover, then ¢ is neat.

Proof. Suppose o : I — T is linear where I C R is an ideal and suppose ¢ o o has
an extension to an ideal J with / € J C R. Then we have amap J &5, T — M.
If J @4 T is torsion free, then J &5 T — M is a torsion free precover and so 7 is
a direct summand of J @, T by Problem 4 of Section 4.2 and thus / — T can be
extended to J. Hence suppose 1(J @5 T) # 0. Thent(J ®&c T)+T =1' ®s T
for I € I' C J. Since T is torsion free, T N#(J @®¢ T) = 0 and so T is a direct
summand of I’ @, T. This means I — T can be extended to I’. O

Corollary 4.3.10. T is injective if and only if M is injective.

Proof. If T is injective and I — M is linear for an ideal I C R, liftto I — T. This
can be extended to R — T'. Then the composition R — T — M gives the required
extension of I — M. Conversely, if M is injective, let 0 : I — T be linear for
I C R. We can suppose o cannot be extended in R. But then if / # R, ¢ o 0 can be
extended to R. So there is a proper extension of o in R since ¢ is neat. m|

Corollary 4.3.11. Ifk is afieldand R = k[x, y], the map S — S(0,0) from k[[x, ¥]]
to k is not a torsion free cover.

Proof. If this were the case, then consider the map o : (x) — k[[x, y]] with o(x) =
y. Since (x) — k[[x,y]] — k is the 0 map, it has an extension to k[x, y]. If
0 : (x) = k[[x, y]] has a proper extension, say t, then for some nonzero g(y) € k[y],
g(y) is in the domain of t. But a(g(y)x) = g(y)o(x) = g(¥)y. Alsoo(g(y)x) =
o(xg(y)) = xo(g(y)). Butclearly g(y)y = xo(g(y)) is impossible. |

Other interesting examples can be found in Cheatham [36], Jenda [124] and Matlis
[148].
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Exercises

1. Prove that the canonical mapping 21, — Z/(p™) with n > 1 is a torsion free
cover.

2. Show that any surjective morphism Zp — Z/(p™) with n > 1 is a torsion free
cover.

3. Show that if ¢; : T; — M; fori = 1,2 are torsion free covers, then ¢; @ @3 :
T1 ® To, — M & M, is also a torsion free cover.

4. Give an example of torsion free covers ¢; : T; — M;, i = 1,2, and morphisms
g: Ty > Ta, f: My — M with ¢ 0 g = f o ¢ where g is an isomorphism
but f is not an isomorphism.

5. The canonical homomorphism Z p — Z/(p) is a torsion free cover by Problem
1. So Problem 3 gives a torsion free cover ¢ : Zp <) Zp — Z/(p) ®Z/(p).
Prove that the group of linear maps f : Zp EBZI, — Zp @Zp such that o f = ¢
is isomorphic to the group of 2 x 2 matrices (a;;) over Z p such that a;; = §;;
(mod p) foralli, j.

6. Let R be a local domain and let @ € R where a # 0 and a is not a unit of R.
Show that the canonical surjection R — R/(a) is a torsion free cover if and only
if Ext! (G, R) = 0 for all torsion free modules G.

7. Use Corollary 4.3.10 to argue that the torsion free cover of every divisible module
is divisible if and only if every divisible module is injective.

8. If k is a field and R = k|[x, y, z], argue that the map S — S(0,0,0) from
k[[x,y, z]] to k is not a torsion free cover.

4.4 Direct Sums and Products

It is rarely true that given a family ¢; : 7; — M; of torsion free covers, P T; —
P M; is also a torsion free cover. In Section 5 of Chapter 5, we will show that this
property is preserved by countable sums under suitable conditions. The next result
considers the corresponding question for products.

Theorem 4.4.1. The following are equivalent for R:
(1) Every torsion module G # 0 has a simple submodule.

(2) If i : T; — M, is any family of torsion free covers, then [ ¢;i : [ Ti — [ M;
is a torsion free cover.

(3) A module E is injective if and only if Ext' (S, E) = 0 for all simple modules S.
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Proof. Recall that K is the field of fractions of R. We first show that (1) is equivalent
to each of the following:

(a) R/I has a simple submodule for each ideal / # 0, R.

(b) K/T has a simple submodule for each submodule 7 of K, T # 0, K.

Since every torsion module G # 0 has a submodule isomorphic to R/ for an ideal
I # 0, R, clearly (1) and (a) are equivalent. (1) = (b) is trivial.

Now suppose (b) holds and let / # 0, R be an ideal. By transfinite induction we
can define a submodule /, of K for each ordinal o such that

i lo=1
(1) Ig+1/1s is the socle of K/I; for each o
(iii) Iy = |J I (for T < o) when ¢ is a limit ordinal.

Then by (b), I = K for some o. Hence since /I # R, there is a least 0 with
I # RN Iy. Clearly o is not a limit ordinal and ¢ > 0. Then / = R N I;—1 and so

RNIg)I — Ig)Ig—1

is a nonzero injection. Thus R/ has a simple submodule.

Now we prove (1) = (3). Suppose E is such that Ext!(S, E) = 0 for all simple
modules S. Let o : I — E be linear where / C R is an ideal. We want to show o
can be extended to R.

Clearly we can assume / # 0, R. But then R/ has a simple submodule J/I and
so Ext!(J/I, E) = 0. Then the exactness of

Hom(J, E) — Hom(I, E) — Ext'(J/I,E) =0

implies o can be extended to J. But J 2 I. So by using Zorn’s Lemma, ¢ can be
extended to R.

(3) = (1). By (b) above it suffices to prove K/T has a simple submodule for
T # 0, K. Suppose not. Then we claim Ext! (S, T) = 0 for any simple module S.
For let S = R/m, m a maximal ideal. Then if 0 : m — T is linear, there is a linear
7 : R — K agreeing with o on m. If 7(R) ¢ T, then K/T would have a simple
submodule. So t(R) C T. This means

Hom(R,T) — Hom(m, T) — 0
is exact. But
Hom(R,T) — Hom(m, T) — Ext!(S,T) — Ext!(R, T)

is exact and Ext! (R, T) = 0. So Ext!(S,T) = 0. Since S was arbitrary, by (3), T
is injective. Since 7' # 0, this is possible only if 7 = K. Hence (3) = (b) and so
3) = @).
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(1) = (2). Clearly [[¢; : [IT; — J[M; is a precover, so we only need to
show that Ker([ | ¢;) contains no nonzero pure submodule of [ 7;. Suppose (x;) €
Ker(] ] ¢;i) generates a pure submodule contained in Ker([]¢;). We want to show
(xj) = 0. Let R — [[7; map 1 to (x;). We order the extensions of R — [[T; to
submodules T of K in the obvious fashion. [ | 7; torsion free implies there is a unique
maximal extension ¢ : T — [[T;. Now o(T) C Ker(][] ;) by our hypothesis on
(x;). If T = K, then either 0(K) = 0 in which case o(1) = (x;) = 0 and we
are through, or 0(K) = K in which case o(K) is a divisible submodule of [] 7; in
Ker(] ] ¢i), and in fact for each i, the pure submodule of 7; generated by x; would
be a divisible submodule of 7; contained in Ker(¢;) which is possible only if x; = 0.
But this contradicts 0(K) =~ K since o (1) = (x;). Hence we suppose T" # K. We
have T # Oand R C T. Let U/T be a simple submodule of K/T. Consider the
diagram

T —U

l

i — M;

for each i and note that 7 — M; is the O map, which can be extended to the 0 map
U — M;. But ¢; is neat, so T — T; can be extended to U, thatis, T — [] 7; can be
extended to U. This contradicts the maximality of 7. Hence (x;) = 0.

2= 1LetT C K, T # 0,K. We prove (2) = (b), that is, that K/T has a
simple submodule. Let (M;) be a family of modules such that each M; = U/T
for some U C K with T € U and such that given U, M; = U/T for some i.
Let ¢; : T; — M, be a torsion free cover for each i. Given i, if M; = U;/T, let
oi : Uy — T; lift U; — M; (the canonical surjection). Then (o;|T') gives rise to a
mapo : T — [[T; with o(T) C Ker(] ] ¢i). Hence the composition

T—>1_[T,-—>l_[Mi

is 0 and can be extended. By hypothesis [[7; — ][] M; is a torsion free cover
and so is neat. Thus 7 — []7; has an extension to some U C K, T € U. Let
7 : U — []T; be this extension. Suppose now for some j, E; = U;/T C U/T,
that is, U; C U. Let rj : [[T; — T; be the canonical projection. By hypothesis,
7|T = 0. Butwj oo = 0;|T. Sonwj o t|T = oj|T. Since [[7; is torsion free, we
get that r; o |U; = o;. Butsince ¢; o 0j : Ui — U; /T is the canonical surjection
we have that
(pjonjO‘L’:U—>Uj/T

induces amap U/T — U; /T whose restriction to Uj /T is idy, /7. Hence U; /T is
a direct summand of U/ T'. Since j was arbitrary with U; C U, we see that U/ T has
every submodule a direct summand and so by a standard argument (since U/ T # 0),
U/ T has a simple submodule. Thus K/ T has a simple submodule. m|
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Remark 4.4.2. If R is a Dedekind domain, that is, every ideal is projective, then
R is Noetherian and every nonzero prime ideal is maximal (see Jacobson [119] for
example). So R satisfies (1)—(3) of the Theorem by Exercise 3 of Section 3.1.

If R is not a field and satisfies (1)—(3), then it has Krull dimension 1 for if p is
a nonzero prime ideal, then R/p has a simple submodule only if p is maximal. In
fact, if R is Noetherian (and not a field), R satisfies (1)—(3) if and only if its Krull
dimension is 1.

If R is a local domain with maximal ideal m, then R satisfies (1)—(3) if and only if
for every sequence (a;) of elements of mt and every ideal / C R, ajas...a, € I for
somen > 1.

Exercises

1. If k is a field, argue that R = k[x, y] does not have the property of Theorem
44.1.

2. Give an argument for the last comment in Remark 4.4.2.

3. Let k be a field and let R = k[[x2, x3]] (so R consists of all formal power series
ap + a1x + arx? + --- with a; = 0). Argue that R satisfies the conditions of
Theorem 4.4.1.

Hint: Let / C R be a nonzero ideal. Argue that for some ng > 2, I contains all
elements of R of the form a,,x"° + an0+1x”0+1 + ---. Deduce thatif m C R
is generated by x2 and x3, then m"™ C 1.

4. If I is an infinite set, argue that the canonical morphism 720 > 7 /(p)) is not
a torsion free precover.
Hint: Show there is a natural extension of Z;,I) — Z/(p)) to a morphism
ZI(,I) + pZé — Z/(p)@). Then use Proposition 4.3.4.

5. If adomain R has the property of Theorem 4.4.1 andif ¢ : T — M is any torsion

free cover, argue that Hom(P, T) — Hom(P, M) is a torsion free cover for any
projective R-module P.



Chapter 5
Covers

We note that there is no loss of generality in what follows in assuming that if ¥ is
a class of R-modules and C, D are R-modules such that C =~ D and C € ¥, then
D € ¥ . Hence we will always assume that the classes of modules ¥ are closed under
isomorphisms. In the previous chapter, we considered torsion free coverings. In this
chapter, we will give a general definition of coverings whose examples will include
torsion free covers and the familiar projective covers.

5.1 & -precovers and covers

Definition 5.1.1. Let R be a ring and let ¥ be a class of R-modules. Then for an
R-module M, a morphism ¢ : C — M where C € ¥ is called an ¥ -cover of M if

\

M

2

(1) any diagram with C' € &
C/
|
|
v

can be completed to a commutative diagram and

\\«1
C — M
@

(2) the diagram
C
|
|
v

can be completed only by automorphisms of C.

So if an F -cover exists, then it is unique up to isomorphism.

If ¢ : C — M satisfies (1) but may be not (2), then it is called an F -precover
of M.

For example, if ¥ is the class of projective modules, an ¥ -cover (precover) is
called a projective cover (precover). Note that this is not the usual definition but can
be seen to agree with it. Similar terminology will be used in other situations, for
example, if ¥ is the class of torsion free modules over an integral domain, we get the
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torsion free covers of Chapter 4 (see Theorem 4.2.1). Note also that if the class &
contains the ring R, then ¥ -precovers are surjective.

We say that a class F is (pre)covering if every R-module has an ¥ -(pre)cover. For
example, we saw in Chapter 4 that the class of torsion free modules over a domain is
covering.

The following proposition illustrates a close relationship between covers and pre-
covers.

Proposition 5.1.2. Let M be an R-module. Then the ¥ -cover of M, if it exists, is a
direct summand of any ¥ -precover of M.

Proof. Let C — M be the ¥ -cover and C’ — M be an ¥ -precover. Then we have
the following commutative diagram

Qi Z;O

But then C — C’ — C is an automorphism. So C is a direct summand of C’. m|

Exercises

1. If ¢ : C — M is an F -cover, argue that there is a bijective correspondence
between the set of linear maps f : C — C such that ¢ o f = ¢ and the set
Hompg (C, Ker ¢).

2. Let ¥ be a class of R-modules closed under summands and such that every R-

module M has an ¥ -cover. Argue that every such cover is surjective if and only
if  contains all the projective modules.

3. f M = My & M, for R-modules M; and M, and if M has an % -precover,
argue that both M and M, have ¥ -precovers.

4. Let R be an integral domain and ¥ be the class of torsion R-modules. Show that
every R-module has an ¥ -cover which is an injection.

5. An R-submodule A of B is said to be superfluous if for each submodule N of B,
N + A = B implies N = 0. Prove that amap ¢ : P — M is a projective cover
if and only if P is projective and Ker ¢ is superfluous.

6. Let J = rad(R) and M be a finitely generated R-module. Prove that JM is a
superfluous submodule of M. Conclude that the natural map ¢ : R — R/J is a
projective cover.
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5.2 Existence of Precovers and Covers

We start by giving easy necessary and sufficient conditions for the existence of pre-
covers.

Lemma 5.2.1. Let ¥ be a class of R-modules that is closed under direct sums. Then
an R-module M has an & -precover if and only if there is a set I and a family (C;);ey
of elements of ¥ and morphisms @; : C; — M foreachi € I such that any morphism

0;
D — M with D € ¥ has a factorization D — C; = M for some j € 1.

@ .
Proof. The only if part is trivial. For the if part, we simply note that B, .; C; g M

is an F -precover. |

Proposition 5.2.2. If ¥ is a class of R-modules closed under direct sums, then an
R-module M has an ¥ -precover if and only if there is a cardinal number Ry such
that any morphism D — M with D € ¥ has a factorization D — C — M with
C € F and Card C < N,.

Proof. If M has an ¥ -precover C — M, then let X, = Card C. Conversely, there
is a set X with cardinality R, such that any morphism D — M with D € ¥ has a
factorization D — C — M for some C € ¥ with C C X (as sets). Let (¢;)ier
give all such morphisms ¢; : C; — M with C; C X (as sets). Then any morphism
D — M has a factorization D — C; — M for some j. So M has a ¥ -precover by
Lemma 5.2.1. O

We now show that if we assume that the class F is closed under inductive lim-
its, then a module M has a ¥ -cover whenever it has an ¥ -precover. We prove the
following

Theorem 5.2.3. Let R be aring, ¥ be a class of R-modules closed under summands,
and M be an R-module. Suppose for any well ordered inductive system ((Cy), (¢gq))
of modules in ¥, every map h_r)n Coq — M can be factored through some C — M
with C € ¥. If M has an ¥ -precover, then it has an ¥ -cover.

Proof. We break the proof into the following three lemmas. O

Lemma 5.2.4. For each C € ¥ and morphism C — M, there exists an ¥ -precover

D — M and a morphism f in the factorization C 1) D — M such that for any

morphism g in the factorization D % E — M where E — Misan -precover,
Ker(go f) = Ker f.
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Proof. Suppose the conclusion is not true. Then any such f does not have the desired
property. Hence we can construct a diagram

E/kCz

with Ker(C — C,) < Ker(C — Cp41) foreach n > 1 and with each C, — M an
F -precover. But by assumption, the map h_r)n C,, — M can be factored through a map
D — M with D € ¥. We can assume D — M is an ¥ -precover. Let C, = D.
Then Ker(C — C,) € Ker(C — Cp) for all n, and C — C,, does not have the
desired property. So there is an ¥ -precover Cp+1 — M and a map C,, — Cgp41 in
the factorization C,y — Cy+1 — M such that Ker(C — C,,) & Ker(C — Cyp+1).
Continuing in this fashion, we see that for any ordinal «, we can construct precovers
Cg — M forall B < a withmaps C — Cg sothatfor 8 < v < a, Ker(C — Cg)
Ker(C — C,). If for each B with B+1 < o, we choose xg with xg ¢ Ker(C — Cg),
xg € Ker(C — Cgq), then xg # xg/ for f # p’. This implies Card C > Card (a)
whenever « is infinite. This is impossible since « is arbitrary. m|

Lemma 5.2.5. There exists an ¥ -precover D — M such that in any factorization
D — E — M with E — M an ¥ -precover, D — E is an injection.

Proof. Using the lemma above, for any ordinal y we construct the diagram in the
lemma where for each @« < y, Cy — M is an ¥ -precover and such that when
a4+ 1<y,

Co — M

|7

Ca+1

has the property guaranteed by the lemma. For o + 1 < y, we let Dy C Cy41 be
the image of Cy, — Cg+1. Then by our requirement on C,, — Cy 41, We see that if
C — M is any ¥ -precover and if

Coy1 —> M

v

C

is commutative then Cy41 — C restricted to Dy is an injection. Hence if we let
X, = Card C for some fixed ¥ -precover C — M, we see that Card D, < R, for
all such . But whena < B < B+ 1 < y we see that C4+1 — Cg4q induces
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an injection Dy — Dg. So because of the restriction on the size of the Dg’s, we
see that if the original y is large enough, we must be able to find an « and B with
a < B < B+ 1 < ysuchthat Dy — Dpg is a bijection. But then Dy, is a direct
summand of Cy 41 and so is in . Then noting that any factorization Dy — E — M
with E — M an ¥ -precover can be extended to a factorization Cy 41 — E — M,
we see that Dy, — E is an injection. So we let D = D, and let D — M be the
restriction of Cy41 — M to D. O

Lemma 5.2.6. If : D — M is an ¥ -precover having the property of Lemma 5.2.5,
then : D — M is an ¥ -cover.

Proof. 1f every map D — D completing
D — M
|
[ /
v
D

is an isomorphism, then we are through. So suppose C — C is such a map, but not
an automorphism. Then for any ordinal «, we can construct a commutative diagram

I%Dz

with Dg = D for each B < « and Dg — Dpg not an isomorphism (but an
injection) for each 8 < «. Now complete

limDg —> M
—

e

D

By construction, if 8 < v < «, then Dg — Dy, Dy — D are injections but
not surjections. This implies Card D > Card(w) for all infinite ¢, and so gives a
contradiction. i

Corollary 5.2.7. Let ¥ be a class of R-modules that is closed under well ordered
inductive limits and M be an R-module. If M has an ¥ -precover, then it has an
F -cover.

Proof. In Theorem 5.2.3 we can let C = h_r)n Cy. |
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Exercises

1. Let G be any set of modules and ¥ be the class of modules which are isomor-
phic to a direct summand of a direct sum of modules in G. Argue that ¥ is
precovering.

2. Let ¥ be a class such that M has an ¥ -cover and let ¢ : C — M be an ¥ -
precover. Then show that the following are equivalent:
(a) ¢ : C —> M isacover
(b) any f : C — C with ¢ o f = ¢ is an injection
(¢) any f : C — C with¢ o f = ¢ is a surjection.
3. Let ¥ be aclass of R-modules and M; and M5 be two R-modules satisfying the

initial hypothesis of Theorem 5.2.3. If ¥ is closed under finite sums, argue that
M1 @& M> also satisfies this hypothesis.

4. Let R = Z and ¥ consist of all direct sums of cyclic groups. Show that every
module has an ¥ -precover. Find a module that does not have an % -cover.

5.3 Projective and Flat Covers

We now know that flat covers always exist. We will defer the proof of this fact to
Chapter 7 (Theorem 7.4.4) after we establish necessary tools. So in this section, we
will only consider the existence of flat precovers and covers for special rings and
classes of modules.

Since, for any ring R, any inductive limit of flat R-modules is flat, we have the
following as a consequence of Corollary 5.2.7.

Theorem 5.3.1. For any ring R and any R-module M, if M has a flat precover, then
it has a flat cover.

If R is a Priifer domain, then the class of flat R-modules is covering by Theo-
rem 4.2.1.

It is easy to see that projective precovers always exist. The following result of Bass
[23] tells us when projective modules are covering.

Theorem 5.3.2. Let Proj be the class of projective R-modules. Then the following
are equivalent:

(1) Every flat R-module is projective.
(2) Every projective precover is a flat precover.

(3) Proj is covering (that is, R is left perfect).
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Proof. (1) = (2) is trivial.
(2) = (1). Let F be a flat R-module and P — F be its projective precover. Then
P — F is also a flat precover by assumption. But projective precovers are surjective.
So the diagram
F

7
7
4
»

P——F ——0

can be completed to a commutative diagram. Hence F is a summand of P.
(1) = (3) Every R-module has a flat precover since flat means projective. So every
R-module has a projective cover by Theorem 5.3.1.
(3) = (1). Let F be a flat R-module. We consider the minimal projective resolu-
tion
do dj
oo —> Py > Pp - Pp— F — 0.

If J is the Jacobson radical of R, then d,,(P,) € JP,—; since Ker(d,—1) is superflu-
ous in P,_; and so Ker(d,—1) € JP,—1. So the deleted complex

> R/J®P,—>R/J®P; —R/J® Py—0

has zero differentiation. Hence Tor;(R/J, F) = R/J ® Py =~ P1/JP;. But since
F is flat, Tor; (R/J, F) = 0. So P; = JP;. But then P; = 0 by Exercise 9. Thus F
is a projective left R-module. m|

We now argue that finitely generated modules over local rings have projective cov-
ers.

Theorem 5.3.3. If R is a local ring, then every finitely generated R-module has a
projective cover.

Proof. Let M be a finitely generated R-module and m be the maximal left ideal of R.
Then R/ is a division ring and so M /mM is a finite-dimensional vector space over
R/w. Thus M /M =~ (R/m)" for some integer n > 1. So we have an epimorphism
0 : R" — M/mM which factors through the natural map 7 : M — M/mM, that is,
there isamap ¢ : R — M suchthat t o ¢ = 0.

If y € M, then there is an x € R”" such that t(y) = o(x) = t o ¢(x) since o
is surjective. But then ¢(x) — y € Kert = wmuM. So M = Im ¢ + muM. Thus
M = Img by Nakayama Lemma. So ¢ is surjective. Hence ¢ : R" — M is a
projective precover. Note that Ker¢ € mR"” = m”. We now argue that it is also a
cover.

Suppose f : R" — R”" is a map such that ¢ o f = ¢. Then as in the above,
R" =1Im f + Kerg. SoIm f = R" since Kerp C mR". Therefore f is surjective.
But then f splits and so there is a map f’ : R"™ — R" such that f o f/ = idgn.
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Hence Im f/ @ Ker f = R". But Ker f C Kerg and so Im ' + Kerp = R".
Thus Im f/ = R™ again by Nakayama Lemma. Therefore Ker / = 0 and so f is
one-to-one. Hence the diagram

R" —= M
(4

can be completed only by automorphisms of R”. Thatis, ¢ : R” — M is a projective
cover. m|

Remark 5.3.4. Rings for which every finitely generated module has a projective
cover are said to be semiperfect. So we see that locals rings are semiperfect and
every perfect ring is semiperfect. Further characterizations and examples of perfect
and semiperfect rings can be found in Anderson—Fuller [6] or in the original paper of
Bass [23].

Recall that given an R-module M, the character module Homz (M, Q/7Z) is de-
noted by M *. With this notation, we have the following result.

Proposition 5.3.5. Let R be a right coherent ring, M be a right R-module, and E be
an injective right R-module containing M. Then E* — M™ is a flat precover

Proof. ET is a flat left R-module since R is right coherent. We want to show that
if F is a flat left R-module, Homg(F, ET) — Homg(F,M ™) — 0 is exact, or
equivalently, Homz (E ® rF,Q/Z) — Homgz(M ® rF,Q/Z) — 0 is exact which
is obvious since F is flat and Q/Z is injective. So ET — M ™ is a flat precover. O

Definition 5.3.6. A submodule 7" of an R-module N is said to be a pure submodule
if0 - A®T — A ® N is exact for all right R-modules A, or equivalently, if
Hom(A, N) — Hom(A4, N/T) — 0 is exact for all finitely presented R-modules A.
An exact sequence 0 > T — N — N/T — 0(or0 - T — N) is said to be pure
exact if T is a pure submodule of N.

An R-module M is said to be pure injective if for every pure exact sequence
0 - T — N of R-modules, Hom(N, M) — Hom(T, M) — 0 is exact. Clearly,
every injective module is pure injective.

Proposition 5.3.7. For any R-module M, the character module M ™ is a pure injec-
tive right R-module.

Proof. Let T C N be a pure submodule of the right R-module N. Then

Hompg(N, M) — Homg(T,M*) — 0
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is exact if and only if Homz(N ® rM,Q/Z) — Homgz(T @ rM,Q/Z) — 0 is
exact. But the latter is exact since 0 > T ® M — N ® rM is exact. O

We note that a similar result holds for right R-modules.

Proposition 5.3.8. The sequence 0 — T — N of R-modules is pure exact if and
only if Nt — T admits a section.

Proof. f 0 — T — N is pure exact, then 0 - M ® T — M ® N is exact for
any right R-module M. Hence (M ® N)* — (M ® T)™ — 0 is exact and so
Hom(M, N+) — Hom(M,T*) — 0is exact. Butif M = T then this implies that
Nt — T has a section.

Conversely if Nt — T has a section, then Hom(M, N*) — Hom(M,T*) — 0
is exact for all M, and so (M ® N)T — (M ® T)T — 0 is exact too implying
that 0 > M ® T — M ® N is exact for all M. This means 0 — T — N is pure
exact. o

Proposition 5.3.9. Every R-module is a pure submodule of a pure injective R-mod-
ule.

Proof. By Proposition 5.3.7, M T is pure injective. To show that the canonical map
M — M™ is a pure injection we need to show M T++ — M™T admits a section.
But the canonical map M+ — (M T)*+ = M+ is such a section. ]

Remark 5.3.10. If R is commutative, the arguments above hold if we replace M
by Homg (M, E) where E is an injective cogenerator of R.

Theorem 5.3.11. Let R be a right coherent ring. Then every pure injective left R-
module has a flat cover ¢ . F — M with F and Ker ¢ pure injective.

Proof. Let M be a pure injective left R-module. Then M is a direct summand of
M since M is a pure submodule of M T by Proposition 5.3.9. But Mt is a
right R-module and so M ™% has a flat precover F — M ™ by Proposition 5.3.5.

But then the composition F — M T+ . M where 7 is the projection map is a flat
precover. Hence M has a flat cover by Theorem 5.3.1.

Now let 0 —- MT — E — C — 0 be exact with E injective. Then since M
is a direct summand of M ™+, F and Ker¢ are direct summands of E* and C*
respectively whenever F — M is a flat cover of M. Thus F and Ker ¢ are pure
injective. m|

We now use Theorem 5.3.11 above to show that the class of submodules of flat left
R-modules is covering over a right coherent ring. But first we need the following
result from set theory.
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Lemma 5.3.12. Let M and N be R-modules. Then there is a cardinal number R,
dependent on Card N and Card R such that for any morphism f : N — M, there is
a pure submodule S of M such that f(N) C S and Card S < R,.

Proof. A submodule S is pure in M if for every m > 1 and every finitely generated
T C R™ any linear map 7 — S has an extension R” — M if and only if it has an
extension R™ — § (see Exercise 2). If we consider the direct sum P = g, gmy R™
summed over the set of pairs (7, R™) where m > 1 and where T C R™ is finitely
generated we have the submodule U = (7, gmy T of P. We then see that S C M
is pure if and only if any linear U — S has an extension P — M if and only if it has
an extension P — S.

We construct a sequence So C S; C S C -+ of submodules of M as follows. We
let So = f(N). Having constructed S, for n > 0 we consider the set X of all linear
f U — S, such that there is a linear f_ : P — M agreeing with f. For each such
f we choose one such f and let X be the set of these f . Then let

Sn+1 = Sp + Z f_(P)

fex

We have So C S1 C S C -+ and we let S = ;= Sn.

Each such S, has the property that if U — S, is linear and can be extended to
P — M then it can be extended to P — S,+1. Then we note that if (7, R™) is
one of the original pairs, any linear 7 — S can be factored T — S, — S for some
n > 0 since 7 is finitely generated. Hence by the criterion mentioned above, S C M
is pure.

But Card X < Card R and Card Sy < Card N and so S; = So + ZfeX f(P) has

Card §, = Card(So (D /()

feX

and so Card S; < Card N + (Card R)(Card R). But then Card S; < N, where
R, = max(Card N, Card R). In a similar manner, Card S, < Ry, Card S3 < Ry, ....
But then Card § = Card |72, S; < CardSp + Card Sy +-+- < Ry + Ry + -+ =
Ro - Ry = Ry O

Lemma 5.3.13. Let R be a right coherent ring. Then the class of submodules of flat
left R-modules is closed under inductive limits.

Proof. Let ((S;). (¢;i)) be a well ordered inductive system with each S; a submodule
of a flat left R-module. We need to show that h_r)n S; is also a submodule of a flat
module. For each i, we have S; C F; for some flat module F;. But in general, there
is no reason why a morphism S; — §; can be extended to a morphism F; — F; and
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even so, the different morphisms might not be compatible. Hence we need to choose
the embeddings S; C Fj in a functorial manner.

But by the lemma above, there is a cardinal number X, (dependent on Card S; and
on Card R) such thatif f : S; — G is any morphism with G flat, then there is a pure
and hence flat submodule F C G with f(S;) C F and where Card F < Rqy. So let
X be a set with Card X = R,. For each i, we consider all morphisms f : S; — F
where F is a flat left R-module with F C X (as sets). Let Fy = F, F; = I1 Fr
over all such f, and S; — F; be the morphism x — ( f(x)). Then F; is flat since R
is right coherent. Furthermore, if ¢ : S; — §; is a morphism, we define a morphism
F; — Fj as follows: Let F; = [[Gg (over morphisms g : S; — Gg described
above). To define F; — F;, we only need to define [ Ff — G for each g’. But
the composition S; — S; — [[Gg — G (the last map being the projection map)
is one of the morphisms f”, thatis, Gg = Fys and S; — Gy is the morphism f”. So
let [T Fr — Gy be the projection map corresponding to f”. Then we see that

S, — F;

L

Sj —= Fj

is commutative and the morphisms F; — F; are functorial in the obvious sense. So
we can define an inductive limit lim F;. But S; — F; is an injection. So lim S; —
h_n)1 Fj is also an injection. Thus we are done since h_n)l F; is flat. O

Theorem 5.3.14. If R is a right coherent ring, then the class of submodules of flat
left R-modules is covering.

Proof. Let M be a left R-module and ¥ be the class of submodules of flat left R-
modules. Let M C E with E injective. Then E has a flat cover ¢ : ' — E by
Theorem 5.3.11. Now let S = ¢~ !(E). Then by chasing an obvious diagram, we
see that S — M is an ¥ -precover. Hence M has an ¥ -cover by Corollary 5.2.7 and
Lemma 5.3.13 above. O

Remark 5.3.15. If R is acommutative ring and M is an R-module, then Homg (M, E)
is pure injective for each injective R-module E as in Proposition 5.3.7 above. Thus
Hompg (M, E) has a flat cover by Theorem 5.3.11. Furthermore, just like in the proof
of Proposition 5.3.5, if R is Noetherian, then Hom(E (M), E) — Hom(M, E) is a
flat precover of Hom(M, E) noting that Hom(E (M), E) is flat by Theorem 3.2.16.
In order to apply this to a specific example, we need the following easy results.

Proposition 5.3.16. Let R be a local ring and p € Spec R. If M is an ﬁp-module
and Matlis reflexive, then M has a flat cover as an R-module.
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Proof. Since M =~ Hom(M?, E(k(p))), M has a flat Iép-module cover F — M by
Remark 5.3.15 above. If G is a flat R-module and G — M is a morphism, then we
have a factorization G — G ® I%p — M. ButG ® Ién is flat as an ép—module and
s0G ® 1%1, — M can be lifted to F. But then we have a factorization G — F — M.
So FF — M is aflat precover as R-modules. Hence M has a flat cover. |

Lemma 5.3.17. A flat precover ¢ : F — M of an R-module M is a cover if and only
if Ker ¢ contains no nonzero direct summand of F.

Proof. We simply note that if ¢ : F — M is a cover and ¢’ : F' — M is a flat
precover and ¢ o f = ¢, then f is surjective and Ker f is a summand of F’ (see
Proposition 5.1.2). m|

Lemma 5.3.18. If R is right coherent, [ | M; has a flat cover if and only if each left
R-module M; does.

Proof. If F; — M; is a flat cover for each i, then [| F; is flat and [[ F; — [[M;
is a flat precover and so [[ M; has a flat cover by Theorem 5.3.1. Conversely, if
F — [ M, is a flat cover, then for any j, F — [[ M; — M; is a flat precover and
so M; has a cover. O

We note that if F; — M; is a flat cover for each i and the index set / is infinite,
[T F — 1 M; may fail to be a cover and € F; — €D M, may fail to be a precover.
If 7 is finite, @ F; — €D M, is a cover (see Section 5.5).

Example 5.3.19. For a local ring R, we will let m(R) denote its maximal ideal.

If p € Spec R, then the residue field k(p) of R, is a reflexive ﬁp—module. Hence it
has a flat cover over R by Proposition 5.3.16. Thus for any set X, k(p)*, and hence
its direct summand k(p)(X), has a flat cover over R by Lemma 5.3.17. But k(p)(X) >~
Hom(k (p), E (k(p)X)) and so by Remark 5.3.15 above a flat precover of k(p)*X) is
T = Hom(E(k(p)), E(k(p))X)) . The R-module T is the completion of a free Ry-
module with base indexed by X by Theorem 3.4.1. The map T — k(p)®) induces
an isomorphism T/m(Iép)T — k(p)®). If S is a summand of T that is in m(Iép)T,
then S = m(Ii’p)S . But this is impossible unless S = 0 since T is Hausdorff in the
m(ﬁp)—adic topology. So T — k(p)X) is a flat cover by Lemma 5.3.17.

In particular, if k is a field and Card X = m < oo, then k[[x1, ..., x,]]X — k¥ is
a flat cover over the local ring k[[x1, . .., x,]]. If X is infinite, k[[x1. ..., x,]]X) —
k) is not even a precover.

Proposition 5.3.20. If ¢ : F — M is a flat cover of an R-module M and F =
Fi®F,, M = M@ M, are decompositions compatible with ¢ (that is, o(F;) C M;),
then F; — M; is a flat cover fori = 1,2.
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Proof. We easily see that F; — M; is a flat precover. But Ker f contains no direct
summand of F; by Lemma 5.3.17 since ¢ : I — M is a flat cover. So F; — M; isa
cover, again by the same lemma. m|

Remark 5.3.21. Let T be as in Example 5.3.19 above. Then any decomposition
T =T, & T, gives one of T/m(R )T.So T, — Tl/m(Rp)Tl is a flat cover by the
proposition above. But by Example 5.3.19, 77/ m(Rp)Tl ~ k(p)¥) for some subset
Y of X. Thus, since covers are unique, 77 is also the completion of a free Ry-mod-
ule whose dimension is the same as that of 77/ m(ﬁp)Tl over k(p). In fact, Th =
Hom(E (k(p)), E(k(p))¥)). This means that a direct summand of the completion of
a free module is again such.

Definition 5.3.22. An R-module M is said to be cotorsion if Ext!(F, M) = 0 for
all flat R-modules F. This generalizes the definitions of Harrison [108] and Warfield
[180] and agrees with that of Fuchs [98] but differs from that of Matlis [147].

We note that if M is cotorsion, then Ext' (F, M) = 0 for all flat R-modules F
and all i > 1. For consider an exact sequence 0 - K — P;_, — .-+ — Py —
F — 0 with each P; projective where i > 2. Then K is flat and so Ext! (F.M) =~
Ext' (K, M) = 0.

Our aim now is to study flat covers of cotorsion modules. We need the following
preliminary results.

Lemma 5.3.23. Every pure injective R-module is cotorsion.

Proof. Let M be a pure injective R-module and 0 - K — P — F — 0 be a short
projective resolution of a flat R-module F'. Then K C P is pure (see Exercise 1) and
so Ext!(F, M) = 0. O

Remark 5.3.24. Let R be commutative and Noetherian. If M is any R-module and
E is an injective R-module, then Hom(M, E) is cotorsion since it is pure injective
(see Remark 5.3.15).

Lemma 5.3.25. If¢ : F — M is a flat cover, then Ker ¢ is cotorsion.

Proof. Let F’ be a flat module and 0 —- K — P — F’ — 0 be a short projective
resolution. Let f : K — Ker¢ be any morphism. Then let P &7 F be the amalga-
mated sum of P and F along K (see Section 4.3). Then F C P &y F and P &f F
is flat. Furthermore, ¢ can be extended to a morphism 7 : P @y F — M which maps
P to zero. If we complete

P@fF

)

F—M
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we can assume t induced the identity on F. But then 7 gives a map P — Ker ¢ which
extends f. Thus 0 — Hom(F’,Ker¢) — Hom(P, Ker ¢) — Hom(K,Kergp) — 0
is exact and so Ext! (F’, Ker ¢) = 0. Hence Ker ¢ is cotorsion. m|

Corollary 5.3.26. Let ¢ : F — M be a flat cover. Then F is cotorsion whenever M
is.

Proof. Since F — M is surjective, we have the exact sequence Ext! (G, Kerp) —
Ext!(G, F) — Ext!(G, M). So Ext!(G, F) = 0 whenever G is flat and M is cotor-
sion. i

Lemma 5.3.27. Let R be a commutative Noetherian ring. Then an R-module F is
flat and cotorsion if and only if it is a direct summand of a module Hom(E, E') where
E., E’ are injective R-modules.

Proof. Hom(E, E’) is cotorsion by Remark 5.3.24 above and flat by Theorem 3.2.16.
Thus a direct summand of Hom(E, E’) is such. Conversely, let F be flat and co-
torsion. If E is an injective cogenerator, then F — F’ = Hom(Hom(F, E), E) is
a pure injection by Remark 5.3.10. But Hom(F, E) is injective by Theorem 3.2.9
and so F' is flat. But then F’/F is flat and thus Hom(F’, F) — Hom(F, F) —
Ext!(F’/F, F) = 0 is exact. Hence F is a direct summand of F’. O

We are now in a position to characterize flat covers of cotorsion modules.

Theorem 5.3.28. Let R be a commutative Noetherian ring. Then the following are
equivalent for an R-module F:

(1) F is aflat cover of some cotorsion module.
(2) F is flat and cotorsion.
(3) F =[] Ty (over p € Spec R) where Ty, is the completion of a free Ry-module.

Furthermore, the decomposition in (3) is uniquely determined by the dimension of the
free modules.

Proof. (1) = (2) follows from Corollary 5.3.26.

(2) = (3). Suppose F is flat and cotorsion. Then by Lemma 5.3.27, F is a direct
summand of Hom(E, E’) for some injective modules E, E’. Thus a flat cotorsion
module is a direct summand of a product [ [ Ty, over p € Spec R by Theorem 3.3.14.
Now let T = [[Ty. If ¢ € Spec R, then q7y = Ty, for @ ¢ p and ((q"7Tp = 0
forq C p. Hence 7" = (q"Tp = Ty forp ¢ q. Thus H = T/T’ = [[ T, for
p C g. But then ﬂpgq(ﬂn p" H) = T4. This means that given 7', we can “recover”
each T,. The procedure commutes with direct sums, that is, if 7 = 77 @ 7>, then
we get an induced decomposed T, = (7)1 @ (Tp)2 for each p € Spec R so that
Ty = [[(Tp):1. But as we noted in Remark 5.3.21, (Ty); is again the completion of a
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free module over R,. Thus F', being a direct summand, is also such a product. This
also proves the last statement of the theorem.

(3) = (1). By Example 5.3.19 , we have that T, — Tp/m(lép)Tp is a flat cover
for each p € Spec R. Therefore, [[Tp — [] Tp/m(Ry)Ty is a flat precover (see
proof of Lemma 5.3.18) with kernel K = ]_[m(f(’p)Tp. Let F = [ Ty and suppose
S C K is a direct summand of F. If g is a prime ideal such that S C qF, then
S = ¢S which implies that the projection of S on Ty is zero since Ty is Hausdorff in
the g-adic topology. Thus § = 0if S C gF for all q. If not, let ¢ be maximal with
S ¢ qF. Butifq ¢ p, then g7, = Ty. If ¢ & p, then as above, the projection of §
on T} is zero. Butthen § C q F since qTy = m(I%q)Tq, a contradiction. Thus S = 0
and K has no nonzero direct summands of F. Hence [[Tp — []To/m(Rp)Ty is
a flat cover by Lemma 5.3.17. But Tp/m(lép)Tp ~ k(p)X) for some set X. So
Tp/m(lép)Tp >~ Hom(k(p), E(k(p))X) and is cotorsion by Remark 5.3.24. Hence
[1 7o/ m(Rp)Ty is cotorsion. ]

Remark 5.3.29. Theorem 5.3.28 above generalizes Harrison’s characterization of co-
torsion groups in [108] as products G = [] 7, over primes p where T}, is a direct
summand of 7 1)7( for some set X, and in which case G is uniquely determined by the
dimensions of 7/, T, over Z/(p).

Exercises

1. Let R = Z. Prove that 4 is a pure subgroup of B if and only if nA =nB N A
foralln € Z.

2. Let S be a submodule of an R-module N. Prove that if N/S is a flat R-module,
then S C N is pure and that the converse holds if N is flat.

3. Let S be a submodule of a flat R-module N. Prove that N/S is flat if and only
if IS = IN N S for all finitely generated right ideals / of R. Conclude that if
N is flat, then S is a pure submodule of N if and only if IS = IN N S for all
finitely generated right ideals / of R.

4. Let S be a submodule of an R-module N. Prove that the following are equivalent.
(a) S is a pure submodule of N.

(b) Hom(A, N) — Hom(A4, N/S) — 0 is exact for all finitely presented R-mod-
ules A.

(c) Any linearmap f : T — S where T C R™, m > 1, is finitely generated has
an extension R — N if and only if it has an extension R”" — S.

5. Prove the assertion that k[[x]]™) — k™) is not a flat cover over k[x] (here k is
a field).

6. Prove that the class ¥ of submodules of flat R-modules is precovering if and
only if every injective R-module has a flat cover.
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7.

10.

11.

12.

13.

14.

15.

If S C R is multiplicative and F — M is a flat cover of S~! R-modules, show
that FF — M is also a flat cover of R-modules.

If S C R is multiplicative and M is an S~! R-module, let F — M be a flat
cover of M as an R-module. Prove that S™1F =~ F and that F — M is a flat
cover as S ! R-modules.

If S C R is multiplicative and M is a cotorsion S™! R-module, show that M is a
cotorsion R-module.

Hint: If0 - M — U — F — 0 is a short exact sequence of R-modules with
F flat, apply the functor S™!R ® g—.

Let M’ be a submodule of an R-module M and suppose that M /M’ is flat. Argue
that if M has a flat cover, so does M.

(Bass [23, Proposition 2.7]) Let J = rad(R), Prove that if P is a nonzero projec-
tive R-module, then P # JP.

(Bass [23]) An ideal I of R is said to be left (right) T -nilpotent if for every
sequence ap,ds,... € I there exists an integer n such that ajaz---a, = 0
(ap ---aza; = 0). Prove that if R is left perfect, then rad(R) is left 7 -nilpotent.

(Nakayama Lemma) Prove that if an ideal / of R is left T-nilpotent, then M #
I'M for any nonzero left R-module M.

Hint: If IM = M # 0, letay € I,x1 € M be such that ayx; # 0. Use
apx) to construct a sequence a1, ds,... € I for which there is no n such that
ayaz---a, = 0.

The radical of an R-module M, denoted rad(M ), is the intersection of all maxi-
mal submodules of M. Prove that rad(M ) is the sum of all superfluous submod-
ules of M.

Let J = rad(R) and P be a projective R-module. Prove that rad(P) = JP.
Conclude that JP contains all superfluous submodules of P.

5.4 Injective Covers

We start by showing that the class of injective R-modules is precovering precisely
when R is a Noetherian ring.

Theorem 5.4.1. Let & be the class of injective left R-modules. Then the following
are equivalent:

(1) R is left Noetherian.

(2) & is precovering.

(3) & is covering.
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Proof. (1) = (2). If R is left Noetherian, then every injective R-module is the
direct sum of indecomposable injective left R-modules. Each such module is the
injective envelope of a cyclic R-module. Hence, we can find a set of representa-
tives of such (see Gabriel [100]). So there is a family (E;);e; of indecomposable
injective left R-modules such that every injective left R-module is the direct sum of
copies of the various E;. If X; = Hom(E;, M) and Ei(Xi) — M is the evaluation

map (¢r)frex; — ZfeX,— f(¢r), then any map E; 1) M can be factored through
E i(Xi ) oM by mapping E; onto the f component of Ei(Xi ). Hence D El.(Xi ) oM
is an injective precover of M.

(2) = (1). It suffices to show that every direct sum of injective left R-modules is
injective (by Theorem 3.1.17). Let (E;);es be a family of injective left R-modules,
and E — P E; be an injective precover. Then there are factorizations E; — E —
@ E; where E; — @ E; is the canonical injection for each j. These give rise to
amap @ E; — E with the composition @ E; — E — @ E; the identity. Hence
€D E; is isomorphic to a summand of E and so is injective.

(2) < (3). If € is precovering, then R is left Noetherian by the above and so & is
closed under well ordered inductive limits. Hence & is covering by Corollary 5.2.7.
The converse is trivial. i

The proof of the existence of ¥ -covers does not give us the structure of these -
covers. As we saw in Example 5.3.19, one has to appeal to other results in order to
get the structure of covers. We now describe the structure of injective covers of some
modules.

Lemma 5.4.2. Let R be a commutative Noetherian ring. If M is a finitely generated
R-module and p is a prime ideal of R with Hom(E(R/p), M) # 0, then p is a
maximal ideal.

Proof. Let ¢ € Hom(E(R/p), M), ¢ # 0. By replacing M with Im ¢, we may
assume ¢ is surjective and by going modulo a maximal submodule, we may assume
M is simple. Hence we may assume M = R/wm for some maximal ideal .

If p ¢ m, thenletr € p and r ¢ wm. Then for each z € R/m, z # 0, rz # 0.
But for each x € E(R/p), r"x = 0 for some n > 1. So for ¢(x) = z we would
have "z = 0, a contradiction. Hence p C m. If p # w, letr € m, r ¢ p. Then
rE(R/p) = E(R/p) and r"* E(R/p) = 0 for some n. So there is no surjective map
¢ : E(R/p) = R/m. Hence p = m. O

Theorem 5.4.3. Let R be a commutative Noetherian ring. Then the injective cover of
a finitely generated R-module is a direct sum of finitely many copies of E(R/m) for
finitely many maximal ideals m.
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Proof. Let M be a finitely generated R-module and £ — M be the injective cover.
Then E =~ @pESpecR E(R/p). So E is the direct sum of copies of E(R/m) over
maximal ideals m by Lemma 5.4.2 above. But if Hom(E(R/m), M) # 0, then
m € Ass(M). Furthermore, Ass(M ) has only finitely many primes since M is finitely
generated. So E is a direct sum of copies of £ (R /m) for finitely many maximal ideals
m. We now show that there are only finitely many copies of E(R/m) for each such
maximal ideal.
We first recall that E(M) = P E(R/p)X») over p € Spec R and so

Hom(E (R /m), E(M)) = Hom(E(R/m), E(R/m)") = (Rw)"

where Card X,y = n < oo by Corollary 3.3.12. Hence Hom(E(R/m), M) is a
finitely generated Ry-module. Let ¢1,...,92 € Hom(E(R/m), M) be generators
as an Ryg-module. So if ¢ € Hom(E(R/m), M), then ¢ = Y ;_, ¢; o 0; for some
01,...,0s € Hom(E(R/m), E(R/m)) = Ry This means we can complete

E(R/m)

~
~
~
~

M

E(R/m)*
(@150-505)

to a commutative diagram.

Now let E = E; @ E5 where E is the direct sum of all copies of £ (R/m) in some
decomposition of E into indecomposable injective R-modules. Then by the above,
we can complete

Ey
g - l/
E(R/m)* M
(@15-0505)
to a commutative diagram. But then
E=E10®E
-7 l
E(R/m)* @ E, M

can be completed to a commutative diagram. So E(R/m)® & E, is an injective
precover and hence E is a direct summand of E(R/m)® @ E,. Thus E has finitely
many copies of E(R/m). |

Similar arguments give the following result.
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Theorem 5.4.4. Let R be a commutative Noetherian ring. Then the following state-
ments hold:

(1) If p € Spec R, then the injective cover of E(R/p)/R/p is the direct sum of
copies of E(R/q) for prime ideals q such that ¢ D p.

(2) If p ¢ Ass(R), then the injective cover of E(R/p)/R/p is the sum of copies of
E(R/p).

(3) If w is a maximal ideal of R, then the injective cover of E(R/m)/R/w is a
direct sum of finitely many copies of E(R/m).

Proof. (1)Letp,q € Spec R. If p Z q,letr € p, r ¢ g. Then multiplication by r on
E(R/q) is an isomorphism and is zero on R/p. So Ext!'(E(R/q), R/p) = 0. This
means that the diagram

E(R/q)

~
-
-
-
-
£

E(R/q) — E(R/p)/R/p

can be completed when the horizontal map is the natural map and the vertical one is
arbitrary. Hence to construct an injective precover of E(R/p)/R/p, it suffices to find
an injective R-module £ and a map £ — E(R/p)/R/p such that

Hom(E(R/q), E) — Hom(E(R/q), E(R/p)/R/p) — 0
is exact whenever g D p, for then
Hom(E(R/q), E @ E(R/p)) - Hom(E(R/q). E(R/q)/R/q) — 0

is exact for any q € Spec R.

E®E(R/p) — E(R/p)/R/p would be an injective precover since every injective
R-module is a direct sum of copies of E(R/p). So we let E be the direct sum of
sufficiently many copies of the R-modules E(R/q) when g D p. Then clearly, there
isamap E — E(R/p)/R/p satisfying the above. But the injective cover is a direct
summand of a precover by Proposition 5.1.2 and thus is also a direct sum of such
copies.

(2) If p ¢ Ass(R), let K C E(R/p) be the field of fractions of R/p. If p <
a and E(R/q) — E(R/p)/R/p is a map, consider the composition E(R/q) —
E(R/p)/R/p — E(R/p)/K. But K = (R/p)p. E(R/p) = E(R/p)p, E(R/v)/
K = (E(R/p)/K)p, E(R/q)p = 0. Thus E(R/q) — E(R/p)/K is the zero map.
Hence the original map E(R/q) — E(R/p)/R/p maps E(R/g) onto K/(R/p).
But p ¢ Ass(R) and so there exists an r € p which is not a zero divisor. Thus E(R/p)
is divisible by r. But then any map E(R/q) — K/(R/p) is zero since multiplication



Section 5.4 Injective Covers 129

by r on K/(R/p) is zero. Consequently, any map E(R/q) — E(R/p)/R/p is zero
for any prime ideal ¢ 2 p. Hence the injective cover of E(R/p)/R/p is a direct sum
of copies of E(R/p).

(3) If m is a maximal ideal, then the injective cover of E(R/m)/R/m consists
of copies of E(R/m) by (1) above. We now show that there are finitely many such
copies. We recall that E(R /p)?¥ = ﬁp, the completion of R at p, and (E(R/p)/R/p)?
is isomorphic to the maximal ideal m(ﬁp) of Iép. Hence by duality, to find an injec-
tive cover of the desired form, we only need to argue that there is an n > 1 and
a map m(ﬁp) — Iég such that Homép(ﬁg,ﬁp) — Homﬁp(m(ﬁp),lép) —- 0

is exact. But ﬁp is Noetherian and so let 01,05,...,0, be a set of generators of
~ ~ ~ (O1,50e500) A . .

Hom R (m(Rp), Rp). Then the map m(Ry) g R} satisfies the requirements.

O

In particular, as we will show below, if 1t is a maximal ideal of a commutative
Noetherian ring R such that depth,, R > 2 (see Definition 9.2.5), then the injective
cover of E(R/m)/R/w is simply E(R/m), and the injective cover has at least two
copies of £(R/m) in the case depth,, R = 1.

We start with the following general result.

Theorem 5.4.5. Let R be a commutative Noetherian ring, M be a finitely generated
R-module with n generators, and G be an injective R-module. If Ext'(M, R) = 0,
then the natural map

G" — G"/Homg(M, G)

is an injective precover. The converse holds if G is an injective cogenerator of R.

Proof. Let E be an injective R-module. Then HomR(Ext}z(M ,R),E) = 0 im-
plies Torf(HomR(R, E),M) = 0 and so Hom(Tor;(E, M),G) = 0. But then
Ext! (E,Hom(M, G)) = 0 and so the result follows.

For the converse, note that G — G" /Hom(M, G) is an injective precover means
that Ext! (E, Hom(M, G)) = 0 for all injectives E. If G is an injective cogenerator,
this in turn implies Ext! (M, R) = 0 and so we are done. |

In particular, we have the following result.

Theorem 5.4.6. Let R be a commutative Noetherian ring. Then the following are
equivalent for a maximal ideal m of R:

(1) Ext!(R/m, R) = 0.
(2) The natural map E(R/m) — E(R/m)/R/wm is an injective cover.
3) Homlém (m(Rw), Rw) is cyclic.
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Proof. (1) = (2). E(R/m) — E(R/m)/R/m is an injective precover by the pre-
ceding theorem. But the injective cover of E(R/wm)/R/wm is then a direct summand
of E(R/m) and E(R/m) is indecomposable. Hence E(R/m) is the injective cover.

(2) = (1). If m’ is a maximal ideal distinct from m, let r € m, r ¢ m’. Then r
is an isomorphism on E(R/m’) and is zero on R/m. So Hom(R/m, E(R/m’)) =
0. Therefore Ext! (E,Hom(R/m,EBpEmSpecR E(R/p))) = Ext!(E, R/m). Hence
if Ext!(E, R/m) = 0 for all injective modules E, then Ext!(R/m, R) = 0 since
Dpemspec & E(R/p) is an injective cogenerator of R.

(2) = (3). By Matlis duality, if E(R/m)" — E(R/m)/R/m is an injective
cover, then 7 is the least number of generators of Hom p (m(Rm) Rm)

(3) = (2). If Homy (m(Rm) Rm) is cyclic, then as in the proof of Theorem
544, E(R/m) — E(R/m)/R/m is an injective precover and so is an injective
cover. O

Corollary 5.4.7. depth,, R > 2 if and only if the natural map E(R/m)/R/w is an
injective cover and depth,; R > 0.

Proof. We simply note that depth,, R = inf{i : Ext'(R/m,R) # 0} (see Re-
mark 9.2.9). o

Corollary 5.4.8. depth,, R = 1 if and only if the injective cover of E(R/m)/R/m
has at least two copies of E(R /w) and depth,, R > 0.

Proof. If depth,, R = 1, then E(R/m) — E(R/m)/R/m is not an injective cover
by Corollary 5.4.7 above. But the injective cover of E(R/wm)/R/wu is a (finite) sum
of copies of E(R/m) by Theorem 5.4.4. So the cover has at least two copies of
E(R/m). The converse follows from the above corollary. |

Example 5.4.9. Let R = k[xy,...,x,] where k is a field. Then E(k) — E(k)/k is
an injective cover if and only if n > 2 by the above.

Similarly, if R is an n-dimensional local ring with residue field k, then E(k) —
E(k)/k is an injective cover whenever n > 2.

Exercises

1. Let R be Noetherian. Show that every injective cover is an injection if and only
if every quotient module of an injective module is injective.

2. Let R be Noetherian. Argue that the following are equivalent:
(a) Every injective cover is surjective.
(b) Every projective module is injective.

(c) R (as aleft R-module) is injective.
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3. Suppose that ¢; : E; — M; is a family of injective covers (fori € ). Show that
[Tei : [lies Ei = [lje; M; is an injective precover and that this precover is a
cover if and only if [ | Ker(g;) has no nonzero injective submodules.

4. If R — S is aring homomorphism and if £ — M is an injective precover of left
R-modules, argue that Homg (S, E) — Hompg (S, M) is an injective precover of
left S-modules when S is a flat right R-module.

5. Let C be a left R-module such that Ext}2 (E, C) = 0 for all injective left R-mod-
ule E. Prove that E(C) — E(C)/C is an injective precover and that it is an
injective cover if and only if C has no nonzero injective submodules.

5.5 Direct Sums and 7 -nilpotency

A direct sum of covers may fail to be a precover, or it may be a precover and still not
be a cover. Namely, if for each i € I, v; : C; — M; is a cover, it may be possible to
complete

DG
\

D M;
/

|
|
v
DCi
by a map which is not an isomorphism. The next proposition shows when this property
of covers is preserved by countable sums. The necessary condition is a sort of 7'-
nilpotency, which when applied to projective covers gives the usual 7 -nilpotency of
the radical of a left perfect ring.
In the situations above, there is no loss in generality in assuming each M; is a
quotient of C;, say C;/S;, and that ; : C; — C;/S; is the canonical surjection.

Proposition 5.5.1. Ifforeachi = 1,2,3,..., S; C C; is a submodule such that

\
DCi/Si (%)
/
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if and only if for each sequence 1 < ki < ko < --- of positive integers and maps
Jn 2 Ck,, = Ci,, . withIm(fy) C Sk, , and each x € Cy,, there isanm > 1 such
that

Jmo fm—10---0 f1(x) = 0.

Proof. We argue the necessity and let the k,’s and f;’s be as stated. Define ¢ :
P C;i — P C; sothatif i # k, for any n then Puidc, is the identity map, and so that
Pmidc,, agrees with the map Cy,, — Cg, & Cy,,, which maps y to v, —fn(»)).
Then ¢ completes the diagram (). Furthermore one checks that if x € Cy, and if x
is in the image of ¢, say ¢((x;)) = x, then x; = 0 fori # k, for all n. Also xi,
must be x and by induction we see that xz, = fy,—1 0---0 fi(x) forn > 1. But
(x;) € @ C; and so xi, = 0 for n sufficiently large.

For the converse, suppose ¢ completes (*). Use the matrix notation ¢ = (¢;;) with
@ij : C; — C;. Note that for each 7, ¢; completes the diagram

4

~

Ci/Si

/’

N<-——-0O

~.

and so is an isomorphism, and that for i # j, ¢;; has its image in S;. Also (¢;;) is
locally column finite in the sense that for any j and any x € Cj, ¢;;(x) = 0 except
for a finite number of i. Furthermore, any collection of ¢;;’s satisfying these condi-
tions gives a ¢ completing (*). To argue that ¢ is an isomorphism we only need to
find a ¢ which is an isomorphism completing () and such that ¥ o ¢ or ¢ o ¥ is an
isomorphism. The argument proceeds by showing that ¢ has a triangular decomposi-
tion, that is, it is the product of an upper and lower triangular matrix (corresponding
to an automorphism of @ C;). If ¢ is upper triangular, then since its diagonal ele-
ments are automorphisms of the Cj, it is a standard argument that it is invertible, and
its inverse satisfies the conditions above. This guarantees that it corresponds to an
automorphisms of € C; of the desired type (that is, makes (*) commutative).

So we construct an upper triangular matrix ¥ of the desired form so that ¢ o ¥ is
lower triangular. We define ¥ as an infinite product ¥r; o Y5 o Y3 o ---. We start by
letting

_901_11 _(P1_11§012 (P1_11§013
0 id 0

= 0 id
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Then ¢ o v has the form
id 0 O

/ / /
$21 P22 P23 "

Hence define ¥, as we defined y; but using the second row of ¢ o i1, and then
similarly defining v3,---. It is easy to see that ij entry of {/q o --- o i, is constant
for n sufficiently large and so the infinite product converges; and if v is this product
it gives the desired automorphism of € C; so that ¢ o ¥ is lower triangular.

Now assume that ¢ is lower triangular and that it has the identities id¢; on the
diagonal. So ¢ = idgyc; — K where K is strictly lower triangular and —K has ¢;;
forits ij entry when i > j. Since K is strictly lower triangular, the sum

(p/:id+K+K2+---+K”+---

is well-defined. As a matrix, ¢’ is ¢ ~!. However we need to argue that it is locally
column finite. To argue this, given i, let x € C;. Then the ji entry of ¢’(x) for j > i
is

D Piky © Phgkyy © " © Phoky © Phyi (X)

with the summation taken over all finite sequences j > kg > --- > ky > i. If for an
infinite number of j with j > i the sum is nonzero, an easy application of the Konig
Graph Theorem (see [131]) allows us to choose i < k1 < kp < k3 < --- with

Ckpkp_1 © 0 Pkyi(x) # 0.

Setting fn = ¢g,k,_, forn > 2 and f; = ¢, ; contradicts our hypothesis. |

Corollary 5.5.2. For a left perfect ring R, if P; — M; are projective covers for each
i =1,2,3,..., then @ P; — @ M, is a projective cover.

Remark 5.5.3. If we apply this result to a countable sum of copies of the projective
cover R — R/J where J is the Jacobson radical of R we getthat G R — P R/J
is a projective cover. If 1, 2, ... is a sequence of elements of J, then using Proposi-
tion 5.5.1, let k,, = n for all n and let f, : R — R be multiplication by r,. Then the
condition f o---0 f1(x) = 0 for x = 1 € R translates to rp, ---r; = 0. Thus J is
right 7"-nilpotent.

We note that the finite counterpart of Proposition 5.5.1 holds since we can choose
¢ = 0 for k sufficiently large. So we have the following result.

Proposition 5.54. IfC; — M;, i = 1,2,...,n are ¥ -covers and @;_, Ci € F,
then @) _, Ci — @;_, M; is an F -cover.
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Exercises

1. Let R = Zj, where p is a prime. Then Z, — Z/(p) is a projective cover. Show

that ZI(,N) —Z/( p)(N) is a projective precover but is not a projective cover.

2. Again with R = Z, with p a prime, we have that Zp — Z/(p) is a flat cover.
Show that Z},N) —Z/( p)(N) is not a flat precover.

3. Give a direct argument showing that if ¢; : C; — M; are ¥ -covers fori = 1,2
andif C;y @ Cp € F,thengp = 1 D : C1 & Co > My & M, is an F -cover.
Hint: Let f : C1 & C2 — C1 & Cy be such that ¢ o f = ¢. Using matrix

notation let f = (2: ng) with f;; : C; — C;. Then the equality g o f = ¢

(5 o) ()= 2)

Ifg:Cy & Cy - C; & C; is an automorphism such that ¢ o g = ¢, then it
suffices to argue that f o g (or g o f) is an automorphism. Use this observation
to show that we can assume f1; = idys,, f22 = idy, and also that fi, = 0.

So then conclude that ' = (2 : 22) = <i(}1;‘ idf{ ) is an automorphism of
2
C1 & C,.

becomes



Chapter 6
Envelopes

Having introduced covers in the previous two chapters, we now define the dual notion
of envelopes. The main aim of this chapter is to prove the existence of envelopes.
We first do this by dualizing the results for covers in Sections 5.1 and 5.2. However
these results do not prove the existence of injective and pure injective envelopes. In
Section 6.6, we will use Maranda’s notion of an injective structure to obtain a result
that proves the existence of these envelopes.

6.1 ¥ -preenvelopes and Envelopes

Definition 6.1.1. Let R be a ring and ¥ be a class of R-modules, by an ¥ -pre-
envelope of an R-module M we mean a morphism ¢ : M — F where F € ¥
such that for any morphism f : M — F’ with F/ € ¥, thereisag : F — F’
such that g o ¢ = f. If furthermore, when F’ = F and f = ¢ the only such g
are automorphisms of F, then ¢ : M — F is called an ¥ -envelope of M. So if
envelopes exist, they are unique up to isomorphism. It is easy to check that if ¥ is
the class of injective modules, then we get the usual injective envelopes. Similarly,
we get pure injective envelopes if F is the class of pure injectives. We note that if
the class ¥ contains injectives, then % -preenvelopes are monomorphisms. If every
R-module has an ¥ -(pre)envelope, we say that ¥ is (pre)enveloping. For example,
we know that the class of injective R-modules is enveloping.

We start with the following result which is dual to Proposition 5.1.2.

Proposition 6.1.2. Let M be an R-module, then the ¥ -envelope of M, if it is exists,
is a direct summand of any ¥ -preenvelope of M.

Exercises

1. Recall that every subgroup of a free Abelian group is free. Deduce that for an
Abelian group A the following are equivalent.
(a) A has a free preenvelope.
(b) A has a free envelope.

(c) A has a direct sum decomposition A = A; @ A with A, free and such that
Hom(A1,7Z) = 0.
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2.(a) Let A = []72, Zi with Z; = Z fori > 0. Show that if B = ;2 Z;, then
A/ B has an uncountable divisible subgroup.

(b) Use (a) to deduce that A is not free by arguing that if A were free there would
be a decomposition A = A; & A with B C A; and A; countable and so
contradict (a).

(c) Argue that A does not have a free preenvelope by noting that if A’ is a direct
summand of A, then Hom(A’, Z) = 0 implies A’ = 0.

3. Let ¥ be a class of modules closed under taking submodules, products and in-
jective envelopes. Then

(a) Argue that an R-module M has an ¥ -preenvelope if and only if it has an
F -envelope and that any F -envelope is surjective.

(b) Show that every M has an F -envelope if and only if F is closed under prod-
ucts.

(c) If every M has an ¥ -envelope and K = Ker ¢ for an envelope ¢ : M — F,
argue that Hom(K,G) = O forall G € ¥.

6.2 Existence of Preenvelopes
The following is dual to Proposition 5.2.2. We provide a proof for completeness.

Proposition 6.2.1. If ¥ is a class of R-modules that is closed under products, then
an R-module M has an ¥ -preenvelope if and only if there is a cardinal number R,
such that any morphism M — F with F € ¥ has a factorization M — G — F
with G € ¥ and Card G < R,.

Proof. If M has an ¥ -preenvelope M — F, then let 8, = Card F'. Conversely,
there is a set X with cardinality Ry such that any morphism M — F with F € ¥
has a factorization M — G — F forsome G € ¥ with G C X (as sets). Now
let (¢;)ies give all such morphisms ¢; : M — G; with G; C X (as sets). So
any morphism M — F has a factorization M — G; — F for some j. But then
M — []; G is an ¥ -preenvelope. m|

Corollary 6.2.2. Let Card M = Rg. Suppose there is an infinite cardinal Ry such
thatif F € ¥ and S C F is a submodule with Card S < Nﬂ, there is a submodule G
of F containing S with G € ¥ and Card G < Ry. Then M has an ¥ -preenvelope.

Proof. Let M L F be a morphism with F € ¥. Then Card f(M) < Rg. So
there is a submodule G of F containing f(M) with G € ¥ and Card G < R,. But
then we have a factorization M — G — F. Hence M has an ¥ -preenvelope by
Proposition 6.2.1. m|
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We now provide an example to illustrate how the above arguments apply. But
before we do that we need the following.

Definition 6.2.3. An R-module N is said to be absolutely pure if it is a pure submod-
ule in every R-module that contains it, or equivalently, if it is pure in every injective
R-module that contains N. But then N is absolutely pure if and only if it is pure
in E(N) and if and only if Hom(M, E(N)) — Hom(M, E(N)/N) — 0 is exact
for all finitely presented R-modules M by Definition 5.3.6. That is, if and only if
Ext! (M, N) = 0 for all finitely presented R-modules M. As a result, absolutely pure
modules are also known as F P -injective modules.

We now recall from Remark 3.2.3 that an R-module M is finitely presented if
and only if there is an exact sequence 0 - A — R" — M — 0 with A finitely
generated. Hence Ext!(M, N) = 0 for all finitely presented R-modules M if and
only if Ext! (R"/A, N) = 0 for every n > 0 and finitely generated 4 € R". So an
R-module N is absolutely pure if and only if Hom(R", N) — Hom(4, N) — 0 is
exact for every n > 0 and finitely generated A C R".

Proposition 6.2.4. Let R be a ring. Then the class of absolutely pure R-modules is
preenveloping.

Proof. Let M be an R-module and let Card M < R p- We need to choose an R, and
construct the G in Corollary 6.2.2. But N is absolutely pure if for each n > 1 and
finitely generated A € R” every morphism A — N has an extension R” — N.
Now let f : M — N be a morphism. Then setting By = f(M), we consider
submodules By C N with By C Bj such that every morphism A — By has an
extension R” — Bj. We can choose B; with a bound on its size depending only on
Ny and Card R. The argument for this claim is similar to that used in the proof of
Lemma 5.3.12. Similarly, we can construct By C B, C ---. Now let B = Ufil B;.
Then B is absolutely pure and we can find an R, so that B can always be constructed
with Card B < R,. Finally, it is easy to check from the definition above that the
product of absolutely pure modules is again absolutely pure. |

Exercises
1. Let R be an integral domain. Modify the proof of Proposition 6.2.4 to show that
the class of divisible modules is preenveloping.
2. Let‘8 be any set of modules. Let & be the class of modules F such that
Ext'(S,F)=0foralli > 1and S € §.
(a) Prove that every module M has an ¥ -preenvelope which is an injection.

(b) If R = Z and & consists of all Z/(n), n > 1, argue that ¥ consists of all the
divisible Z- modules.
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3. Prove that the direct sum of any family of absolutely pure modules is absolutely
pure. Deduce that the class of absolutely pure modules coincides with the class
of injective modules if and only if the ring is left Noetherian.

6.3 Existence of Envelopes

The following Theorem is dual to Theorem 5.2.3.

Theorem 6.3.1. Let R be a ring, ¥ be a class of R-modules that is closed under
summands, and M be an R-module. Suppose for any well ordered projective system
((Ga), (¢ap)), every map M — Lln Gy can be factored through some M — G with
G € F. If M has an ¥ -preenvelope, then it has an ¥ -envelope.

Proof. We again break up the proof into three lemmas just as in Theorem 5.2.3. O

Lemma 6.3.2. For each F € ¥ and morphism M — F, there exists an ¥ -preen-

velope M — G and a morphism f in the factorization M — G i) F such that

for any morphism g in the factorization M — H LN G where M — H is also an
F -preenvelope, Im(f o g) = Im f.

Proof. Dual to the proof of Lemma 5.2.4. m|

We now modify the argument of Lemma 5.2.5 in order to prove the following dual
result.

Lemma 6.3.3. There exists an ¥ -preenvelope M — G such that in any factorization
M — G — F with M — F an ¥ -preenvelope, G — F is surjective.

Proof. Let « be an infinite ordinal. Then using the lemma above, we can construct a
projective system

for B < a where foreach 8 + 1 < a, M — Gg is an ¥ -preenvelope and where

M —— Gpa

|

Gg
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has the property guaranteed by the lemma. For each f + 1 < «, let Ug C Gg be this
image. Let M — F be any ¥ -preenvelope of M. Then we can complete

M

e

im Gy

F

to a commutative diagram by assumption. The map F — Gpg can be factored F' —
Ug — Gg when B + 1 < a where F — Up is surjective by the above. So if
B <v < v+ 1 < aand we consider the commutative diagram

F

VRN

we see that U, — Ug is surjective. If it is never an isomorphism, then Ker(F —
Uy) S Ker(F — Upg). But then this implies Card F > Card(«) for any such «a,
which is impossible. Hence Uy — Ug is an isomorphism for some such B < v <
v + 1 < «a. This isomorphism is a composition U, — Gg4; — Ug and soitis a
retract of Ggy 1. Thus Uy, € ¥ since ¥ is closed under summands.

We note that M — U, is then an # -preenvelope. Furthermore, let M — F — U,
be a factorization with M — F an ¥ -preenvelope. Then consider the diagram

e
Nl

Gpg41

|

Gg

Uy

Up

M

By the assumption on the morphism Gg,; — Gg, the image of ' — Gyg is Ug.
But Uy — Ug is an isomorphism and so F' — Uy is a surjection. Hence if we set
G = Uy, then M — G is the desired F -preenvelope. m|

Lemma 6.3.4. Ify : M — G is an ¥ -preenvelope having the property of Lemma
6.3.3, theny : M — G is an ¥ -envelope.

Proof. Dual to the proof of Lemma 5.2.6. m|
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Corollary 6.3.5. Let & be a class of R-modules that is closed under summands and
well ordered projective limits, and M be an R-module. If M has an ¥ -preenvelope,
then it has an ¥ -envelope.

Proof. Dual to the proof of Corollary 5.2.7. O

Exercises

1. If M; and M5 satisfy the initial hypothesis of Theorem 6.3.1 and if ¥ is closed
under finite sums, argue that M1 @& M, also satisfies this hypothesis.

2. Use Theorem 6.3.1 to prove the existence of injective envelopes (note that M —
E with E injective is an injective preenvelope if and only if M — FE is an
injection).

3. If ¥ is enveloping and every R-module M satisfies the initial hypothesis of The-
orem 6.3.1, prove that ¥ is closed under well ordered projective limits.

6.4 Direct Sums of Envelopes

Using a similar argument to the proof of Proposition 5.5.1, we get the following dual
result.

Proposition 6.4.1. Ifforeachi = 1,2,3,..., S; C Ej is a submodule such that

if and only if for each sequence 1 < ki < ky < --- and maps f, : Ey, — E
with fu(Sk,) = 0 and for each x € E,, there is an m > 1 such that

n—+1

Jmo fm—10---0 fi(x) =0.
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Corollary 6.4.2. If M; — E;, i = 1,2,...,n are ¥ -envelopes and @?:1 Eie ¥,
then @) _, M; — @7_, E; is an F -envelope.

Proof. We simply set E;, = 0 for k > n. |
Corollary 6.4.3. If for any indexed set I, S; C E; is a submodule such that
E;
7
Si |
S~ Y
E;

can be completed only by automorphism of E;, then

D Si 1

can be completed only by an injection.

Proof. 1f ¢ completes the above, then for any finite subset J of [, consider the com-
mutative diagram

D Ei
|
@D Ei
/
D, S — D Si ¢
\
D Ei
|
D Ei

The vertical morphism is an automorphism by Corollary 6.4.2 above. But since this
is true for any finite subset J of 7, ¢ is an injection. m|

Corollary 6.4.4. If for each i € I, M; — E; is an ¥ -envelope and @ M; has an
F -envelope, then @; M; — @ F; is an F -envelope.

Proof. Assume @; M; — G is an ¥ -envelope and choose the obvious diagrams. O
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Remark 6.4.5. If M C E is an injective envelope of M over a commutative Noether-
ian ring R, then @ M — €P E is an injective envelope. Suppose rM = 0 for some
r € R, then letting f,, : E — E be multiplication by r for each n, we get that for
each x € E, r™x = 0 for some m > 1 by Proposition 6.4.1. Hence if I C R is
an ideal and /M = 0, then we easily get the familiar result that /”x = 0 for some
m > 1.

Exercises

1. Using Proposition 6.4.1, argue that if M C E is an injective envelope over a left
Noetherian ring and if f : E — E is linear with f(M) = 0, then f is “locally
nilpotent” on E, that is, for any x € E, f"(x) = 0 for some n > 1.

2. If f is as in the previous problem, show that we can define a linear map 4 : £ —
E represented by the infinite series 1 — f + f2— f3+---. Thenif g = 1 + f,

argue that h = g~ 1.

3. Use the ideas from the previous two problems to argue that if R is left Noetherian,
M is an essential R-submodule of N, and g : N — N is such that g(x) = x for
all x € M, then g is an automorphism of N.

4. If we take the same hypothesis as in Problem 3 except that we only assume
g(M) = M and that x — g(x) is an automorphism of M, show that g is an
automorphism of N.

5. Use the same hypothesis as in Problem 3. Let f : N — N be linear such that

f(M) C M and assume that f is locally nilpotent on M. Prove that f is locally
nilpotent on N.
Hint: Define the mapo : N N & ---— N & N & --- by (x9, X1, X2,...) —>
(x0, x1— f(x0), x2— f(x1),...). Argue that o maps M &M &- - - isomorphically
onto itself. Now appeal to Problem 4 to conclude that ¢ is an automorphism of
N @& N & ---. So now use the fact that if y € N, (»,0,0,...) is in the image
of 0.

6.5 Flat Envelopes

In this section, we consider conditions under which flat envelopes and preenvelopes
exist. We start with the following result.

Proposition 6.5.1. A ring R is right coherent if and only if the class of flat left R-
modules is preenveloping.

Proof. Let M be an R-module and let Card M < N 8- Then by Lemma 5.3.12; there
is an infinite cardinal R, such that if F is a flat module and S is a submodule of F
with Card § < Wg, there is a pure, hence flat, submodule G of F with § C G and
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Card G < Ry. Thus M has a flat preenvelope by Corollary 6.2.2 noting that the class
of left flat modules is closed under products when the ring is right coherent.
Conversely, let (Fj);ey be a family of flat left R-modules. If [] F; has a flat
preenvelope, then [ ] F; is flat using an argument dual to proof of 2 = 1 of Theo-
rem 5.4.1. O

Proposition 6.5.2. If R is right coherent and every projective limit of flat left R-mod-
ules is flat, then the class of flat left R-modules is enveloping.

Proof. By the Proposition above we know that the class of flat modules is preenvelop-
ing. But then the result follows from Corollary 6.3.5. m|

The following results provide examples of modules that do not have flat envelopes.

Proposition 6.5.3. If M — F is a flat envelope and M is finitely presented, then F
is finitely generated and projective.

Proof. Since F is flat and M is finitely presented, the map M — F can be factored
through a finitely generated projective P. If M — P — F is such a factorization,
then we have a commutative diagram

/N,

where FF — P — F is an automorphism, and thus the result follows. m|

Corollary 6.5.4. Let R be a domain, M be a finitely presented R-module and M —
F be a flat envelope. If the sum of countably many copies of M has a flat envelope,
then the rank of M equals the rank of F.

Proof. Let M % F be aflat envelope. Then F is finitely generated and projective
by the proposition above. So if rank M < rank F, then F//¢(M) has a rank 1 torsion
free quotient, say (F/@o(M))/(F'/o(M)) =~ F/F'. If x € F, x # 0, there is an
injection F/F’ — Rx. If x € F,x ¢ F',let f : F — F be the composition
F — F/F' — Rx — F.Then f(x) = rx withr # 0 and f(¢(M)) = 0. Now set
fi = f in Proposition 6.4.1 to get that f o---o f(x) = 0 and so r"x = 0 which is
impossible. m|

Theorem 6.5.5. Let R be a domain. Then the class of flat R-modules is enveloping
if and only if R is coherent and every projective limit of any projective system of flat
R-modules is flat.
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Proof. 1If the class of flat R-modules is enveloping, then R is coherent by Proposi-
tion 6.5.1. Thus the product of flat modules is flat. So it suffices to show that the
intersection of flat submodules of a flat module is also flat. But note that if we have an
inductive limit 1112 M; of finitely presented modules and if M; — F; is a flat envelope
for each i, then by Corollary 6.5.4 above, the rank of M; is equal to the rank of F;.
Hence for any flat (hence torsion free) module F, the diagram

M —— F;

7/
7
7
»

F

can be completed uniquely. This implies that we can form 11_11)1 F; and that 11_1‘1)1 M; —
li_n)1 F; is a flat envelope such that

lim M; —— lim F;
— —

|,
F
can be completed uniquely for any flat module F.

But R is a coherent domain. So every submodule S of a flat module F is the direct
union of finitely generated, hence finitely presented, submodules. This means that the
flat envelope of S, say S — G, will have the unique morphism ¢ in the factorization
S — G % F for each flat module F. Now let § = NF; where (F;) is some
collection of flat submodules of F. Then we can complete the diagram

S —G
l 7
Ve
7
¥

Fj
by a unique injection for each j. So the image of G in any Fj isin () F; and so S is
the image of G and hence is flat. The converse follows from Proposition 6.5.2. m|
Exercises

1. Prove that if M is finitely presented and F is flat, then any map M — F has a
factorization M — F with P finitely generated projective.

2. Let M be a left R-module such that the algebraic dual M* = Hompg(M, R) is
a finitely generated right R-module. Let P — M™* — 0 be exact where P is
a finitely generated projective module. Argue that M — M™** — P* is a flat
preenvelope where M — M ** is the canonical linear map.
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3. Let R = k[[x, y]] where k is a field. Use Problem 2 to show that (x,y) C
k[[x, ¥]] is a flat envelope.

4.(a) Let M — F be a flat preenvelope over R. Argue that M [x] — F|[x] is a flat
preenvelope over R[x].

(b) If M — F is a flat envelope and if M [x] has a flat envelope over R[x], show
that in fact M [x] — F[x] is such a flat envelope.

5. For aring R show that every left R-module has a surjective flat envelope if and
only if R is right coherent and of weak global dimension at most one.

6.6 Existence of Envelopes for Injective Structures

Theorem 6.3.1 does not prove the existence of injective and pure injective envelopes.

In this section, we modify the arguments in Chapter 5 to show that envelopes exist for

a wide range of classes that include the classes of injectives and of pure injectives.
We will need the following result.

Lemma 6.6.1. Let ¥ be a class of left R-modules that is closed under summands, and
M be a left R-module. Suppose M has an ¥ -preenvelope and if ((Fy), (¢ga)) is any
well ordered inductive system of ¥ -preenvelopes of M, then for some ¥ -preenvelope
M — F there is a factorization M — h_r)n Fy — F. Then M has an ¥ -envelope.

Proof. We recall that in the arguments for Lemmas 5.2.4, 5.2.5 and 5.2.6 in Chapter 5,
we assumed that if ((Cy), (¢g¢)) is any inductive system of F -precovers of M, then
for some C — M with C € ¥, there is a factorization h_r)n Cq — C — M where
limCy — M islim(C, — M). Hence the condition on the inductive system ((Fy),
(pBa)) of F -preenvelopes is exactly what is needed to carry through all the arguments
in these three lemmas to show that M has an ¥ -envelope. |

Definition 6.6.2. A pair (A, ), where 4 is a class of morphisms between R-mod-
ules and ¥ is a class of left R-modules, is called an injective structure on the category
of left R-modules if

(1) F € & if and only if Hom(N, F) — Hom(M, F) — 0 is exact for all M —
N € A.

(2) M — N € 4 if and only if Hom(N, F) — Hom(M, F) — 0 is exact for all
Fe¥.

(3) Every left R-module M has an ¥ -preenvelope M — F.
Definition 6.6.3. If § is a class of right R-modules, then we say that the pair (A, )

is determined by § if M — N € Aifandonlyif 0 - G ® M — G ® N is exact
forallG € §.
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Theorem 6.6.4. The following statements hold:

(1) If an injective structure (A, F) on the category of left R-modules is determined
by a class § of right R-modules, then every left R-module has an ¥ -envelope.

(2) If'§ is a set of right R-modules, then there is a unique injective structure (A, )
determined by '§. In this case, ¥ consists of all F which are isomorphic to a
direct summand of products of copies of the left R-modules GT for G € §.

Proof. (1) Let ((Fg). (¢g«)) be an inductive system of F -preenvelopes of M. Then
M — Fy € Aforeacha andso0 > G ® M — G ® Fy isexactforall G € §. So
M — lim Fy € A. But then Hom(hm Fy, F) - Hom(M, F) — 0 is exact for all
Fe¥ ?0 if M - Fisan ¥ preenvelope we have a factorization M — 11m Fy —

F. Hence M has an ¥ -envelope by Lemma 6.6.1 above.

(2) Now suppose § is a set of right of R-modules. Let 4 be the classof all M — N
suchthat 0 - G ® M — G ® N isexactforall G € g, and ¥ consist of all left
R-modules F which are isomorphic to direct summands of products of copies of G
for G in §. We easily see that (4, ) is determined by ¥ and that it is the only one
determined by § if (+, ¥) is an injective structure.

We now show that (4, ) is an injective structure. Let G € §. Since 0 —
G®M — G ® N isexact for M — N € A, we get that Hom(N,G') —
Hom(M, GT) — 0 is exact. Hence by the choice of ¥, we see that Hom(N, F) —
Hom(M, F) — Oisexactforall F € . Sincefor G € §,0 > GQM - G N
is exact if and only if Hom(N,G%) — Hom(M,G%) — 0 is exact, we see that
M — N € A if and only if Hom(N, F) — Hom(M, F) — Oisexactforall F € ¥ .

Now let M be a left R-module. Since § is a set, we can easily construct an F €
and a morphism M — F such that for any G € § and morphism M — G,

can be completed to a commutative diagram. But then for any F’ € ¥, Hom(F, F') —
Hom(M, F’) — 0 is exact. So since F € ¥, M — F is an ¥ -preenvelope. Thus
every left R-module has an ¥ -preenvelope.

Suppose Hom(N, L) — Hom(M,L) — 0is exact forall M — N € A. Let
L — F be an ¥ -preenvelope by the above (so L — F € #A). Thus Hom(F, L) —
Hom(L, L) — 0is exact. So L is a direct summand of F and so L € ¥ . Conversely,
if L € ¥, then L is a direct summand of G and so Hom(N, F) — Hom(M, F) — 0
is exact by the above. Hence (+, ¥) is an injective structure. i
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Example 6.6.5.

1. If & = {R}, then + is the class of all injections and we get the usual injective
envelopes. Alternatively, note that if & is the class of injective modules, then
given an inductive system ((Fy), (¢gq)) of F -preenvelopes of a module M,
then we have a factorization

M — limFy - E
—

for any map M — E with £ € ¥ since the direct limit of injections is an
injection. Hence ¥ is enveloping by Lemma 6.6.1.

2. It g = {R/I : I is a finitely generated right ideal of R}, then +4 consists of all
pure injections and we get the pure injective envelopes by Theorem 6.6.4 above
noting that every left R-module has a pure injective preenvelope by Proposi-
tion 5.3.9.

Proposition 6.6.6. If R is right coherent, then every left R-module has a pure injec-
tive flat envelope.

Proof. There is a set § of absolutely pure right R-modules such that every absolutely
pure right R-module A is isomorphic to a direct limit of modules G; with G; € § for
each i. For there is a cardinal 8y such that if S C A is finitely generated and A is
absolutely pure, then there is an absolutely pure submodule B of A with § C B and
Card B < R,. Then choosing a set X with Card X = Ry, let § be all absolutely pure
right R-modules G with G € X (as a set).

We now let (4, ) be the injective structure determined by §. Then M — N € A
ifandonlyif 0 - G ® M — G ® N is exact for all G € §. Hence every left
R-module has an ¥ -envelope by Theorem 6.6.4. Now, we only need argue that
consists of all pure injective flat modules. But if F' € #, then F is a direct summand
of G for some G € § by Theorem 6.6.4. But R is right coherent. So G7 is flat
since G is an absolutely pure right R-module. Hence each F € ¥ is flat. But G is
also pure injective. So each F in ¥ is pure injective and flat.

Conversely, suppose F is pure injective and flat. Then F7 is injective and so
absolutely pure. Thus 0 - F* @ M — F+ ® N isexactforall M — N € #, or
equivalently Hom(N, F*1) — Hom(M, F*T) — 0 is exact for all such M — N.
But F is a direct summand of F™% since F is pure injective. So Hom(N, F) —
Hom(M, F) — 0is also exact forall M — N € A. Hence F € ¥. i

Corollary 6.6.7. If R is right coherent and pure injective as a left R-module, then
every finitely presented left R-module has a flat envelope.

Proof. Let M be a finitely presented left R-module and ¢ : M — F be a pure injec-
tive flat envelope guaranteed by Proposition 6.6.6 above. Then there is a factorization
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M L R" % F of the map ¢ since M is finitely presented and F is flat. But R” is

h
flat and pure injective. So M 1> R" has a factorization M > F > R™. But then

gohogp = ¢.Sogoh isanautomorphism since M % Fis an envelope. Hence F
is a direct summand of R”, that is, F is finitely generated and projective.

Now suppose M — G is linear with G flat. Then there is a factorization M —
R™ — G. But R™ is flat and pure injective. So there is a factorization M — F —
R™ of M — R™. Hence the map M — G has a factorization M — F — G. Thus
M — F is a flat preenvelope and so an envelope. |

If R is a complete local ring, then R is coherent and pure injective and so every
finitely generated R-module has a flat envelope which is finitely generated and free
by the above. More generally, we have the following result which we state for com-
pleteness.

Proposition 6.6.8. Let R be right semiperfect and right coherent. Then every finitely
presented left R-module has a flat envelope. Such an envelope is finitely generated
and projective.

Proof. Let M be a finitely presented left R-module and let R — R" — M — 0 be
exact. Then 0 - M* — (R")* — (R™)* is exact where M* denotes the algebraic
dual Hom(M, R). Since R is right coherent, M * is finitely generated. Since R is
right semiperfect, M * has a projective cover P — M ™ (see Remark 5.3.4). Since
M * is finitely generated, it has a finitely generated projective precover. P is a direct
summand of any such precover and so P is finitely generated. Thus P is a reflexive
right R-module.
We claim M — M** — P* is the desired envelope. First note that if

is commutative, then the dual diagram

P ~ p**
T Epe
P~ p**

is too. Since P — M* is a cover, P** — P** is an isomorphism. But then
P* — P* is also an isomorphism.
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To show that M — P* is a flat preenvelope, let M — F be a linear map with F
flat. But M — F can be factored M — R" — F for some n > 1. So we only need
prove

M —— P*
|

\I
\

Rn

can be completed to a commutative diagram. But the dual diagram
M* <—— P**~Pp
A
\ I
|
(R")*

can be completed to a commutative diagram.
Taking the dual of such a completion we get a commutative diagram

o~

Rn

But then the canonical map M — M ™* with this diagram gives us the desired com-
mutative diagram

M —— P*

N

R" O

Exercises

1. If § is a class of left R-modules, argue that there is an injective structure (A, )
on the category of left R-modules with § C ¥ and such that ¥ C ¥ if (A", F')
is any other injective structure with § C %'.

2. If § is as in Problem 1, show that & contains all direct summands of products of
modules in §.

3. Let R=7Zand § = {Z/(p)} where p is some fixed prime. Find the pair (A, ¥)
determined by § and then give a description of the ¥ -envelopes.

4. If (A, F) is the class in Example 6.6.5, argue that there is a largest class ¢ that
determines (+4, ') and then describe §.
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6.7 Pure Injective Envelopes

We saw in Example 6.6.5 that the class of pure injective modules is enveloping. Pure
injective envelopes may also be shown to exist by a standard argument using the
notion of pure essential extension (see Warfield [180] or Fuchs [96]). We will let
PE (M) denote the pure injective envelope of an R-module M .

The following proposition is useful.

Proposition 6.7.1. Let R be a left coherent ring. If F is a flat right R-module, then
PE(F) is also a flat right R-module.

Proof. By Proposition 5.3.9, the canonical map F — F™'7 is a pure injection. But
F*7 is pure injective, so F — F T is a pure injective preenvelope. Hence PE(F)
is a direct summand of F™. But FT is flat since R is coherent and so PE(F) is
flat. i

Corollary 6.7.2. Let R be a commutative Noetherian ring. If F is a flat R- module,
then PE(F) = [[ Ty, over p € Spec R.

Proof. This follows from Lemma 5.3.23, Theorem 5.3.28 and Proposition 6.7.1 above.
O

For the rest of this section, R will denote a commutative Noetherian ring. Our aim
in this section is to study pure injective envelopes of flat modules over such rings.
We start with the following result.

Proposition 6.7.3. Let M be a finitely generated R-module. Then

PEM)= [] Mn.

memSpec R

Proof. Let M be the completion of M with respect to the mSpec R-adic topology
on M defined by taking the neighborhoods of O to be submodules of /M where
is the intersection of powers of the maximal ideals (see Warfield [180]). Then M is
algebralcally compact and M CMisa pure 1nJect10n since M is finitely generated.
Thus M =~ PE(M). But M = [ Iinemspec & My, and so we are done. O

Lemma 6.7.4. If F is aflat R-module, then for each p € Spec R, Fp is the completion
of a free Ry-module.

Proof. We can assume R is local and so that p = m is its maximal ideal. Then
ﬁp = 1<i1_nF/m”F. Foreachn > 1, F/m"F is a flat R/m"-module. But R /m"

a local ring of dimension zero. So F/m” F is a projective and hence a free R/m”-
module. But then F/m"F =~ F/m"*'F ® grR/m". Thus the base of F/m"T1F
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over R/m" "1 is mapped onto the base of F/m” F over R/m” by the canonical map
F/m"t1F — F/m"F. So if the base of F/m"F is indexed by X, then we can find
maps R&) — F/m"F so that the diagram

R&X)

|

F/m"t'F —~ F/m"F

is commutative for each n. Then going modulo m” for various n and chasing an

obvious diagram, we get l(ln F/m"F =~ l(El RX) /™ RX) | But the latter is R,
O

Remark 6.7.5. We note that ' — Fp induces an isomorphism F ® k(p) — ﬁp ®
k(p). Furthermore, F' — F), is a universal map into the completion of a free R,-mod-
ule, that is, a 7. Hence any map F' — T}, has a unique factorization F' — Fy — Tj.

Proposition 6.7.6. If F is a flat R-module, then the natural map F — [] ﬁp isa
pure injection for each p € Spec R.

Proof. By Corollary 6.7.2, PE(F) =~ [[Ty, over p € Spec R. Furthermore, the
obvious map F — T has a factorization F' — ﬁp — T, by Remark 6.7.5 above.
This gives a map f : [[F, — []Tp such that F — [] 7T, has a factorization
F — []1Fy — [1Tp. But then F — [] Fy is a pure injection since F — [] Ty
1S. 0O

Lemma 6.7.7. Let p, q € Spec R. If T4 # 0, then

_Jo fpZa
Ty ® E(k(p)) = {E(k(p))(X) for some set X # @, if p C q.

Proof. By Theorem 3.3.13, T4 ® E(k(p)) = E(k (p))X) for some set X since Tyisa
flat R-module. If p C g, let T = RéY) for some set Y # (. Then RSY) R E(k(p)) =
(Rg ® Ek())Y) =~ E(k(p)¥). But RgY) — RgY) is a pure injection. Therefore

RY) ® E(k(p)) — R ® E(k(p)) is an injection. So E(k(p))®) is a direct
summand of Tq ® E(k(p)) and thus X # 0.

Ifp & g,chooser € p,r ¢ g. Let S C E(k(p)) be a finitely generated submodule.
Then there exists an integer n > 1 such that ¥*S = 0. Then multiplication by r”
is an automorphism of 73 and so 7, ® § = 0. Taking inductive limits, we have

To ® E(k(p)) = 0. O
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Proposition 6.7.8. Hom([ [,#, T4, Tp) = 0.

Proof. We may assume 7, = Hom(E(k(p)), E(k(p))X)) for some set X. So we
have

Hom(l_[ Ta. Tp) ~ Hom((l_[ Tq) ® E(k(p)), E(k(p))(X)).

pZaq pZaq

Butif § C E(k(p)) is a finitely generated R-module, then ([[ 74)® S = [[(T4®S).
So taking inductive limits, we have ([[ Tg) ® E(k(p)) = [[(T4 ® E(k(p))) and so
the result follows from Lemma 6.7.7 above. |

Theorem 6.7.9. If F is a flat R-module, then for each p € Spec R, Ty in PE(F) is
isomorphic to a summand of Fp If p is maximal such that F ® k(p) # 0, then the
map Fp — Ty in the factorization ' — Fp — Ty is an isomorphism.

Proof. By Proposition 6.7.6, F — [] Fp is a pure injection. So f : [] Fp — 1Ty
has a section s making the diagram

F——TIT

| A

[TFy

commutative. This guarantees that each ﬁp — Ty has a section. Thus T} is isomor-
phic to a direct summand of Fp. Note that if F ® k(p) = 0, then ﬁp = 0 and so
T, =0.

Now let p be maximal such that F ® k(p) # 0. Then ﬁp # 0 and ﬁq = 0if
»&a. Furthermore, Fq is the completion of a free R4-module by Lemma 6.7.4, that
is, Fq is also a Ty (not necessarily the one in PE(F)). So Hom([ [, Fq, T,) =0

by Proposition 6.7.8. Similarly Hom(]_[q?ép Ty, Fp) = 0 since T4 = 0 whenever

ﬁq = 0 by the above.
We can now therefore construct the following commutative diagram

nﬁq:(l—[q#pﬁq)@ﬁp

]

2

Hﬁq:(nq;épﬁq)@ﬁp
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and pass to the quotient to get a commutative diagram

The composition ﬁp - Tp — ﬁp is the identity on I:“p. Since ﬁp — T} has a section,
it must be an isomorphism. |

Corollary 6.7.10. Let F be a flat R-module and w be a maximal ideal such that
F # 0. Then Ty, in PE(F) is isomorphic to F.

Proof. If Fyy # 0, then Fiy ® k(m) # 0. |

Proposition 6.7.11. For any set X, Iéff is the completion of a free Ry-module and

every such completion is a direct summand of R})f for some X.

Proof. Iéff =~ [[ T4 over ¢ € Spec R by Theorem 5.3.28. So if T; # 0, then
easily Hom(74, Rp) # 0. But then Hom(7q ® E(k(p)). E(k(p))) # 0. Thus
Te ® E(k(p)) # 0 and so p C q by Lemma 6.7.7. If r ¢ p, then r is an iso-
morphism on RX and thus on 7,. But T; # O implies r ¢ q. Hence ¢ = p.
That is, Rgf =~ Ty. Now let T} be the completion of a free Ry- module. Let
Ty, = Hom(E (k(p)), E (k(p))(X )) for some set X. Then Ty, is isomorphic to a direct
summand of Hom(E (k(p)), E (k(p))X) = Iéff since E (k(p))™®) is a direct summand
of E(k(p))X. O

Remark 6.7.12. PE(R) =~ [] Ry over all maximal ideals m of R by Proposi-
tion 6.7.3. So with our notation, 7, = 0 for every prime ideal p that is not maximal.
If F is free, say F = RX), then R®) ¢ RX and RX — (1‘[ Rm)X = [1RY
are pure injections. So RX ) — [] RX is also pure. But R =~ Ty by Proposi-
tion 6.7.11 above. So if F is a free or projective R-module, then PE(F) =] Fr by
Corollary 6.7.10.

We now want to give a necessary and sufficient condition for a map F — [[ Ty
to be a pure injective envelope of the flat R-module F. We start with the following
result.

Lemma 6.7.13. Let I be an ideal of R and F be a flat pure injective R-module. Then
IF is a pure injective R-module.
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Proof. F is flat and cotorsion and so F = [[ T, over p € Spec R. Therefore, I F =
]_[ IT,. By Proposmon 6.7.11 above, it suffices to show that / Rp is a pure injective
Rp -module. But / Rp is reflexive and so is pure injective by Remark 5.3.15. m|

Remark 6.7.14. Note that for any 7}, the natural map ¢: Ty — Tp ® k(p) is sur-
jective with kernel pT, = m(Ii’p)Tp. The lemma above implies that if F is a flat
module, then any map F — T, ® k(p) can be lifted to a map F — Ty. In fact, we
showed in Example 5.3.19 that ¢ : T, — T} ® k(p) is a flat cover. In particular, if
f Ty — Tyissuchthat g o f = ¢, then f is an automorphism of T}. Furthermore,
we see that any map g : T}, — T} is an automorphism of T}, if and only if the induced
map Tp ® k(p) — Ty ® k(p) is an isomorphism. For a vector space V over k(p),
V = Ty ® k(p) for some T. Hence we have a map T, — V' which can be lifted to a
map T — T} inducing an isomorphism V = T}, ® k(p).

Lemma 6.7.15. For flat modules F and G, 0 : F — G is a pure injection if and only
if F ® k(p) > G ® k(p) is an injection for every prime p.

Proof. The condition is necessary and so suppose the condition holds. It suffices to
prove that F — PE(F) has a factorization F — G — PE(F) since F — PE(F)
is a pure injection. But PE(F) = [[Ty. Thus to show that there is a factorization

F — G — PE(F) it suffices to show that there is a factorization F' %64 Iép for
any prime ideal p by Proposition 6.7.11. But the diagram

F®k(p) — G Qk(p)

BN

Ry/m(Ry)

can be completed to a commutative diagram since F ® k(p) — G ® k(p) is injective
and we have vector spaces. But by Remark 6.7.14 above, the map G — R,/m(Ry)
can be lifted to amap fo : G — Ry such that fo completes the diagram

to a commutative diagram modulo m(f\’p). Thatis, (¢ — foo o) (F) C m(Iép).
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We repeat the procedure using Lemma 6.7.13 where [ = m(Iép)2 with the diagram

(o

F G
|
\ LA
o= fooo v
m(Rp)

finding f1 so that (p —0 o fo —0 o f1)(F) C m(Rp)z. If by induction we have
Sos f1, ..., fu so that

F G

|
\ ' f

=Y 12} froo v
m(Rp)n

is commutative modulo m(Ry,)" 1 for each n, let f = Y52, fx : G — Ryp. Then
foo=¢. |

Remark 6.7.16. Since F and G are flat, F/pF and G/pG are also flat. Thus F/pF,
G/pG are torsion free R/p-modules. Thatis, F ® R/p — G ® R/p is an injection
if and only if F ® k(p) — G ® k(p) is an injection.

Theorem 6.7.17. Let F be a flat R-module. Then F — [ Ty, over p € Spec R, is a
pure injective envelope if and only if for each g € Spec R

(@) F®k(q) — ([[Tp) ® k(q) is an injection;

(b) the image of F ® k(a) in (T[] Ty) ® k(@) = (Ty ® k(@) ® ([Tpueq To) ® k(@)
contains (Tq ® k(q)) @ 0.

Proof. We first construct [ | 7, and amap F — [[ Ty satisfying (a) and (b). We then
show that any pure injective envelope of F satisfies (a) and (b). Then we argue that
if f : F — [[Ty satisfies (a) and (b), it is in fact a pure injective envelope. This
completes the proof the Theorem.

Let X = Spec R, and Xo = mSpec R. For any ordinal « > 1, define X, to be the
set of maximal elements of X — (Jg_, Xg. Then well order each X,. Using these
orders, well order X so thatif p € Xy and ¢ € Xg and @ < B, then p C g. Thus
the p € X can be indexed by & < A for some ordinal A so that if 8 < o < A, then
Pa B Pp-

We now construct Ty, and the map F — Ty, by transfinite induction. By Lemma
6.7.4,let Ty, = ﬁpo andlet FF — Ty, = ﬁpo be the natural map. Having constructed
Tyg and F — Ty, forall B < o < A, we consider F ®k(pe) — ]_[/3<a Ty ®k(Pa).
Let V be its kernel and let 7}, , be such that there is a surjection 7}, — V' inducing
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an isomorphism 73, ® k(py) — V. Composing F — F & k(py) with a projection
F®k(pa) >V = Ty, ® k(pa), we get amap FF — V which can be lifted to a
map F — Ty, as noted in Remark 6.7.14. Then the construction FF — [[g_y Ty is
such that F ® k(pa) — (J] B<a Ipg) ® k(pe) is an injection and its image contains
(Tyo ® k(pa)) ®O.

F — [ly<a Ty, clearly satisfies (a). For 8 < A, ([[y>p Tp.) ® k(pg) = 0 (by
Lemma 6.7.7 and the proof of Proposition 6.7.8) since py A pg for B < a. Thus
([ Ta<s Too) ® k(pp) = ([14<p Toa) ® k(pp) and so (b) is satisfied by the above.

Now let F — [] Uy, be a pure injective envelope where each Uy, is the comple-
tion of a free Ry, -module. Since F — [] Ty, satisfies (a) by Lemma 6.7.15 we get
amap f : [[ Ty, — []Up, making the diagram

F — nTpa

lf

l—[ Upa

commutative. Similarly we get a map g : [[Uy — [] 7y, making the obvious
diagram commutative. For a fixed B, we have [ [, Tp, ® k(pp) = [lp<p Tpo ®
k(pg). Hence we have the commutative diagram

Tos @ k(pp) ® ([1a<p Tou) ® k(pp)

—

F®k(pg) — Upy @ k(pg) ® ([To<p Ups) ® k(pp)

T

Tos ®k(pp) ® ([Ta<p Tro) ® k(pp)

Since Hom(Tpy, [y <g Up,) = 0 and Hom(Uy,. [[4<p Tp,) = O by Proposition
6.7.8 the vertical maps above map Ty, ®k(pg) into Uy, ®k(pg) and Uy, ®k(pg) into
Ty ®k(pg). Since by (b), there is a subspace V' of F ®k(pg) mapped isomorphically
onto Ty, ® k(pg), we see that the composition Ty, ® k(pg) — Up, ® k(pg) —
Ty ® k(pp) is the identity map.

Now reversing the roles of 7" and U in the diagram above and using the fact that
F — [[Up, is a pure injective envelope, a similar argument gives that Up, ®
k(pg) = Tpy ® k(pg) — Upy ® k(pg) is an automorphism of Uy, ® k(pg). Thus
Ty ® k(pg) — Upy ® k(pg) is an isomorphism and so V' C F ® k(pg) is mapped
isomorphically onto Uy, ® k(pg) in (J[y< Up,) ® k(pg). Hence (b) is satisfied.
Clearly, F — [] Uy, satisfies (a).
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We finally argue that if ¥ — [[ Ty, satisfies (a) and (b), then it is an injective
envelope. By (a) and Lemma 6.7.15, F — [] Ty, is a pure injection. Thus, it suffices
to show that if f : [[ Ty, — [] Ty, makes the diagram

F — HTpa

N

1_[ Tpa

commutative, then it is an automorphism of [[Ty,. But since [[,.; Tp, =
1<iLn(]_[a < Tp, ). it suffices to show inductively that when we pass to the quotients

[la<p o, for each B, we get an automorphism of [, g Tp,. But Ty, = Fop.
Hence f induces the identity map on the quotient 75,,. Now suppose 8 < A is a limit
ordinal and that f induces an automorphism of [ [, <y Iy, forall y < B. Taking a
projective limit, we get that " induces an isomorphism [ [, g T, — [1y<p Tv- But
[To<p Toe = [la<p To, maps Ty, into Ty,. So to show it is an isomorphism, we
only need to argue that it maps Ty, onto Ty,. But by (b), Ty, ®k(pg) = Ty, @k (pp).
Thus Ty, — Typp is an isomorphism.

If B is not an ordinal, say = y+1, then a similar argument shows that [ [, <y Tpe™
[la<y Tp, is anisomorphism and sois [ [,<g Tp, — [4<p Tv,- This completes the
proof. m|

Exercises

1. Let M = R in Proposition 6.7.3. Show that Ris isomorphic to Endg (R).
Hint: use Proposition 6.7.8.

2. If0 > F/ — F — F” — 01is a short exact sequence of flat modules, show that
PE(F) is isomorphic to a direct summand of PE(F') & PE(F").

3. Find an example as in Problem 2 where PE(F) is not isomorphic to PE(F') &
PE(F").
Hint: Let R = Z, F” = Q and let F be free.

4. Use Theorem 6.7.17 to show thatif R = Z and if F = ]_[fio Ziwith Z; = Z
foralli > 0, then [[72, Z; — [[72¢ PE(Z;) is a pure injective envelope.

5. Let S C R be amultiplicative set. Let M C PE (M) be a pure injective envelope
of the S~! R-module M (as an S~! R-module). Explain why M C PE(M) is
also a pure injective envelope of M as an R-module.



Chapter 7
Covers, Envelopes, and Cotorsion Theories

In this chapter we introduce the notion of cotorsion theory. We prove Eklof and
Trlifaj’s theorem that under certain conditions cotorsion theories have enough injec-
tives and projectives in which case precovers and preenvelopes exist. As an applica-
tion of this theory, we prove that every module has a flat cover.

7.1 Definitions and Basic Results

Definition 7.1.1. Given a class € of R-modules, we let € be the class of R-modules
F such that Ext}e (F,C) = 0forall C € €. We let €+ be the class of modules G
such that Ext}2 (C,G) = 0forall C € €. 1€ and €~ are called orthogonal classes
of €.

We note that for any €, € C +(€1) and € c (+€)L. Also € C &, im-
plies 1€, C 1€, and ‘(fj‘ C ‘(ff-. From this it follows that (+(€1))t = €+ and
L(*e)t) = Leforal €.

Definition 7.1.2. A pair (¥, €) of classes of R-modules is called a cotorsion theory
(for the category of R-modules) if #+ =€ and 1€ = ¥

A class D is said to generate the cotorsion theory if +D = ¥ (and so D C ©)
and a class § is said to cogenerate (¥ ,€) if §+ =€ (andso & C F).

Example 7.1.3. (M, dnj) and (Proj, M) are cotorsion theories where M denotes
the class of left R-modules and Jnj and $roj denote the classes of injective and
projective modules respectively. The cotorsion theory (M, dnj) is cogenerated by the
set of modules R/ where [ is a left ideal, and is generated by the class of injective
modules.

We note that if (¥, €) is a cotorsion theory, then ¥ and € are both closed under
extensions and summands, and ¥ contains all the projective modules while € con-
tains all the injective modules. Also, ¥ is closed under arbitrary direct sums and € is
closed under arbitrary direct products. If (¥, €) is generated (cogenerated) by a set
X (so not just a class), then (¥, €) is generated (cogenerated) by the single module

[Imex M (Dprex M).
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Lemma 7.1.4. If F is the class of flat R-modules and if ¥+ = € (so € is the class
of cotorsion modules, see Definition 5.3.22), then (¥ ,€) is a cotorsion theory.

Proof. We only need to prove that F € € is flat. But pure injective modules are co-
torsion. And for any right R-module M, M is pure injective. But Exth (F, M) ~
(TorR(M, F))*. So if ExthL(F, M*+) = 0, then TorR(M, F) = 0. Hence if F € €,
then F is flat. O

Definition 7.1.5. A cotorsion theory (¥, €) is said to have enough injectives if for
every module M there is an exact sequence 0 > M — C — F - OwithC € €
and F € . We say that (¥, €) has enough projectives if for every M there is an
exactsequence0—> C—>F—>M—>0with Fe¥ andC € €.

We note that if 0 - C — F — M — 0 is as in the definition, then F — M
is an ¥ -precover for every M. For if G € ¥ then Hom(G, F) - Hom(G, M) —
Ext' (G, C) = 0is exact. Similarly, if 0 - M — C — F — 0 is as in the definition
then M — C is a €C-preenvelope. The cotorsion theories (M, dnj) and (Proj, M)
as in Example 7.1.3 have enough projectives and injectives. For example, the exact

sequence 0 — 0 — M s M — 0 for any M shows that (M, dnj) has enough
projectives.

Definition 7.1.6. Given a class ¥, a module M is said to have a special ¥ -precover
if there is an exact sequence 0 > C — F - M — Owith F € F andC € F+. M
is said to have a special preenvelope if there is an exact sequence 0 - M — F —
D—Owith FeFand D e 1¥.

So if a cotorsion theory (¥, €) has enough injectives and projectives, every module
M has a special ¥ -precover and a special €-preenvelope.

Proposition 7.1.7. If (¥, €) is a cotorsion theory on the category of R-modules hav-
ing enough injectives (projectives), then it also has enough projectives (injectives).

Proof. Assume that (¥, €) has enough injectives and let M be a module. Let 0 —
S — P — M — 0 be exact with P projective. Since there are enough injectives
let0 > S - C - F — 0beexact with C € € and F € F. Using a pushout
construction for

— = P

A <=—U0
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we have a commutative diagram

0 0
0 S P M 0
0 C G M 0
F ——F
0 0

with exact rows and columns. Since ¥ is closed under extensions, we see by the
middle column that G € ¥ . Hence the middle row gives the desired exact sequence.

A completely dual proof gives that if (¥, €) has enough projectives then it has
enough injectives. o

Exercises

1. Let (¥,%€) be a cotorsion theory for the category of R-modules. Argue that the
following are equivalent:

(a) Ext'/(F,C) =0foralli >1,F e ¥,C € €.
(b) If0 - F' - F - F” — Oisexact with F, F"" € ¥ then F' € ¥.
() f0>C'—-C — C"” — 0isexact with C’,C € € then C" € €.

2. If (%7, €;) are cotorsion theories for the category of R-modules fori € I, prove
that there is a cotorsion theory (¥, €) with ¥ = (),c; F; and that there is one
(F'.€) with € =), Gi.

3. Let (¥, €) be the cotorsion theory of the category of Z-modules cogenerated by
Z/(n) forn > 2. Show that C € € if and only if nC = C.

4. Argue that the cotorsion theory (M, D) of the category of Z-modules where
D is the class of divisible Z-modules is not cogenerated by any single finitely
generated Z-module.

7.2 Fibrations, Cofibrations and Wakamatsu Lemmas

In the last section, we showed that when a cotorsion theory (¥, €) has enough pro-
jectives, then every module has a special ¥ -precover and a special ¥ -preenvelope. In
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this section we show that if ¥ is any class closed under extensions, then any surjective
F -cover is special and, dually, any injective # -envelope is special.

Definition 7.2.1. Given a class ¥ of modules, a linear map f : M — N is said to
be an F -fibration if given a submodule S of some module P where P/S € ¥ any
commutative diagram

S — P

i
Ve
7
po
-
M — N
can be completed to a commutative diagram where i denotes the canonical injection.
An ¥ -cofibration is defined dually, that is, f is an ¥ -cofibration if any commutative
diagram

_—

M N
P

— P/S

»

with § € F can be completed to a commutative diagram.

Proposition 7.2.2. If ¢ : F — M is an ¥ -cover for some class ¥ closed under
extensions, then ¢ is an ¥ -fibration.

Proof. Given the following commutative diagram where S C P is such that P/S € ¥

o

4
E——

@
we form the pushout diagram
S — P
F——G

Then F — G is an injection and Coker(F — G) =~ P/S € ¥. But ¥ is closed
under extensions. So G € F. We can suppose FF C G. By the properties of the
pushout diagram, we have a linear # : G — M which agrees with ¢ on F. Since
¢ : F — M is a cover, we have a linear g : G — F so that ¢ o g = h. Then since
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¢ o (g|F) = ¢, we have that g| F is an automorphism of F. If we then replace g by
(g|F)~! o g, we see that we can assume g|F = idr. So g makes the diagram

W
~

~
Q

commutative and hence makes commutative the diagram

S
s
s/
s
/
s
P

F—M i

£

The following result is usually called Wakamatsu’s Lemma.

Corollary 7.2.3. If ¥ is a class of modules closed under extensions and if ¢ : F —
M is an F -cover, then Ker ¢ € 7L

Proof. Let G € . We want to argue that Ext' (G, Kerg) = 0. Let0 — S — P —
G — 0 be exact with P projective. Then we need that any f : S — Kerg can be
extended to a linear P — Ker ¢. But if we consider the commutative diagram

S P
7/
g 7/
e lo
7
¥
F M

where S — F agrees with f we see that any g : P — F that makes the diagram
commutative has its image in Ker ¢ and so gives the desired extension. |

Dually, we have the following

Proposition 7.2.4. [f€ is a class of modules closed under extensions and if ¢ : M —
C is a €-envelope, then ¢ is a €-cofibration and Coker ¢ € +€.

The argument in the following lemma is another Wakamatsu Lemma type of result.

Lemma 7.2.5. Let (¥ ,€) be a cotorsion theory for the category of R-modules with
enough injectives and projectives. Suppose 0 — M — D — F — 0 is an exact
sequence with F € ¥ such that
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(1) any diagram

|
|
Al

0 M D F 0

0 M G F’ 0
\
!
v

with F' € ¥ can be completed to a commutative diagram, and

(2) the diagram

0 M D
|
|
v

< - -

0 M D

can only be completed by automorphisms.

Then D € €.

Proof. Let0 - D — U — G — 0 be an exact sequence with U € € and G € F.
We want to prove that the sequence splits. We use the pushout of the diagram

D —F
U
to get a commutative diagram
0 0
0 M D F 0
0 M U P 0
G—6G
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with exact rows and columns. Since F, G € ¥, we get that P € ¥ . But by hypothe-
sis (1), there is a commutative diagram

0 M U P 0
0 M D F 0

By hypothesis (2), D — U — D is an automorphism of D. Hence 0 - D — U —
G — 0 is split exact and thus D € €. i

Theorem 7.2.6. Let (¥, €) be a cotorsion theory for the category of R-modules with
enough injectives and projectives such that & is closed under well ordered inductive
limits. Then every R-module has an ¥ -cover and a €-envelope.

Proof. The fact that M has an ¥ -cover is a consequence of Theorem 5.2.3.

To prove that M has a €-envelope we first note that we have an exact sequence 0 —
M —-C —- F - 0withC € €and F € . So we consider the category of such
short exact sequences. A morphism in this category will be given by a commutative
diagram

0 M Cy I 0
0 M C, ) 0

Given an inductive system in this category, we can take the limit. That is, we get
0 - M — limC; — lim F; — 0 which will also be an exact sequence. If 0 —
M — C — F — 0is in the category, we argue that the diagram

00— M —— 1limC; ——=limF, ——= 0

| |
| |
Y Al
0 M C F 0

can be completed to a commutative diagram. But we have the exact sequence
Hom(lim C;, C) — Hom(M, C) — Extl(lim F;,C)=0
— g

since ¥ is closed under direct limits. This gives us our map 11_11)1 C; — C and then
li_n>1 F; — F is induced by this map.

So now we get a version of Lemma 5.2.4 which says that given a short exact se-
quence 0 - M — C — F — 0 in our category, there is another exact sequence
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0> M — C'"— F' — 0with F’ € ¥ and a commutative diagram

such that if

0 M C F 0

0 M C’ F’ 0

0 M G F 0
I

0 M Cc’ F’ 0
S

0 M c’ F" 0

is a commutative diagram with F” € ¥, then Ker(g o f) = Ker /. Then modifica-
tions of proofs of Lemmas 5.2.5 and 5.2.6 give an exact sequence 0 - M — D —
F — 0 with F € ¥ satisfying hypotheses (1) and (2) of the lemma above. But then
D € € by the lemma and so M — D is a €-envelope. We note that this envelope is
a special €-envelope. O

Exercises

1.

Suppose that for some class ¥ of modules we have an ¥ -fibration f; : M; — N;
foreachi € I. Prove that [ [;¢; fi : [l;ef Mi — [l;e; Ni is an ¥ -fibration.

Show that M — 0 is an F -fibration if and only if Ext!(F, M) = 0 for all
Fef.

Argue thatif f : M — N and g : N — P are ¥ -fibrations, thensois g o f :
M — P.

Argue that f : M — N is an ¥ -fibration for every class ¥ if and only if f is
surjective with Ker f injective.

If Proj is the class of projective modules, argue that f : M; — M> is a Proj-
fibration if and only if f is surjective.

Show that ({nj, dnj =) is a cotorsion theory for the category of R-modules if and
only if R € dnj and R is left Noetherian. In this case show that (d7/, dnj+) has
enough injectives and projectives.

. Let ¥ be a class of modules closed under extensions, under taking summands

and such that every module has a surjective F -cover. Argue that (¥, % 1) is a
cotorsion theory with enough injectives and projectives.
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8. Let (¥,€) be a cotorsion theory of R-modules. Let F — M be an & -cover of
the module M and suppose F — C is a €-envelope of F. Let

F— M

)

C ——= D

be a pushout diagram. Prove that M — D is a C-envelope and that C — D is
an ¥ -cover.

7.3 Set Theoretic Homological Algebra

In this section, we consider ordinal numbers to give results about finding extensions
of linear maps and get splitting results.

Lemma 7.3.1. Given a set X, there exists a limit ordinal A such that if (0x)xex is a
family of ordinals such that ax, < A for all x € X, then there exists an ordinal A’ < A
such that oy < A forall x € X.

Proof. Let Card X < Ng and let A be the least ordinal such that Card(1) = Rg_;.
Then A is a limit ordinal and if @ < A, Card() < Rg. Now let (atx)xex be any family
of ordinals such that oy < A forall x € X. Well order X and let A’ = Yy ox.
Then o < A’ for each x € X (see Exercises 8 and 9 of Section 1.1) and

Card(A') = ) Card(ey) < Card X.R¥g < N3 = Ng.

xeX

So A < A. O

Corollary 7.3.2. If X and A are as in the lemma above and if (Yy)q<), is a family of
subsets of a set Y such that Yo C Yg when o < B < A and such thatY =], _; Yo,
then for any function f : X — Y there isan o < A such that f(X) C Yy.

Proof. For any x € X, let oy < A be any ordinal such that f(x) € Y,,. Then if
oy <A < Aforall x we have f(X) C Yj,. O

We note that this lemma says that any function f : X — Y has a decomposition
X — Yy = Y witha < A and Yy — Y the canonical injection. We will apply this
lemma when X and Y are modules, f is linear, and all Y, C Y are submodules.

Definition 7.3.3. Given an ordinal number A and a family (My )<, of submodules of
amodule M, we say that the family is a continuous (well ordered) chain of submod-
ules if My C Mg whenever @ < B < A and if Mg = | J,.p Mo Whenever B < A
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is a limit ordinal. A family (My)y <y is called a continuous chain if (Mg)g<p+1 1S
such.

Theorem 7.3.4. Let M and N be modules and suppose M is the union of a continu-
ous chain of submodules (My )y <. Then if

Ext!(My, N) =0 and Ext'(Myi1/My,N) =0
whenever o + 1 < A, then Extl(M, N)=0.

Proof. We use the principle of transfinite induction in Proposition 1.1.18. So sup-
pose B < A and that Ext!(My, N) = O for all « < . Then we must argue that
Ext! (Mg,N) = 0. If B is not a limit ordinal, let 8 = «a + 1. We have the exact
sequence

0— M(x — M0l+1 g Ma+1/Ma -0

where Ext! (M, N) = 0 by the induction hypothesis and Ext! (My41/My, N) = 0
by assumption. So we get that Ext! (My41, N) = 0.

So now assume 8 < A is a limit ordinal such that Ext! (Mg, N) = 0 forall @ < .
To argue that Ext! (M 8. N) =0 we let

0>Nb5G65 Ms—0

be an exact sequence. We must prove that this sequence splits, that is, we should prove
that there is a section s : Mg — G for g. For @ < 8 we have the exact sequence

0—>N1>g—1(Ma)—>Ma—>0

By hypothesis, each of these sequences splits and so has a section s,. We use transfi-
nite induction again to argue that we can find compatible such sections, that is, such
that if « < o’ < B then 54| M, agrees with sq. If we have compatible sections for all
a < t < B where t is a limit ordinal, we can let s; agree with all s for @ < t and
we get compatible sections sy for all @ < 7.

So the problem reduces to arguing that given a section sy (for any o 4+ 1 < 1) there
is a section sy 41 that agrees with s on M,,. Since by hypothesis Ext! (My4+1,N) =
0 there is a section  : Mgy — g '(Mgyy1). But then g is O on the image of
Sq — (t|My) and so s, — (t|My) maps My into f(N) = N. But

Ext'(Mo41/My, f(N)) = Ext'(Mq41/My,N) =0

So s — (t|My) can be extended to a linear map u : My — f(N). But then
Sa+1 = t + u gives the desired section. O

Corollary 7.3.5. Let (¥ ,€) be any cotorsion theory and suppose a module F is the
union of a continuous chain (Fy)g <), of submodules. If Fo € ¥ and Fy4+1/Fy € ¥
whenever o +1 < A, then F € ¥
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Exercises

1. Prove that given any ring R there exists a limit ordinal number A such that if
a module £ = (J,.; Eq for injective submodules £, C E where E, C Eg
whenever o < 8 < A, then E is injective. Argue that this holds for A = @ (recall
that Ord(N) = w) if and only if R is left Noetherian.

2. Let L be the union of a continuous chain of submodules (Lgy)y<3. Letn > 0 and
suppose projdim Ly < n and projdim Ly41/Ly < n when o + 1 < A. Then
prove that projdim L < n.

Hint: If n = 0, then Ly41 = Lo D Sy for some Sy C Lg+1 wheno + 1 < A.
Let Sg = Lg. Prove that L is the direct sum of all the S,, o < A. If n > 1, use
dimension shifting and Theorem 7.3.4.

3. If (¥,7) is the cotorsion theory of the category of Z-modules cogenerated by
7/ (p) for some prime p, argue that if the Z-module F is such that every element
has order a power of p then F' € ¥.

4. Use Problem 3 above to argue that (¥, €) of that problem has enough injectives
(and so also enough projectives).

7.4 Cotorsion Theories with Enough Injectives and
Projectives

In this section, we prove a result guaranteeing enough injectives for any cotorsion
theory cogenerated by a set.

We start with a submodule S C P, alinear S — M, and consider the problem of
extending S — M to P. We form the pushout diagram

i

From the construction, M — G is an injection (so we identify M with a submodule
of G)and G/M =~ P/S. But then also the map P — G agrees with S — M on S.
So the map S — M can be extended to a map of P into G.

With a slight generalization of this idea we can construct G with M C G so that
for every linear S — M there is a linear P — G agreeing with S — M on S. To do
so, we consider the evaluation map S (Hom(S.M)) _, pp mapping (X7) f eHom(S, M) tO

-

Q<—"v

e
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> fetom(s, M) J (xr), and then the pushout diagram

S(Hom(S,M)) P(Hom(S,M))

| |

M G

Then we see that we have M C G and that for any linear f : S — M there is a linear
P — G agreeing with f on S. But we also have G/M = (P/S)Hom(S,M) that i,
G/ M is a direct sum of copies of P/S.

Theorem 7.4.1. If a cotorsion theory (¥ ,€) is cogenerated by a set, then it has
enough injectives (and so enough projectives).

Proof. By an earlier comment, we can assume that (¥, €) is cogenerated by a single
module A. Welet0 — § — P — A — 0 be exact with P projective. Let M be an
R-module. For any ordinal A we use transfinite induction to construct a continuous
chain of modules (My )<y so that My = M and so that for any & + 1 < A any linear
S — My has an extension P — My 1, and finally so that My 1/ M, is a direct sum
of copies of P/S =~ Afora + 1 < A.

We now use Corollary 7.3.2 with S the set X of that corollary and find a cor-
responding A. Let C = |J,.; My. Then for any linear S — C, there a fac-
torization S — M, — C for some ¢ < A. Since A is a limit ordinal, we have
@ + 1 < A and so by construction there is a linear P — My41 agreeing with
S — M,. This says that any linear S — C has an extension P — C. But
this is equivalent to the fact that Ext'(4,C) = 0. So C € € since A cogener-
ates (¥,€). Since A € ¥, any direct sum U of copies of A is in F. Now let
F=C/M = (Uy<cy Ma)/M. If we let Fy = My/M for all @ < A and then use
Theorem 7.3.4 we get that Ext! (F, D) = 0 forany D € € and so F € ¥ . Hence we
have the desired exact sequence 0 > M — C — F — 0. So (¥, %€) has enough
injectives. O

Definition 7.4.2. A cotorsion theory (¥, €) with ¥ the class of flat modules (and so
F1 = € the class of cotorsion modules) is called the flat cotorsion theory.

Proposition 7.4.3. Let R be any ring. The flat cotorsion theory (¥ , €) of the category
of R-modules is cogenerated by a set.

Proof. Let F be a flat R-module. By Lemma 5.3.12, if Card R < N B then for each
X € F there is a pure submodule § C F with x € § such that Card S < Rg
(simply let N = Rx and f = idy in the lemma). So we can write F as a union
of a continuous chain (Fy)y <, of pure submodules of F' such that Card Fo < Ng
and Card Fy41/Fy < Rg whenever @ + 1 < A. But then by Theorem 7.3.4 we see
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that if C is an R-module, Ext! (Fy, C) = 0, and Ext! (Fy41/Fy, C) = 0 whenever
a+1 < A, thenExt! (F,C) = 0. So it follows that if ¥ is a set of representatives of all
flat modules G with Card G < Rg, then C is cotorsion if and only if Ext! (G,C)=0
forall G € Y. But then this just says that the given flat cotorsion theory is cogenerated
by the set Y. |

We are now in a position to state the following important result.

Theorem 7.4.4. The class of flat R-modules is covering for any ring R.

Proof. This follows immediately from Proposition 7.4.3 above and Theorems 7.4.1
and 5.2.3. i

Now let n > 1 be given and for a ring R let £ denote the class of R-modules L
such that projdim g L. < n.

Proposition 7.4.5. Let Card R < Rgand L € £. If x € L, then there is a submodule
L" C L with x € L' such that Card L' < Rg and L', L/L" € £.

Proof. We use the Eilenberg trick, that is, if P is a projective module then there is
a free module F such that P @ F is free (if P @ P’ is free just let F = P’ @
PP ®P®---) Henceif 0 > P, — --- > Py — L — 0is a projective
resolution of L we can take the direct sum of this complex with complexes of the

d
form0 — -+ >0 — F > F — 0 — --- — 0 with F free and get a projective

n a .
resolution 0 — F, — --- — Fy 2 L — 0 of L with each of F, ..., Fy free. If
Xn, ..., Xo are bases of each of these free modules our objective is to choose subsets

Y; C X; fori =0,...,n so thatif (¥;) is the free submodule of F; generated by Y;,
then 0 — (Y;) — --- — (Yp) is an exact subcomplex of 0 — F;, — --- — Fy which
will give the desired L’. We accomplish this by choosing certain subsets Z C X; and
using a zig-zag procedure. At each stage of the procedure we should check that the
set Z can be chosen so that Card Z < R 8-

We choose a finite subset Zy C X such that x € d9({Zp)). Then we choose a
subset Z7 C X so that 0;((Z1)) D Ker(do|(Zo)). We then choose Z, C X» so
that 02((Z2)) D Ker(d1|(Z1)). We continue this procedure until we have Z, C X,
with 9, ((Z,)) D Ker(dy—1/(Zn—1)). We now enlarge Z, 1 to Z)_, in such a way
that 9,((Z,)) C (Z,,_,). Then we enlarge Z, 5 to Z/,_, so that 9,—1({Z,_,)) C
(Z;,_,). Continuing in this manner, we construct Z,,Z, _,...., Z| satisfying the
obvious conditions. Now we start over and enlarge Z to Z in such a way that
01((Z])) D Ker(do|(Z;)). We then enlarge Z), to Z5 and so on. Continuing this
zig-zag procedure and eventually letting ¥; C X; be the union of all the subsets
of X; we chose while implementing the procedure we see that the sequence 0 —
(Yn) — -+ — (Yo) is exact. By construction, each Y; is such that Card ¥; < Rg.
Then if we let L' = 99((Yo)) we have Card L’ < Ng and L’ € £ since 0 —
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(Yn) — - = (Yo) — L’ — 0is a projective resolution of L’. The quotient of
the exact complex 0 — F,, — --- — Fy — L — 0 by the exact subcomplex
0— (Yy) —» --- = (Yg) — L’ — 0is an exact complex which gives a projective
resolution of L/L’. This then gives that L /L’ € £. O

Using the notation above we get the following result.

Theorem 7.4.6. (£, £L) is a cotorsion theory of the category of R-modules with
enough injectives and projectives.

Proof. By the previous result we see that any L € £ can be written L = J, . La
with (Lg)g<y, a continuous chain of submodules with Ly € &£ and Ly41/Ly € £
when o + 1 < A and with Card Lo, Card Ly +1/Ls < Rg. Hence if B is the direct
sum of a representative set of L € &£ with Card L < Ng, we see that G € £1 if and
only if Ext! (B, G) = 0.

Now let K be any R-module. We use the procedure of Theorem 7.4.1 to get an
exact sequence 0 - K — A — L — O with A € £* and L € £. We note that
L € & since L can be written as a continuous chain of submodules L = | J,_; L«
with Lo € £ and Loy1/Ly € £ when @ + 1 < A. Then we apply Problem 2 of
Section 3 of this chapter and get that L € £, that is, projdim L < n.

Now let M be a module and let 0 - K — P — M — 0 be exact with P
projective. By the above applied to K we get an exact sequence 0 — K — A —
L — Owith A € £+ and L € £. Using a pushout of K — P and K — A, we have
a commutative diagram

0 0
0 K P M 0
0 A L' M 0
L —1L
0 0

with exact rows and columns. Then we see that since P, L € £ we have that L' € £.
Now suppose M € L+(£1). Then since A € £ the middle row of the diagram splits
and so M is a direct summand of L. Hence M € &£. This shows that £ = +(£1).
Hence (£, £1) is a cotorsion theory with enough injectives and projectives. |
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Exercises

1. Prove a version of Proposition 7.4.5 but with n = 0. So prove that for a ring R
there is an Rg so thatif x € P where P is a projective R-module there is a direct
summand § of P with x € § and Card § < Ng.

Hint: Let F = P & P’ be a free module with a base (x;);e;. Find finite subsets
Ip C I C I C -+ of I such that if F}, is the free submodule of F generated
by (x;)ier,. then x € Fp and for n > 0, Fj 41 contains the projection of F; on
P and P’. Then if J = |J;2, /; and if G is generated by the x; with j € I,
deduce that G = GNP + G N P’ and G N P is the desired summand. Then
note that G and G N P are countably generated.

2. Let Abs be the class of absolutely pure R-modules. Use the methods of this
section to argue that (*Abs, £) is a cotorsion theory with enough injectives and
projectives. Argue that F € L.bs if and only if F is a direct summand of a
module G which can be written as the union of a continuous chain (Gg)g <) of
submodules such that Gg and Gy +1/Gy for @ + 1 < A are finitely presented
modules. (For the last part of the problem use the material in the proof of The-
orem 7.4.1 and Proposition 7.1.7 to argue that for F € L Abs, there is an exact
sequence 0 > A - G — F — 0 with A € Abs and with G as described
above).



Chapter 8
Relative Homological Algebra and Balance

Covers and envelopes of modules were defined and studied in Chapters 5, 6 and 7.
We now redefine these notions for any Abelian category.

Let C be an Abelian category and & be a class of objects of C. Then a morphism
¢ : F — M of Cis called an ¥ -precover of M if F € ¥ and Hom(F’, F) —
Hom(F’, M) — 0 is exact for all F' € ¥. If moreover, any morphism f : F — F
such that ¢ = @ o f is an automorphism of F, then ¢ : F — M is called an ¥ -cover
of M (see Definition 5.1.1). An ¥ -preenvelope and an ¥ -envelope M — F are
defined dually (see Definition 6.1.1). If ¥ -covers and envelopes exist, then they are
unique up to isomorphism.

We note that an ¥ -precover ¢ : F — M in C is not necessarily an epimorphism.
But if C has enough projectives and these are in ¥, then ¢ is an epimorphism. Simi-
larly, if C contains enough injective objects and these are in ¥, then an ¥ -preenvelope
M — F,if it exists, is a monomorphism.

If every object of C has an ¥ -(pre)cover, ¥ is said to be (pre)covering. Similarly,
if every object has an ¥ -(pre)envelope, we say that ¥ is (pre)enveloping. Eilenberg—
Moore [44] consider such classes but with different terminology.

All functors in this chapter will be additive.

8.1 Left and Right ¥ -resolutions
Definition 8.1.1. Let C, D, and E be Abelian categories and 7 : C x D — E be an
additive functor contravariant in the first variable and covariant in the second. If ¥ is
a class of objects of C, we will say that a complex
wve> Dy —> Dy — D° - D! — ...

inDis T(¥,—) exact if for every F € ¥ the complex

-+ = T(F.D1) = T(F. Do) = T(F.D%) — T(F.D") — -
is an exact sequence in E.

If ¥ is a class of objects in D, we will say that a complex

i >C1 > Cp—>C0'>Cl —» ...
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inCis T(—, ¥) exact if for each F € ¥ the complex
o> T(C° F) > T(Cy,.F) > T(C;,F) — ---

is an exact sequence in E.

Frequently, in place of saying the complex is T'(¥, —) exact we say that T'(F, —)
makes the complex exact for all F' € ¥, and we say that 7'(—, F') makes the complex
exact for all F € ¥ when the complex is 7'(—, ¥) exact.

We will use the same terminology for finite complexes. The exactness of 7(F, —)
and T'(—, ¥) with other choices of variances of 7" are defined similarly.

Definition 8.1.2. Let C be an Abelian category and ¥ be a class of objects of C. By
a left ¥ -resolution of an object M of C, we will mean a Hom(¥ , —) exact complex

o> F—>Fp—> M —0

(not necessarily exact) with each F; € .
A right ¥ -resolution of an object M of C is a Hom(—, ¥) exact complex

0>M—>F"> Fl ...

(not necessarily exact) with each F lef. Eilenberg—Moore [44] call these resolu-
tions projective (injective) resolutions of M for the class ¥ , respectively.

If--- - F - Fp > M — 0is a left ¥ -resolution, then Ko = M, K; =
Ker(Fj—y — Fj—p) fori > 1, is called an ith ¥ -syzygy of M where F_y = M.
Ifo—-> M — F° > Fl — ... is a right ¥ -resolution of M, then c’ =M,
C! = Coker (Fi=2 — Fi=1)fori > 1, is called an ith ¥-cosyzygy of M where
F~! = M. The complex

oo > Fy > Fp—> F" > Fl ...

(with Fyg — F9 the composition Fg — M — F9)is called a complete F -resolution
of M.

Proposition 8.1.3. Ler C be an Abelian category and ¥ be a class of objects of
C. If ¥ is precovering (preenveloping), then every object of C has a left (right)
F -resolution. Furthermore, if ¥ is both precovering and preenveloping, then every
object of C has a complete ¥ -resolution.

Proof. Let M be an object of C. If Fy — M is an ¥ -precover, let F; — Ker(Coy —
M) also be an ¥ -precover. Proceeding in this manner, we get a complex --+ —
Fi — Fy — M — 0 (not necessarily exact) which becomes exact when Hom(F, —)
is applied to it for any F € ¥ . Similarly for right ¥ -resolutions. m|
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If # is precovering and --- — F| — Fj — M — 0 is another left # -resolution
of M, then there exist morphisms F; — Fi’ making

Fo:--: F1 F() M 0
| |
. .
Y Al

F,:- F| F} M 0

into a commutative diagram. Furthermore, any two such collection of morphisms
F; — F/ give homotopic morphisms of the deleted complex Fo : --- — F; — Fy —
0 to the complex F, : --- — F| — Fj — 0. Thus we get the usual uniqueness of
complexes up to homotopy. Similarly for right ¥ -resolutions.

Definition 8.1.4. If ¥ is covering, then the left ¥ -resolution of M
o> > Fp—>M—>0

can be constructed so that Fy — M, F; — Ker(Fy — M), Fiy1 — Ker(F; —
Fi_y) fori > 1, are ¥ -covers. In this case, the complex --- — F; — Fp - M — 0
is called a minimal left ¥ -resolution of M. Similarly, if ¥ is enveloping, then a
minimal right ¥ -resolution of M can be constructed using ¥ -envelopes. So if ¥ is
both covering and enveloping, then M has a complete minimal ¥ -resolution. Minimal
F -resolutions are unique up to isomorphism.

Exercises

1. If ¥ is the class of projective R-modules, prove that a complex --- — F; —
Fo — M — 0 of an R-module M with each F; € ¥ is a left ¥ -resolution if
and only if it is exact. State and prove the dual result in the case F is the class of
injective R-modules.

2. (Comparison Theorem) Let & be precoveringand F: --- — F; - Fp > M —
0,F : .. —> F| — F{ — M’ — 0 be left ¥ -resolutions of M, M’ respectively.
Prove that each morphism ¢ : M — M’ induces a chain map ® : Fo — F,
which is unique up to homotopy.

3. Using Problem 2 above, state and prove the Comparison Theorem for a preen-
veloping class .

8.2 Derived Functors and Balance

Let ¥, & be precovering, preenveloping classes of an Abelian category C respectively,
and T be an additive functor from C to some Abelian category. Let Fo be a deleted
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complex corresponding to a left ¥ -resolution of an object of C. If T is covariant,
then the homology groups of T'(Fe) give left derived functors L, T of T. Similarly,
the right derived functors R"T are the nth cohomology groups of T'(G*) where G*®
corresponds to a deleted right §-resolution. If 7 is contravariant, then left (right)
derived functors can be computed using right §-resolutions (left ¥ -resolutions). Fur-
thermore, for any 7', there are natural transformations Lo7 — T and T — ROT.
Moreover, derived functors of T for a given object are unique up isomorphism by
Proposition 1.5.13 since ¥ -resolutions are unique up to homotopy. We note that
LoT =~ T if T is right exact and if for each M, F; — Fy - M — 0 is ex-
act where --- - F; — Fp — M — 0 is a left ¥ -resolution of M. We have
ROT =~ T if T is left exact and if for each M,0 — M — G° — G! is exact where
0—> M — G%— G! — ... is aright §-resolution of M.

If Fe¥,then LoT(F) = Fand L,T(F) =0ifn > 0. Similarly if G € &, then
R°T(G) = G and R"T(G) =0ifn > 0.

The following result allows us to obtain the familiar connecting homomorphisms.

Lemma 8.2.1 (Horseshoe Lemma). Let & be a precovering class closed under finite
direct sums of an Abelian category C. Suppose 0 — M’ — M — M"” — 0Qisa
complex such that M', M, M"" € C and such that

0 — Hom(F, M’) — Hom(F, M) — Hom(F,M") — 0
is exact forall F € ¥. If--- - F{ - F; - M’ — Oand --- - F — Fj —

M" — 0 are left ¥ -resolutions, then we can construct the following commutative
diagram such that the middle column is a left ¥ -resolution of M.

0 F{%F{@F{’%F{'HO
0 FO—>F6€BF(;/—>F6/4>O
0 M’ M M 0
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Proof. The map Fy' — M" has a factorization F' - M — M" since Hom(F, M) —
Hom(F, M") — 0is exact for all F € ¥. So we get a map Fj @ F] — M and
hence a commutative diagram

0

with obvious maps. But then all the rows and columns become exact if we apply
Hom(F, —) to the diagram with F € ¥. Thus Fj & F] — M is an ¥ -precover.
Now we repeat the argument using the complex 0 - K’ — K — K" — 0. O

Remark 8.2.2. There is a dual result involving preenveloping classes of C.

Theorem 8.2.3. Let ¥ be a precovering class closed under finite direct sums of an
Abelian category Cand 0 — M’ — M — M" — 0 be a Hom(¥ , —) exact complex
of objects of C. Then

(1) If T is a covariant functor, there is a long exact sequence
oo > LyTM") - Ly 1 TM') - Ly—1(M) - Ly 1T(M") — ---
— LoT(M') — LoT(M) — LoT(M") — 0.

(2) If T is a contravariant functor, there is a long exact sequence

0— R°T(M") - R°T(M) - R°T(M') — ---
- Rn—lT(M//) — Rn—lT(M) N Rn—lT(M/) — RnT(M//) N

Proof. 1If F,, F denote deleted complexes associated with left # -resolutions of M’,
M", respectively, then there is a deleted complex F, associated with a left % -reso-
lution of M given by the lemma above. So we have an exact sequence of complexes
0 — F, — Fo — F, — 0. Then one computes the homology of the exact sequences
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0— T, — T(F,) - T(F)) — 0and 0 — T(F)) — T(F,) — T(F,) — 0,
respectively, to get the desired long exact sequences by Theorem 1.5.7. We note that
it is not hard to prove that these long exact sequences are functorial (relative to the
complexes 0 - M’ — M — M" — 0). O

Corollary 8.24. If M € ¥, then
(1) If T is covariant, then L,T(M') = Ly41T(M") foralln > 1.
(2) If T is contravariant, then R"T(M') = R"T™\T(M") for alln > 1.

Proof. We simply note that if M € ¥, then L, T(M) = R"T(M) = 0 for all
n>1. O

By Remark 8.2.2, we have the following dual result.

Theorem 8.2.5. Let ¥ be a preenveloping class closed under finite direct sums of an
Abelian category Cand 0 — M’ — M — M"” — 0 be a Hom(—, ¥') exact complex
of objects of C. Then

(1) If T is covariant, then there is a long exact sequence

0— R°T(M') — R°T(M) — R°T(M") — -
N Rn—lT(M/) _ Rn—lT(M) - Rn—lT(M//) _ RnT(M/) N

(2) If T is contravariant, there is a long exact sequence

oo > LyTM') - Ly 1TM") - Ly 1T(M) = L, 1T(M') — ---
— LoT(M") — LoT(M) — LoT(M') — 0.

Corollary 8.2.6. If M € ¥, then
(1) If T is covariant, then R*"T(M") = R*" 1T (M’) for all n > 1.
(2) If T is contravariant, then L,T(M") = L,11T(M') foralln > 1.

Now let LoT 2 ROT be the composition of the natural transformations LoT — T
and T — ROT where LT is computed relative to some precovering class ¥ and
where ROT is computed relative to some preenveloping class ¥’. Then we will let
LoT and ROT denote the kernel and cokernel of the morphism o. We note that if
M € F,then LoT(M) = T(M) = R°T(M) and so LoT (M) = ROT (M) = 0.
We are now in a position to state the following result.

Theorem 8.2.7. Let 0 — M’ — M — M" — 0 be a complex of objects of an
Abelian category C. Suppose there is a precovering class ¥ and preenveloping class
F' of C closed under finite direct sums such that Hom(F, —), Hom(—, F') make the
complex exact forall F € ¥, all F' € ¥/ respectively. Then
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(1) If T is a covariant functor, then there is a long exact sequence
woo = L1T(M") — LoT(M") — LoT (M) — LoT(M")
— ROT(M') — ROT (M) — ROT(M") - R'T(M') — --- .
(2) If T is a contravariant functor, then there is a long exact sequence
o= LiT(M") — LoT(M") — LoT (M) — LoT (M)
— ROT(M") > ROT(M) — ROT(M') - R'T(M") — --- .
Proof. By Theorems 8.2.3 and 8.2.5, we have the following diagram:

o> L\ T(M") —> LoT(M') —> LoT(M) —> LoT(M") —— 0

| l l i

0 RT(M') — R°T(M) —= R°T(M") —= R'T(M’)

with exact rows. Chasing this diagram gives part (1) of the theorem. Part (2) follows
similarly. O

Definition 8.2.8. The sequences in Theorem 8.2.7 above are called extended long
exact sequences of derived functors.

Proposition 8.2.9. Let ¥ be a class of an Abelian category C and
---—>F1—>F0—>FO—>F1—>---

be a complete F -resolution of an object M of C. Then

(1) If T is a covariant functor, then the homology groups are L; T (M), LoT (M),
ROT (M), and R*T(M) at T(F;), T(Fo), T(F°), and T(F") respectively
wherei > 1.

) IfTisa contravariant functor, then. the homology groups are L;T(M), LoT(M),
ROT (M), and R*'T(M) at T(F"), T(F°), T(Fy), and T(F;) respectively
where i > 1.

Proof. This follows from the definitions. m|

Definition 8.2.10. A sequence {7} of functors is said to be covariantly right strongly
connected if every exact sequence 0 — M’ — M — M" — 0 of R-modules has an
associated long exact sequence

o> THM) - THM") - T'H(MY) - TP (M) > T (M) — -

which is functorial in such short exact sequences.
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We say that it is contravariantly right strongly connected if there exists a long exact
sequence

v THM) > T M) > T M) > T M) - TN M) — -

which is also functorial in the short exact sequences. Covariantly (contravariantly)
left strongly connected sequences {T;} are similarly defined with connecting homo-
morphisms T;(M") — T;—1 (M) (T;(M') — T;—1(M")), respectively.

We note that the sequences {R'T} and {L;T} in Theorems 8.2.3 and 8.2.5 are
strongly connected.

Theorem 8.2.11. Ler {F'} and {G'} be covariantly right strongly connected se-
quences such that F° =~ GO and F'(E) = G'(E) = 0 for all injective R-modules E
and for alli > 1. Then F' = G* for eachi > 0.

Proof. We proceed by induction on i. If i = 0, then we are done.

Suppose i = 1. Then given an R-module M, we consider a short exact sequence
0 > M — E — L — 0 where E is an injective R-module. We then have the
following commutative diagram

FYE) —= F%(L) —= FY(M) —= FYE)=0

b

GYE) —= G%L) —= GY(M) —= GYE)=0

where the first two vertical maps are isomorphisms. So ¢ is an isomorphism. Thus
FY(M) = GY(M) for all R-modules M. If i > 2, then FI=1(L) = G'~!(L) by
the induction hypothesis. Hence F*(M) = G'(M) since F'"Y(E) = G'"1(E) =
FY(E) = GI(E) = 0. o

We also have the following dual result.

Theorem 8.2.12. Let {F'} and {G*} be contravariantly right strongly connected se-
quences such that FO; GO and F'(P) = G'(P) = 0 for all free R-modules P and
foralli > 1. Then F' =~ G* for eachi > .

Proof. Same proof as in Theorem 8.2.11. One now considers an exact sequence
0 - L — P — M — 0 with P free and exact sequences F°(P) — FO(L) —
F'M)— FY(P)—>---,G%(P)—- G%(L) - G'(M) - G/(P) > ---. i
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There are similar results for left strongly connected sequences.
Most useful applications of derived functors occur when T is a functor of two
variables and is balanced as defined below.

Definition 8.2.13. Let C, D, and E be Abelian categories and 7 : C x D — E be
an additive functor contravariant in the first variable and covariant in the second. Let
F and g be classes of objects of C and D respectively. Then T is said to be right
balanced by ¥ x § if for each object M of C, there is a T'(—, §) exact complex

o> Fi—>Fp—>M—0

with each F; € ¥, and if for every object N of D, there is a T(¥, —) exact complex
0>N->G">Gl - ...

with G’ € §.

If, on the other hand, the complex --- — F; — Fy - M — 0is T(§, —) exact
and the complex 0 = N — G° — G! — ... is T(—, ) exact, then T is said to be
left balanced by § x ¥ .

The definitions above are easily modified to give the definitions of a left or right
balanced functor relative to & x § with other choices of variances and complexes. For
example, if T is covariant in both variables, then we would postulate the existence of
complexes -+ - F; - Fp - M - Oand--- - Gy - Fp > N — Oor
0>M —>F° > F! - ...and0 > N - G° - G! — ... with the obvious
properties to define left or right balanced functors relative to ¥ x &, respectively.

The double complex (T (Feo, G*)) is defined by

(T(Fe,G*)n = P T(Fi,G7)
i+j=n
with differentials
d:(T(Fe,G*))y = (T(Fe,G"))p—1

defined by df = d” f + (=1)"*1d’ f where d’ and d” are differentials for Fo and
G* respectively. We are now in a position to prove the following result.

Theorem 8.2.14. Let T be contravariant in the first variable and covariant in the
second. If T is right balanced by ¥ x §, then the double complex (T (Fo,G®)) and
the complexes (T (Fe, N)) and (T (M, G®)) have isomorphic homology.
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Proof. Since T is right balanced, we get the following first quadrant commutative
diagram with exact rows and columns

]

T(Fy,G') ——= T(F1,G') —— ---

! !

T(Fo,G% — T(F1,G%) —— -+

Butif C! =Ker(T (Fy, G') = T (Fo, G'*1)), D! =Ker(T(F;, G°) — T (F;+1.G?)),
and C' — C'*1, D! — D'*! are induced by the obvious maps, then the complexes
0—>C%—=C!—...and0 — D° — D! — ... have isomorphic homology. But
C! =T(M,G") and D! = T(F;, N) and so we are done. |

Remark 8.2.15. The homologies of either complexes in Theorem 8.2.14 above are
denoted by R"T' (M, N).

If T is left balanced, we get a corresponding result using a third quadrant diagram.
For example, if T is again contravariant in the first variable and covariant in the sec-
ond, then we may consider complexes

0>M—->G">G'—>--., .5 FL—>Fy—N—>0

with G' € ¢, F; € F subject to required conditions. Then we get a third quadrant dia-
gram from which it follows that the complexes (T'(G*, F.)), (T(G*, N)), (T(M,F,))
have isomorphic homologies. These homologies are denoted by L, T (M, N). We get
similar results with other choices of variances.

Exercises

1. Prove that for any additive functor 7', there are natural transformations LT — T
and T — ROT.

2. Suppose F is precovering and for each M, F; — Fy — M — 0 is exact where
- —> F1 - Fg > M — 0is aleft ¥ -resolution. If T is a right exact additive
functor, argue that Lo7 = T.

3. Suppose ¢ is preenveloping and for each M 0 — M — G° — G! is exact
where 0 > M — G° — G! — ... is aright §-resolution of M. If T is a left
exact additive functor, argue that ROT =~ T.

4. Let T be an additive functor. Prove that if ¥ is precovering and F' € ¥, then
LoT(F) = F and (L,T)(F) = 0ifn > 0. Similarly, if  is preenveloping and
G € §,then R°T(G) = G and R"T(G) = 0ifn > 0.



Section 8.2 Derived Functors and Balance 183

5. State and prove a result dual to Lemma 8.2.1.

6. Prove that the long exact sequences in Theorem 8.2.3 are functorial relative to the
complexes 0 - M’ — M — M" — 0.

7. Prove Theorem 8.2.5.

A%

8. Let ¥ be a precovering class closed under finite direct sums, and K, for n
be an nth ¥ -syzygy of M. Prove that

(a) If T is covariant, then L, 1 T(M) =~ L,T(K) = --- = L1T(Kp).
(b) If T is contravariant, then R"T1T (M) =~ R"T(K;) = --- =~ R'T(K,).
Conclude that if K, € %, then L;T(M) = R'T(M) = Oforalli > n + 1.

9. Let ¥ be a preenveloping class closed under finite direct sums, and C” forn > 1
be an nth ¥ -cosyzygy of M. Prove that

(a) If T is covariant, then R*T1T(M) = R*T(C') = --- = R'T(C").
(b) If T is contravariant, then L, 1 T(M) = L,T(C') = --- = L1T(C™).
Conclude that if C* € ¥, then R'T(M) = L;T(M) =0foralli >n + 1.

10. Under the hypothesis of Theorem 8.2.3, prove that if 7" is covariant, then L7 is
right exact and if T is contravariant, then R°T is left exact.

11. Prove part (2) of Theorem 8.2.7.
12. Prove Proposition 8.2.9.
13. Complete the proof of Theorem 8.2.12.

14. State and prove results for left strongly connected sequences corresponding to
Theorems 8.2.11 and 8.2.12.

15. Prove that the complexes 0 — C® — C! — ... and0 — D° — D! — ... in
Theorem 8.2.14 have isomorphic homology.

16. Let T be contravariant in the first variable and covariant in the second. Prove that
if T is left balanced by § x ¥, then the complexes (T (G*®,F,)), (T(G*, N)),
(T (M, F,)) have isomorphic homology.

17. Let T be covariant in either variable. Prove that if 7 is left balanced by ¥ x &,
then the complexes (7' (Fe, Go)), (T (Fe, N)), (T (M, Go)) have isomorphic ho-
mology.

18. Let T be covariant in either variable. Prove that if 7" is right balanced by ¥ x §,
then the complexes (T'(F®, G®)), (T'(F*, N)), (T'(M,G*®)) have isomorphic ho-
mology.
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8.3 Applications to Modules

Let T = Hom(—, —) be a functor from a product of Abelian categories C and D.
Then T is contravariant in the first variable and covariant in the second. If T is right
balanced by ¥ x §, then the right derived functors R” Hom(M, N) can be computed
using either a complex --- — F; — Fgp - M — 0 of M with F; € ¥ or a complex
0> N — G - G' — ... of N with G' € ¢ by Theorem 8.2.14. If T is left
balanced by ¥ x ¥, then we can compute the left derived functors L, Hom(N, M)
using either of the complexes by Remark 8.2.15.

We now apply this to categories of modules. But first, we recall and introduce some
notation. g M (M p) will denote classes of left (right) R-modules, and given a class £,
¥4, and ¥, will denote classes of finitely generated and finitely presented modules in
F, respectively. If F consists of all flat R-modules, then ¥ will be denoted by Flat.
We recall that Abs, dnj, and Proj denote the classes of absolutely pure, injective,
and projective R-modules, and we will let PProj, and Pdnj denote the classes of
pure projective and pure injective modules, respectively. These terms will also be used
to denote the corresponding full subcategories. In particular, left Proj-resolution, right
dnj-resolution will mean the usual projective and injective resolutions, respectively.

Now let 7 = Hom(—, —) be a functor from g .M x gM to the category of Abelian
groups. Then we have the following:

Example 8.3.1. Hom(—, —) is right balanced on g:M x grM by Proj x Jnj. This is
standard.

Example 8.3.2. From the definition of a finitely presented module M, it is not hard
to see that there is a set X C Mﬂ, such that for every F € pr, F =~ G for some
G € X. Foreach F € X, set Xrp = Hom(F,M). If F&XF) — M is the evaluation
map (¢r)x, — > f(¢r), then any map F — M factors through FXr) 5 M.
So Hom(F', @ pcy FXF)) — Hom(F', M) — 0 is exact for all F/ € M, Thus
Prey FE) — M — 0is exact since R € M, and so the sequence 0 — K —
Drcy FEP) — M — 0is pure exact.

Now recall that a left R-module P is said to be pure projective if for every pure
exact sequence 0 - T — N — N/T — 0, Hom(P, N) - Hom(P,N/T) — 0
is exact. Thus projective and finitely presented modules are pure projective, and in
particular Hom(P, @ F(XF)) — Hom(P, M) — 0 is exact whenever P is pure
projective.

If0 - T - N — N/T — 0 is pure exact, then Hom(&p F(XF),N) —
Hom(@ FX#) N/T) is equivalent to [[Hom(F, N) — [[Hom(F, N/T) which
is surjective since Hom(F, N) — Hom(F, N/T) is surjective because F € PProj.
Thus @ FX#) € PProj. Hence since @ FXF) — M — 0 is surjective with a pure
kernel and € F Xr) s pure projective, we see that we have a $Proj-precover. Hence
we get an exact left S Proj-resolution with pure kernels for each M € gM. But by
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Propositions 5.3.9 and 8.1.3, right Sdnj-resolutions exist with pure injections for each
N € gpM. Hence Hom(—, —) is right balanced by PProj x Pdnj on g M x gM.

Example 8.3.3. If R is left coherent, then Hom(—, —) on Mg i X MR is right bal-
anced by J’rojfg x Abs. For if R is left coherent, then each object Mg in M, has a
left frOJ}g—resolution (see Remark 3.2.25). Furthermore, any absolutely pure preen-
velope is an injection since injectives are absolutely pure. So every module has a right
Abs-resolution by Proposition 6.2.4 and Proposition 8.1.3. Hence the result follows
as in the above examples.

Example 8.3.4. Hom(—, —) on ¥lat x ¥ lat is right balanced by Proj x Pdnj since
right dnj-resolutions are exact and left $Proj-resolutions of flat modules are pure
exact sequences.

Example 8.3.5. If R is left Noetherian, then Hom(—, —) is left balanced on gM X
RM by Jnj x Jnj since for such an R, every left R-module has a left Jnj-resolution
by Theorem 5.4.1 and Proposition 8.1.3.

Example 8.3.6. If R is left coherent, then Hom(—, —) is left balanced on Mpg X
Mp by Flatg x Flatg since every right R-module has a right Flat-resolution by
Proposition 6.5.1 and a left ¥ lat-resolution by Theorem 7.4.4.

Notation. When T = Hom(—, —), right derived functors R” Hom(—, —) are de-
noted by Exts(—,—) and left derived functors L, Hom(—,—) by Ext,lf(—, —) or
Extz"(—,—). In Example 8.3.2, the derived functors are usually denoted by
Pext’h (—, —). We note that these functors depend on which classes ¥ and § we
are using. But this will be clear from the context.

Now let T = — ® —. Then T is covariant in both variables. If T is left balanced by
F x &, then we can compute left derived functors L, (M ® N ) using either a complex
-—> F1 - Fp > M — 0of M with F; € ¥ or acomplex --- - G; — Gy —
N — 0 of N with G; € §. This uses a third quadrant diagram. Similarly, if 7 is
right balanced by ¥ x g, then we can compute right derived functors R"(M ® N)

using either a complex 0 - M — F° — F! — ... of M with F' € ¥ or
0>N—->G°—> Gl —-... withG' € §.
We apply this to categories of modules by again considering 7 = — ® — as a

functor from Mg x gM to the category of Abelian groups.
Example 8.3.7. —®— is left balanced by $rojx Proj on Mg x gM. This is standard.

Example 8.3.8. — ® — is left balanced by Flat x Flat on Mg x grM. Again this
is standard since every module has a flat resolution. The left derived functors of this
example coincide with those in Example 8.3.7 above. We note however that a flat
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resolution is not a left #lat-resolution in general. We will study left ¥ lat-resolutions
in Section 8.6.

Example 8.3.9. If R is left coherent, then — ® — on Mg X gM is right balanced by
Flat x Abs. We need to show that if 0 - M — F% — F! — ... is aright Flat-
resolution, which exists by Propositions 6.5.1 and 8.1.3, and G is an absolutely pure
left R-module, then0 - M ® G - F°® G — F! ® G — --- is exact. Applying
the functor Homy (—, Q/Z) and using a standard identity we get the sequence 0 <«
Hom(M, G*) < Hom(F°, GT) < --.. But G is flat and so this sequence is exact.
This means the desired sequence is exact. Since right #Abs-resolutions are exact,
0> F®N > F®G? > F®G! — - is exact for any right #bs-resolution
0N —G®°— G! — ... of N and for any F € Flat.

Example 8.3.10. If R is again left coherent, then — ® — on Mp X RM is right
balanced by $roj e X Abs. Forif M is a finitely presented right R-module, then M has
a flat preenvelope M — F by Proposition 6.5.1. Butthen M — F has a factorization
M — P — F for some finitely generated right R-module P. So M — P isa Orojfg-
preenvelope of M. Thus M has a right Proj fg-resolutlon Hence the example follows
as in Example 8.3.9 noting that the right #roj e -resolution becomes exact if we apply
Hom(—, P) with P € FOJfg or Hom(—, F) with F € Flat.

Notation. When 7" = — ® —, the left derived functors L,(— ® —) are denoted by
Tor,lf (—, —) and the right derived functors R"(— ® —) are denoted by Tor'p(—, —).
Again these depend on the classes ¥ and § we are using.

Example 8.3.11. Using the above, we see that if R is left coherent, then Hom(—, —) is
left balanced on Mg 1 X MR by °r0] x Flat. Here the derived functors ExtR (M,N)
are obtained by using a right $Proj e —resolutlon of M or a flat resolution of N.

Exercises

1. Prove Example 8.3.1.

2. Prove Examples 8.3.4 and 8.3.5.
3. Prove Example 8.3.11.
4

. Let R be left Noetherian, N be an R-module, and C/ a jth cosyzygy of an
R-module M. Prove that Ext®(C/, N) =~ Ext® | (M, N) forall i > 1.

5. Let R be left Noetherian and N be an R-module such that its left dnj-resolutions
are exact. Let K~/ (N) denote the ith syzygy of the minimal left Jnj-resolution
of N. Prove that ExtiR (M,N) = Ext}e (M,K7'=2(N)) for all i > 1 and all
R-modules M.



Section 8.4 % -dimensions 187

6. Let R be left Noetherian and C denote the full subcategory of all R-modules
whose left dnj-resolutions are exact. Prove that the following are equivalent for
N € 0b(C).
(a) ExtR(M,N) = 0foralli > 1andall M € Ob(C).
(b) ExtR(M, N) = 0 forall M € Ob(C).
(c) N is an injective R-module.
Hint: Use Problem 5 above.

7. (Stenstrom [171, Theorem 3.2] and Wiirfel [184, Satz 1.6]) Prove that the follow-
ing are equivalent for a ring R.

(a) R is left coherent.
(b) M is aflat right R-module for each absolutely pure left R-module M.

(c) Every quotient M/ S of an absolutely pure left R-module by a pure submodule
S is absolutely pure.

(d) Every direct limit of absolutely pure left R-modules is absolutely pure.

8.4 ¥ -dimensions

Definition 8.4.1. If ¥ is a precovering class of an Abelian category C, then an object
M of C is said to have left ¥ -dimension < n, denoted left ¥ - dim M < n, if there is
a left ¥ -resolution of the foom 0 — F, — F,—1 — -+ > F1 - Fp > M — 0
of M. If n is the least, then we set left ¥ -dim M = n and if there is no such n, we
set left #-dim M = oo. In a similar manner, we define the right ¥ -dimension of
objects of C, denoted right ¥ - dim, if ¥ is a preenveloping class of C. In particular,
left Proj-dimension, right dnj-dimension will mean the usual projective and injective
dimensions, respectively.

We note that ¥ -dimension depends on both the category and the precovering or
preenveloping class. Also, ¥ might be both precovering and preenveloping in which
case left and right ¥ -dimensions of a given object of C may be different.

Definition 8.4.2. Let C be an Abelian category and ¥ be a precovering class of C.
Then the global left & -dimension of C, denoted gl left - dim C, is defined by

glleft ¥-dim C = sup{left ¥-dim M : M € Ob(C)}

and is infinite otherwise. The global right ¥ -dimension of C is defined similarly
when ¥ is a preenveloping class.

Again, global dimensions depend on the category and the respective classes. If F is
both precovering and preenveloping, the two global ¥ -dimensions may be different.
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Balanced functors are an essential tool in determining the exactness of complexes
and comparing different ¥ -dimensions and global ¥ -dimensions. We illustrate this
using the category of left R-modules. We start by stating the following standard
results where Ext” (M, N) are the usual right derived functors obtained by using a
right dnj-resolution of N or a left $roj-resolution of M (see Example 8.3.1). We
include proofs here for completeness.

Proposition 8.4.3. The following are equivalent for a ring R, M € gM, andn > 0:

(1) leftProj-dimM < n.

(2) Ext5™ (M, N) = 0forall N € gM and k > 1.

(3) Extpt' (M, N) = 0 forall N € gM.

(4) Every nth Proj-syzygy of M is projective.
Proof. (1) = (2). Let0 — P, — P,y — -+ — Py — Py — M — 0 be aleft
Proj-resolution of M. Then Hom(P,, 1, N) = 0 for all k > 1. So (2) follows.

(2) = (3) and (4) = (1) are trivial.

(3) = (4). Let K = Ker(P, — Pp—1). Then (3) implies that Hom(P,, N) —
Hom(K, N) — 0 is exact for all N. So by setting N = K, we see that 0 > K —
P, — Ker(P,—1 — P,—2) — 0is split exact and so (4) follows. O

Dually, we have the following

Proposition 8.4.4. The following are equivalent for a ring R, N € gM, andn > 0:
(1) rightdnj-dim N < n.
(2) Ext,TF(M,N) = 0forall M € g M, and k > 1.
(3) Extpt (M, N) = 0 forall M € gM.
(4) Every nth dnj-cosyzygy of M is injective.
(5) Exty ' (R/1,N) = 0 for all left ideals I of R.
Proof. The equivalence of (1), (2), (3), (4) follows as in the dual Proposition above.
(3) = (5) is trivial. We now argue (5) = (4). Let C = Im(E"~! — E™). Then it
follows from part (1) of Corollary 8.2.6 that Ext!(R/I, C) = Ext"*'(R/I, N) = 0.

So Hom(R, C) — Hom(/, C) — 0 is exact for all left ideals / of R. But then C is
injective by Baer’s Criterion (Theorem 3.1.3). O

Now we get the following well-known result.

Theorem 8.4.5. The following are equivalent for a ring R and the category of left
R-modules gM:

(1) glleft Proj-dim gM < n.
(2) glright dnj-dim gM < n.
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(3) Extpt' (M, N) = 0 forall M, N € gM.
(4) Ext,T*(M,N) = 0forall M, N € gM and k > 1.
(5) sup{left Proj-dim R/1: I is a left ideal of R} < n.

Proof. This easily follows from Propositions 8.4.3 and 8.4.4 above. |

This gives the following result concerning the usual left injective and projective
global dimensions.

Corollary 8.4.6.
glright dnj- dim g M = glleft Proj-dim g M
= sup{left Proj-dim R/I : I is a left ideal of R}.
If R is left coherent, right derived functors Ext’z (M, N) on RM;, X RM can be

computed using a left Proj, -resolution of M or a right Abs-resolution of N by Ex-
ample 8.3.3. So we have the following results that are analogous to the above.

Proposition 8.4.7. Let R be left coherent and n > 0. Then the following are equiva-
lent for M € RMﬁ):

(1) left JProjfg- dmM <n

(2) Ext,TF(M,N) = 0forall N € grM and k > 1.

(3) Extpt'(M,N) = 0 forall N € gM.

(4) Every nth ?rOJ}g-syzygy of M is a finitely generated projective R-module.

Proof. Similar to Proposition 8.4.3. m|

Proposition 8.4.8. Let R be left coherent and n > 0. Then the following are equiva-
lent for N € pM:

(1) right Abs-dim N < n.
(2) Extpt¥(M.N) = 0forall M € g My, and k > 1.
(3) Extx"'(M.N) = 0 forall M € rM,,
(4) Every nth rAbs-cosyzygy of N is absolutely pure.
(5) Ext';e+1 (R/I, N) = 0 for all finitely generated left ideals I of R.
Proof. We provide a proof here for completeness.
(1)= (2) = (3) = (5) and (4) = (1) are now trivial.
(3) = (4). Let C = Im(A""! — A"). Then Ext'(F,C) =~ Ext"T1(F,N) = 0

for all F € M, again by Corollary 8.2.6. Hence Hom(R™, C) — Hom(4,C) — 0
is exact for every n > 1 and finitely generated A € R™. Thus C € Abs.
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(5) = (3). Let S be the cyclic submodule generated by one of the generators of a
finitely presented left R-module F'. Then S and F/S are finitely presented since R is
left coherent. But both S and F/S have fewer generators than F, and so by induction
on the number of generators of F, Ext"T1(S, N) = Ext"t!(F/S, N) = 0. But then
Ext"T1(F,N) = 0. O

Theorem 8.4.9. Let R be left coherent and n > 0. Then the following are equivalent:
(1) glright Abs-dim g M < n.
(2) glleft !Projfg- dim Rpr <n.
(3) Extpt*(M.N) = 0forall M € M, N € gM, and all k > 1.
(4) Extx" (M, N) = 0forall M € M, N € rM.

5) Ext';{"l(R/I, N) =0 forall N € gM and all finitely generated left ideals 1
of R.
(6) sup{left Proj-dim R/I: I is a finitely generated left ideal of R} < n.

Proof. This follows from the preceding two propositions. m|

Corollary 8.4.10.
glleft Abs-dim g M = glleft e‘ljrojfg- dim g M,

= sup{left Proj-dim R/I : I is a finitely generated left ideal of R}.

Let0 - N — PE°(N) - PEY(N) — --- denote the minimal right Pdnj-
resolution of an R-module N. Then we have the following result which easily follows
from Proposition 6.7.1.

Lemma 8.4.11. If F is a flat left R-module and R is right coherent, then PE* (F)
and Im(PE*=Y(F) — PE*(F)) are flat for each k > 0 where PE~Y(F) = F.

Proof. We simply note that PE°(F) is flat by Proposition 6.7.1 and F C PE°(F) is
pure and so PE°(F)/F is flat. Hence PE!(F) is flat by Proposition 6.7.1 again and
thus we proceed inductively. m|

Now let Ext’y (M, N') denote the right derived functors of Hom(M, N') on Flat x
Flat obtained using a left $roj -resolution of M or a right Pdnj-resolution of N (see
Example 8.3.4). Then we get the following result.

Theorem 8.4.12. The following are equivalent for a right coherent ring R and the
full subcategory ¥ lat:

(1) glleft Proj-dim gFlat < n.
(2) glright Pdnj-dim g Flat < n.
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(3) Extyt'(M,N) = 0 forall M, N € g¥lat.
4) ExU5™ (M, N) = 0forall M, N € gFlatand k > 1.

Proof. (1) = (4), (2) = (4), and (4) = (3) are trivial.

3) = (1). Let--- > P > Py —> M — 0 be aleft Proj-resolution of a flat
module M. Then K = Ker(P, — P,—1) is flat since the resolution is pure exact. So
as in the proof of Proposition 8.4.3, setting N = K yields (1).

(3) = (2). We consider the minimal right $dnj-resolution0 —- N — PE°(N) —
PEY(N) — ---. Then C = Im(PE""!(N) — PE"(N)) is flat by Lemma 8.4.11
above. So (3) implies that C is a direct summand of PE"(N) and thus we are done.

O

Corollary 8.4.13. glleft Proj - dim g Flat = glright Pdnj- dim g Flat.

We now use the fact that if R is left Noetherian, then Hom(—, —) is left balanced
by dnj x dnj and left derived functors Ext, (—, —) can be computed using a right Jnj-
resolution of M or a left dnj-resolution of N (see Example 8.3.5).

Proposition 8.4.14. Let R be left Noetherian and n > 2. Then the following are
equivalent for M € RM:

(1) rightdnj-dim M < n.

(2) ExtR (M,N)=0forall N € M andk > —1.

(3) Ext® [ (M,N) =0forall N € gM.

Proof. (1) = (2). Let0 > M — E° - E! — ... - E" — 0 be a right Jnj-
resolution of M. Then 0 — Hom(E", N) — Hom(E"~', N) — Hom(E""2,N) is
exact and so

Extp—1(M, N) = Ext, (M, N) = 0.
But clearly, Ext,, 4 x (M, N) = 0 for all k > 1. Hence (2) follows.

(2) = (3) is trivial.

(3) = (1). Let0 - M — E® — E! — ... be aright Jnj-resolution of M. Let
C = Im(E"2 — E"1). Then (3) implies Ext,_;(M, E"~1/C) = 0. But then
E"1/C — E" has a retract. Hence E""!/C € Jnjandso0 - M — E° —
oo — E" 1 5 E"1/C — 0is aright dnj-resolution of M. |

Proposition 8.4.15. Let R be left Noetherian and n > 2. Then the following are
equivalent for N € rRM:

(1) leftdnj-dimN <n —2.
(2) Ext®  (M.N)=0forall M € gMand k > —1.
(3) Ext® (M, N) =0forall M € gM.
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Proof. (1) = (2) = (3) are trivial.

3) = (1). Let--- - Gy — Gg —> N — 0 be a left dnj-resolution and C =
Ker(Gn,—1 — Gp—3). Then Ext,—1(C, N) = 0. This implies C — G,—; can be
factored through G, — G,—;. Hence C is a retract of G,,—; and so is injective. But
then G,—1/C — G, is an injection with injective image D. An easy check gives
that

0—>Gup—/D—>Gp3—>+—>Gyg—>N—>0

is also a left dnj-resolution. So (3) = (1). |

Theorem 8.4.16. Let R be left Noetherian and n > 2. Then the following are equiv-
alent:

(1) glright dnj-dim gM < n.
(2) glleftdnj-dim gM <n — 2.
(3) Ext® [(M,N) =0forall M, N € gM.

(4) ExtR  (M.N)=0forall M, N € gM and all k > —1.

Proof. This follows from Propositions 8.4.14 and 8.4.15. m|

Corollary 8.4.17. glleftdnj-dim g M = glright dnj-dim g M — 2 and is zero if
glright dnj-dim g M < 1.

Remark 8.4.18. If n = 2 in Theorem 8.4.16, then every N has a left dnj-resolution

-—>0—-0— E - N — 0. This means that any homomorphism G — N
with G injective can be factored uniquely through E. In this case dnj is said to be a
coreflective subcategory of g:M.

We now recall that a left R-module M is said to have flat dimension (flatdim M)
< n if there exists an exact sequence 0 - F, - Fj,_y —» -+ > F| > Fg > M —
0 with F; flat. Then we define the global weak dimension of a full subcategory gC,
denoted gl wdim gC, by

glwdim gC = sup{flatdim M : M € Ob(gC)}.

We also recall from Example 8.3.8 that flat resolutions can be used to compute the
left derived functors Tor, (M, N). We thus have the following well-known result.

Proposition 8.4.19. The following are equivalent for a right R-module M andn > 0:
(1) flatdim M < n.
(2) Tor®  (M.N) =0forall N € pM and k > 1.
(3) Tor®, (M,N)=0forall N € rM.
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(4) Torf, |(M.N) =0 forall N € rM,,
(5) Every nth ¥ lat-syzygy of M is flat.
(6) Tor,If_|_1 (M, R/I) = 0 for all left ideals I of R.

Proof. (1) = (2) = (3) = (4) are trivial.

(4) = (5). Let K = Ker(F,—1 — Fy—3). Then Tor,lf_,_l(M, N) = Torf(K, N) =
Oforall N € pr by part (1) of Corollary 8.2.4. Now let0 - L — F — K — Obe
exact with I € Flat,then0 - L ® N — F ® N isexactforall N € Mﬁ, So L is
a pure submodule of F' and hence K is flat.

(3) = (6), (5) = (1) are trivial.

(6) = (5). Let K = Ker(Fy—1 — Fy—2). Then TorX, (M, R/I) = 0 means
Torf(K,R/I) = 0 asin the above. S0o0 - K® I - KQ R —> K®R/I -0
is exact for all left ideals / of R. Butthen 0 — (K ® R/I)t — (K ® R)* —
(K ® )T — 0is exact and thus Hom(R, KT) — Hom(/, K™) — 0 is exact for all
left ideals 7. Hence K™ is an injective left R-module by Baer’s Criterion and so K is
a flat right R-module. o

Theorem 8.4.20. The following are equivalent for any ring R and n > 0:
(1) glwdim Mg <n.
(2) TorR (M,N)=0forall M € Mg, N € gM.
(3) glwdim gM < n.
(4) TorR, |(M.N) =0forall M € Mg, N € rM,,
(5) Torfﬂ(M, R/I)=0forall M € Mg and all left ideals I of R.
(6) glwdim Rpr <n.
(7) sup{flatdim R/ 1 : I is a left ideal of R} < n.

Proof. This follows from the preceding proposition. |

Corollary 8.4.21.
glwdim Mg = glwdim g M = glwdim g M,

= sup{flatdim R/I : I is a left ideal of R}.

Remark 8.4.22. If R is left coherent, then every finitely presented flat left R-module
is projective. Hence if M is a finitely presented left R-module and flatdim M < n,
then there is an exact sequence 0 - K — F,—y —» -+ > F; - Fgp > M — 0
with F; finitely generated and free, and K flat (see Example 8.3.3). But K is finitely
presented and so K is projective. Thus left Proj, -dimM < flatdim M. But
flatdim M < left Proj, -dim M always. Hence left Proj, -dim M = flat dim M.
Consequently, the integers in Corollaries 8.4.10 and 8.4.21 are equal if R is left co-
herent.
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We will need the following easy result.

Lemma 8.4.23. If M1 — M, — M3 — My is an exact sequence of left R-modules
such that for every finitely presented right R-module P, P @ M1 — P ® M, —
P ® M3 — P ® My is exact, then K = Ker(M3 — My) is a pure submodule of M.

Proof,. P My - P My — P ® M3 — P ® Mgisexactand P ® K —
P ® M3 — P ® My is a complex. Thus exactness of the first sequence means
0— P ® K — P ® Mjisexact. This means K is a pure submodule of M3. |

Let R be left coherent and Tor” (—, —) denote the right derived functors of — ® —
in Example 8.3.10. Then we have the following result.

Proposition 8.4.24. Let R be left coherent and n > 2. Then the following are equiv-
alent for N € pM:

(1) right Abs-dim N < n.

(2) Tors™ (M, N) = 0 forall M € Mg and all k > —1.

(3) Tory(M,N) = Tor’s '(M,N) = 0 forall M € Mg.

(4) Tory(M,N) = Tor’s "(M,N) = 0forall M € MRy,

Proof. (1) = (2).Let0 - N — A% — ... — A" — 0 be aright #Abs-resolution of
N.Then M @A" 2 > MQA" ' - M®A" — Oisexactand so Tor" "} (M, N) =
Tor" (M, N) = 0. But clearly Tor" t# (M, N) = 0for k > 1. Hence (2) holds.

(2) = (3) = (4) is trivial.

(4) = (1). Let0 - N — A% — A! — ... be aright Abs-resolution of N. Then
forany M € Mgy, M ® A2 S MA" ! > M A" - M ® A" is exact.
So by Lemma 8.4.23, K = Ker(A4"” — A"*1) is pure in A”. But a pure submodule
of an absolutely pure module is absolutely pure and so K is absolutely pure. But then
0N — A% > ... > A" 1 K — 0is aright Abs-resolution of N and so (1)
holds. m|

Proposition 8.4.25. Let R be left coherent and n > 2. Then the following are equiv-
alent for M € MRp:

(1) right Flat-dm M <n —2.
(2) Tor? K (M, N) = 0forall N € g M and all k > —1.
(3) Tor’s(M,N) = Tor’s '(M, N) forall N € gM.
Proof. (1) = (2) = (3) is trivial.
3) = (1).If0 > M — F° - F! — ... is a right Flat-resolution of M, then

F'"2@N - F" '@ N - F*® N — F"t1 ® N is exact for any N. By Lemma
8.4.23, K = Ker(F" — F"*1)is pure in F" and so is flat. But F"~2 — F"~1
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K — 0is exact. Therefore, L = Ker(F"~2 — F"~1)is pure in F”~2 and so is also
flat. Thus0 - N — F% — ... - F"3 [ — 0is a right Flat-resolution of N
and so (1) holds. O

Proposition 8.4.26. Let R be left coherent and n > 2. Then the following are equiv-
alent for M € Mpr:

(1) right Proj,-dim M < n —2.

) Tor’s™8 (M, N) = 0forall N € gM and k > —1.
(3) Tort(M,N) = Tor’s "(M,N) = 0forall N € grM.
Proof. So (1) = (2) = (3) is again trivial.
3) = (1). Let0 > M — P° — P! — ... be aright Proj,,-resolution of M.

Then by Lemma 8.4.23, K = Ker(P" — P"*1)is pure in P” and so is flat. But
P2 — pr~l 5 K — 0 is exact by assumption since right Proj,,-resolutions

are right Flat-resolutions. So if we set L = Ker(P"™2 — P"7!) then0 — L —
P*=2 — pr~l 5 K — 0is exact and thus P*72/L is flat. But P""2/L <
P" ! is a Flat-preenvelope (see Example 8.3.11). So Hom(P"~!, P"2/L) —
Hom(P" 2/L,P"2/L) — 0 is exact and thus P"2/L is a direct summand of
P"~1. Hence P"~2/L is projective. But then L is a summand of P"~2 and so
0> M — P° > Pl - ... 5 P"3 5 L — (Oisaright Proj,-resolution of
M. O

Theorem 8.4.27. Let R be left coherent and n > 2. Then the following are equiva-
lent:

(1) glright Abs-dim g M < n.

(2) glright Flat-dim Mg <n — 2.

(3) glright J)rojfg— dim Mg, <n—2.

(4) Torg(M,N) = Tory '(M,N) = 0 forall M € Mg, N € RM.
(5) Tor(M,N) = Tor’s "(M,N) = 0forall M € Mg, N € gM.
(6) Tor's™8 (M, N) = 0forall M € Mg, N € rM and forallk > —1.

Proof. The result follows from Propositions 8.4.24, 8.4.25 and 8.4.26 above. |

Corollary 8.4.28.
glright Flat- dim Mg = glright f/"rojfg- dim Mgy,
= glright Abs-dim g M — 2

and are both zero if glright Abs-dim g M < 1.
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Corollary 8.4.29. glwdim M < 2 if and only if ¥ lat is a reflective subcategory
of Mg.

Proof. glwdim M = glright Abs-dim g M by Remark 8.4.22. So every object M
of Mg has a right Flat-resolution 0 - M — F — 0 by Corollary 8.4.28 above.
But then every homomorphism M — F’ with F’ € Flat can be factored uniquely
through F. That is, Flat is a reflective subcategory of Mpg. For the converse, we
simply reverse the steps above. O

Example 8.4.30. If R = k[x, y], k a field, then the inclusion (x, y) — R is a rigid
flat envelope of (x, y), that is, every homomorphism M — F with F flat can be
factored uniquely through R.

We now characterize left coherent rings with finite self absolutely pure dimension.

Theorem 8.4.31. If R is left coherent and n > 0, then the following are equivalent:

(1) For every flat left R-module F, there is an exact sequence 0 — F — A% —
-oo > A" — 0 with each A' € Abs.

Q) If0 > M — F° - F!' — ... is a right Flat-resolution of MR, then the
sequence is exact at Fk fork >n—1where F7! = M.

B3)If0 - M — P° - P! — ... isaright ?ro;'fg—resolution of a finitely

presented right R-module M, then the sequence is exact at Pk fork > n—1
where P! = M.

(4) For every absolutely pure right R-module A, there is an exact sequence 0 —
F,—>F,1—--—F— Fy— A— Owitheach F; € Flat.

(5) There is an exact sequence 0 — R — A% — ... — A" — 0 of left R-modules
with each A* absolutely pure.

Proof. (1) = (5) is immediate.

(5) = (2). We recall that — ® — is right balanced on Mg x Mg by Flat x Abs
with right derived functors Tork (—, —) (see Example 8.3.9).

If n > 2, using the exact sequence 0 — R — A% > ... > A" 0, we get
Tor*(M, R) = 0 for k > n — 1. Computing using 0 - M — F% — F1 — ... as
in (2), we see that Tor* (M, R) is just the kth homology group of this complex, giving
the desired result.

Forn = 1,0 - R — A® — A! — 0 exact gives Tor'(M, R) = 0 so that, as
above, FO — F1 — FZ2isexactand M ® R — Tor®(M, R) is onto. Computing the
latter morphism using 0 - M — F° — F!showsthat0 - M — F° — Flis
exact.

If n = 0 then (4) means R is absolutely pure as a left R-module. But the balance
of — ® — then gives0 > M @ R - F°® R - F! ® R — --- is exact. That is,
0> M — F%— F! — ... isexact.
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(2) = (3) is trivial. We remark that (3) for n = 0 is equivalent to the requirement
that every finitely presented right R-module is a submodule of a free R-module.

(3) = (1). Assume (3) withn > 2. Let0 — F — A% — A! — ... be exact
with F flat and each A’ absolutely pure. Then by (3), we get Tor* (M, F) = 0 for
k > n — 1 since F is flat. Computing using 0 — 4% — 4! — 42 — ... and
using Lemma 8.4.23, we get K = Ker(A" — A"T1) is pure in A” and so K is also
absolutely pure. Hence 0 — F — A% — ... — A" 1 — K — 0 gives the desired
exact sequence.

Now let n = 1. Then (3) says M — P°® — P! — ... isexact. So Tor" (M, F) =
Ofork =0and M Q F — TorO(M, F)is onto. Henceif 0 - F — A0 — Al ...
isexact, MOF - M ®A° - M ® A' - M ® A? is exact for all finitely presented
M. By Lemma 8.4.23, we again get the desired exact sequence 0 — F — A% —
K — 0 with K = Ker(4! — A4?).

Ifn =0then0 - M — P® — P! — ... exact means Tor (M, F) = 0 for
k> 0and M ® F — Tor®(M, F) is an isomorphism. This gives that 0 —> M @ F —
M ® A° - M ® A is exact for all M which implies F is a pure submodule of A°
and so is absolutely pure.

The proofs of (3) = (4) and (4) = (3) are similar but use the derived func-
tors Ext, (M, A) of Example 8.3.11 and the natural homomorphism Hom(M, A) —
Exto(M, A). 0O

Corollary 8.4.32. If R is left coherent, then
glright Abs-dim g Flat = gl w dim Absg = right Abs-dim g R.
If n = 0, we get the following.

Corollary 8.4.33. If R is left coherent, then the following are equivalent:
(1) Every flat left R-module is absolutely pure.
(2) Every R-module is a submodule of a flat R-module.
(3) Every finitely presented right R-module is a submodule of a free module.
(4) Every absolutely pure right R-module is flat.
(5) R is absolutely pure as a left R-module.

Lemma 8.4.34. Let R be left Noetherian and G be a left R-module. Then
right Jnj-dim G < n
if and only if for any left dnj-resolution --- — Ey — Eg — M — 0 of each

M € RrM, Hom(G, E;) — Hom(G,Ker(E,—1 — E,—»2)) — 0 is exact where
E_1=M.
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Proof. We proceed by induction on n. For n > 1, we consider a short exact sequence
0 — G - E — G’ — 0 with E injective. Then we have the following commutative
diagrams

Hom(E, E;) —— Hom(E, K,;) ——= 0

i i

Hom(G, E,;,) —— Hom(G, K,)

l

0

and

0 —— Hom(G', K;) —— Hom(G’, E;—;) — Hom(G’, K;—1)

0 —— Hom(E, K;) — Hom(E, E,,—;) —— Hom(E, K,—1) ——= 0

0 —— Hom(G, K;) —— Hom(G, E,—;) —— Hom(G, K;—1)

0

Hence right Jnj-dimG < n if and only if rightJnj-dimG’ < n — 1 if and only
if Hom(G’, E,—1) — Hom(G’, K,—1) is surjective by induction if and only if
Hom(E, K,) — Hom(G, K,) is surjective by the second diagram if and only if
Hom(G, E,) — Hom(G, K;) is surjective by the first diagram.

Forn = 0, let Ko = G in the first diagram. Then Hom(G, E9g) — Hom(G, G) is
surjective means Hom(E, G) — Hom(G, G) is surjective. Thus 0 - G — FE splits
and hence G is injective. The converse is trivial. m|

Remark 8.4.35. There is a dual result to Lemma 8.4.34 involving flat dimensions and
right J’rojfg—resolutions of finitely presented modules over coherent rings.

Theorem 8.4.36. If R is left Noetherian and n > 0, then the following are equivalent:
(1) glright dnj-dim g Flat < n.
) If0 > M — F° — F!' — ... is aright Flat-resolution of a right R-module
M, then the sequence is exact at Fk fork >n —1where F~! = M.
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3) If0 - M — P° > P! — ... isaright J’rol}g-resolution of M € <MRﬁ,, then
the sequence is exact at Pkfor k>n—1where P71 = M.
4) glwdimdnjp <n.

S) If---— E1 - Eog > M — 0is a left dnj-resolution of a left R-module M,
then the sequence is exact at Ey. fork > n — 1 where E_1 = M.

(6) rightdnj-dim g R < n.

(7) If -+ — Py — Pop > M — Ois aleft Proj-resolution of a left R-module M,
then the subcomplex - -+ — Pp11 — Py is Hom(—, Flat) exact.

Proof. The equivalence of (1), (2), (3), (4) and (6) follows from Theorem 8.4.31 since
absolutely pure means injective in this case.

(5) = (6). En, > Ey,—1 — Ej—5 is exact at E,,_q by assumption. Thus E,, —
Ker(E,—1 — En—») is surjective. But then right Jnj- dim g R < n by Lemma 8.4.34
above.

(6) = (5). Supposen > 2andlet0 - R — E® - E! — ... - E" — Obe
a right dnj-resolution of R. Then Exty (R, M) = 0 for k > n — 1. Now computing
Exti (R, M) using a left dnj-resolution --- — £y — E9 — M — 0, we see that the
sequence is exact at Ex, k > n — 1.

Ifn =1and0 - R — E® — E! — 0is aright Jnj-resolution of R, then 0 —
Hom(E', M) — Hom(E®, M) — Hom(R, M) is exact. Thus Exty (R, M) = 0 for
k > 1 and Exto(R, M) — M is a monomorphism. But computing Exto(R, M) using
a left Jdnj-resolution, we see that £y — E¢o — M isexactat Eg. So--- - E; —
Eo — M — Oisexactat E, k > 0.

Now let n = 0. Then g R is injective and so every injective precover is surjective
and thus --- — £y - Eg — M — 01is exact.

(1) & (7) We simply note that glright dnj-dim gFlat < n if and only if for
each left R-module M, Ext"R(M, F) =0forall F € gFlatand alli > n + 1.
But the latter means that 0 — Hom(Ker(P,—y — P,—3), F) — Hom(P,, F) —
Hom( P41, F) — --- isexact for all F € gFlat and so the result follows. O

Corollary 8.4.37. The following are equivalent for a left Noetherian ring R:
(1) R is an injective left R-module.
(2) Every injective precover of a left R-module is surjective.
(3) Every left R-module is a quotient of an injective module.
(4) Every flat left R-module is injective.
(5) Every projective left R-module is injective.
(6) Every Flat-preenvelope of a right R-module is a monomorphism.

(7) Every frOJ}g-preenvelope of a finitely generated right R-module is a mono mor-
phism.
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(8) Every finitely generated right R-module is a submodule of a free R-module.

(9) Every injective right R-module is flat.
Proof. (1) & (4) & (6) & (7) & (9) follows from Corollary 8.4.33 or Theorem
8.4.36 above.

(1) & (2) follows Theorem 8.4.36.
(2) & (3), (4) = (5 = (1) and (7) < (8) are trivial. O

Exercises

1. Prove Proposition 8.4.7.

2. Let R be a commutative Noetherian ring and M be an R-module. Prove that
right dnj-dim M < n if and only if Ext" 1 (R /p, M) = 0 for all p € Spec R.
Hint: Use Lemma 2.4.7.

3. Prove that if R is left Noetherian then
glright dnj- dim g M = gl left {Projfg— dim g M, = glwdim gM.
4. Prove that if R is left Noetherian then

glleft dnj- dim g M = glright Flat- dim Mg
= glright J’rojfg- dim Mgy,
= glright dnj- dim g M — 2

and zero if glright Jnj- dim g M < 1.

5. State and prove results for Example 8.3.6 corresponding to Theorem 8.4.16 and
Corollary 8.4.17.

6. Prove the equivalence of parts (3) and (4) of Theorem 8.4.31.

7. A ring R is said to be left hereditary if every left ideal of R is projective (and
hence hereditary domain means Dedekind domain). Show that the following are
equivalent.

(a) R is left hereditary.
(b) Every submodule of a projective R-module is projective.
(c) Every homomorphic image of an injective R-module is injective.
(d) glright dnj-dim g M < 1.
(e) Ext’l’e (M, N) = 0 for all R-modules M, N and all n > 2.
8. Prove that the following are equivalent for a left Noetherian ring R.

(a) R is left hereditary.
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(b) Every kernel of an Jnj-precover is injective.
(¢) Every dnj-cover of an R-module is a monomorphism.

(d) Every cokernel of a $#roj-preenvelope obtained from a Flat-preenvelope of
a finitely presented right R-module is projective.

(e) Every finitely presented right R-module has a surjective #roj -preenvelope.

9. Let R be a commutative Noetherian ring and E be an injective R-module. Prove
that for each n > 0, left #lat- dim Hom(E, M) < n for all R-modules M if and
only if right Jnj- dim M ® E < n for all R-modules M.

10. Prove that gl left Proj - dim g M = 0 if and only if R is semisimple.

11. Aring R is said to be von Neumann regular if every right R-module is flat. Show
that the following are equivalent.

(a) R is von Neumann regular.
(b) glwdim gM = 0.
(¢) R/I is projective for each finitely generated right ideal /.

12. State and prove the result mentioned in Remark 8.4.35.

8.5 Minimal Pure Injective Resolutions of Flat Modules

Throughout this section, R will denote a commutative Noetherian ring.

If0 - F - PE%F) — PE'(F) — --- is a minimal right £dnj-resolution
of a flat R-module F, then for each n > 0, PE"(F) is a flat cotorsion module by
Lemmas 5.3.23 and 8.4.11. So PE?(F) = [Ipespec # Tp Where Ty is the completion
of a free Rp-module by Theorem 5.3.28.

We start with the following result.

Theorem 8.5.1 (Change of Rings Theorem). Let F be a flat R-module. If 0 : R —
R’ is a ring homomorphism such that R’ is a finitely generated R-module, then 0 —
F®R — PE°(F)®R' — PEY(F)®R' — --- is a minimal right PInj-resolution
of the R'-module F ® R'.

Proof. The sequence is easily pure exact. We now show that PE" (F) ® R’ is a pure
injective flat R’-module. Clearly it is flat since PE"(F) is. But PE"(F) = [] Ty.
over p € Spec R. Thus PE"(F)®R' = ([[ Tp)QR’. But ([[ Tp)®R' = [[(T,®R’)
since R’ is finitely generated. Therefore, to show that PE™ (F) ® R’ is pure injective,
it suffices to show that each 7, ® R’ is pure injective. By Proposition 6.7.11 this
reduces to showing that Rp ® R’ is pure injective. But Rp ® R =~ R/ DB R’
where q1,...,qs are the distinct primes lying over p, and is O if there is no such
prime.
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For minimality, it suffices to show that for any flat R-module F, F ® R’ —
PE(F) ® R’ is a pure injective envelope of F. But this will follow once we show
that F ® R’ — PE(F) ® R’ satisfies conditions (a) and (b) in Theorem 6.7.17. For
any p € Spec R, F ® k(p) — PE(F) ® k(p) is an injection and in fact splits. So
FRk(p)®R — PE(F)®k(p)® R’ also splits. But k(p) ® R’ is the direct sum of a
finite number of local rings of dimension 0. If we go modulo the radical of k(p) ® R,
we still get an injection, and in fact, we getamap F @ R’ ® (k(q1) ®--- D k(gs)) —
PE(F)® R' ® (k(g1) ®--- ® k(as)) where a1,. .., qs are prime ideals of R’ lying
over p (possibly s = 0). Thus F ® R — PE(F)® R’ satisfies (a) of Theorem 6.7.17.
The argument that (b) is satisfied is similar. O

Corollary 8.5.2. right Pdnj-dim g/ R’ < right Pdnj- dim g R.

Remark 8.5.3. If R C R/, then for any flat R-module F, F ® R’ = 0 implies F = 0
and so we get equality in the corollary. Hence in this case, R is self pure injective
if and only if R’ is. It is easy to see that for any ring R, R is self pure injective if
and only if Ext}{ (F, R) = 0 for all flat R-modules F. But the latter is equivalent to
R being a direct product of a finite number of complete local rings (see Jensen [125,
Theorem 8.1]). So if we drop the Noetherian condition on R, we get the following.

Corollary 8.5.4. Let R be a subring of a ring R’ which is finitely generated over R.
Then R is a direct product of a finite number of complete local rings if and only if R’
is.

Proof. The result follows from the remark above noting that R is Noetherian if and
only if R’ is by Theorem 3.1.18. O

Definition 8.5.5. For a flat R-module F, a prime ideal p of R, andn > 0, w,(p, F) is
the cardinality of a base of a free R,-module whose completion is the 7y in PE" (F).

Remark 8.5.6. The Change of Rings Theorem (Theorem 8.5.1) above says that if
R — R’ is a ring homomorphism such that R’ is a finitely generated R-module, then
for any flat R-module F, PE"(F)® R’ =~ PE"(F ® R’) for all n > 0. This implies
that if p” C R’ is a prime ideal lying over p C R, then 7,,(p’, R") = 7, (p, R). Hence
p appears in PE™(R) if and only if p’ appears in PE"(R’). We note that p appears
in PE™(R) if and only if f(’p is a summand of PE"(R).

Theorem 8.5.7. If F is a flat R-module, n > 0, and a prime ideal p of R is maximal
such that 7w, (p, F) # 0, then wp+1(a, F) = 0 for all primes ¢ 2 p.

Proof. We give the argument for n = 0 as it is easy to see how to modify the argument
for any n > 0. Let p be maximal such that o (p, F) # 0. Let PE(F) = PE°(F) =
[174. Then T}, = Fy, by Theorem 6.7.9. By assumption, T = 0if g 2 p. If p Z g,
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let S C k(p) be finitely generated and choose r € p, r ¢ q. Then multiplication by
r is zero on S and is an automorphism on 7y. So 7q ® S = 0. Hence ([ [,¢4 7o) ®
S = 0andso ([[,¢q Tq) ® k(p) = 0. Thus PE(F) ® k(p) = ([[Ty) ® k(p) =
Ty ® k(p) = Fy ® k(p). This means that PE(F) ® k(p) = F ® k(p).

Now let0 - F — PE(F) — C — 0beexact. Then C ® k(p) = 0 by the above.
If ¢ 2 p, asimilar argument as above gives PE(F)®k(q) = 0and so C ®k(gq) = 0.
But C ® k(q) = 0 implies éq = 0. Hence T, = 0 by Theorem 6.7.9. i

As a consequence, we have the following result.

Proposition 8.5.8. Let F be a flat R-module. If a prime ideal p appears in PE" T1(F),
then there is a prime ideal ¢ 2 p which appears in PE" (F).

Proof. 1f p appears in PE"(F), then there is a prime ideal ¢ 2 p which appears in
PE"™(F) by Theorem 8.5.7 above.
Hence suppose no prime ideal ¢ 2 p appears in PE"(F) = [[T4. If T4 # 0 and

g B p thenTy ® R/p =0forifr € p,r ¢ q, then Ty SN Ty is an isomorphism

and R/p 5 R/p is zero. So PE"(F) ® R/p = 0. But by the change of rings
theorem above, 0 - F ® R/p — PE°(F) ® R/p — --- is a minimal right Pdnj-
resolution of F ® R/p over R/p. So by minimality, if PE"(F) ® R/p = 0 then
PE"1(F)® R/p = 0. But the latter is not possible if p appears in PE"T1(F). O

Definition 8.5.9. The coheight (coht) of a prime ideal p is the supremum of the
lengths of strictly increasing chains p = po C p1 C --- C ps of prime ideals. It
follows from the definitions that coht p = dim R/p and htp + cohtp < dim R (see
Definition 2.4.13).

Corollary 8.5.10. If 7, (p, F) # 0, then cohtp > n.

Proof. m,(p, F) # 0implies that there is a prime ideal g1 2 p such that 7,1 (g1, F)
# 0 by Proposition 8.5.8. One then repeats this argument to get a chain p £ g1 &

-

g2 € -+ € q, of prime ideals. m|

Remark 8.5.11. If dim R = n < oo, then 7, (p, F) # 0 implies that p is a minimal
prime ideal of R by the Corollary above since in this case cohtp = dim R = n and
sohtp = 0.

Corollary 8.5.12. [fdim R < oo, then glright Pdnj- dim Flat < dim R.

Proof. Suppose n > dim R. Then cohtp < dim R < n for each p € Spec R. So
if F € Flat, then m,(p, F) = 0 for all p € Spec R by Corollary 8.5.10. Thus
PE"™(F) = 0. Hence right Pdnj-dim F < dim R. O
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Proposition 8.5.13. Let d = glleft Proj-dim Flat. If d < oo, then
d = sup{left Proj-dim Ry : p € Spec R}.

Proof. Let G € Flat. Then Ext? (G, F) # 0 for some flat R-module F by The-
orem 8.4.12 and so PE4(F) # 0. But PE4(F) = [17p. Now let p be the
minimal such that 7, # 0. Then Iép is a direct summand of T} and so the corre-
sponding anCCtIOH in Hom(Rp, PEd(F)) gives a nonzero element of Extd(Rp, F).
Let the map Rp — PE4 (F) be restricted to Rp. We claim this gives a nonzero
element of Ext? (Rp, F). For if Ext? (Rp, F) = 0, then the map R, — PEY(F)
has a factorization R, — PE?~Y(F) — PE?(F). Now extend the map Ry, —
PE d_l(F ) to Iép. But by the minimality of p, this extension is unique by Propo-
sition 6.7.8 and Remark 6.7.5 and so Ext? (Iép, F) = 0, a contradiction. Hence
Ext? (Rp, F) # 0. But left Proj-dim Ry < d since Ry is a flat R-module. Hence
sup{left Proj-dim Ry} = d. |

Corollary 8.5.14. If p is minimal such that d = left Proj-dim Ry, then cohtp > d.

Proof. If p is minimal such that Ext? (Rp, F) # 0 for some flat R-module F, then
w4 (p, F) # 0 by the proof of Proposition 8.5.13. But then cohtp > d by Corol-
lary 8.5.10. o

Corollary 8.5.15. Suppose R is a domain and K is its field of fractions. If
left Proj-dim K < dim R < oo,

then glleft Proj-dim Flat < dim R.

Proof. As noted in Remark 8.5.11, if n = dim R and F is flat, then 7, (p, F) # 0
implies p is minimal. Thus p = 0. But then left £roj-dim K < coht0 by Corol-
lary 8.5.14 and so we are done. O

By Proposition 6.7.3, PE(R) =[] Ry over all maximal ideals m of R. So

1 ifp=m
mo(p. R) = {0 if p#£m

Therefore, 771 (m, R) = 0 by Theorem 8.5.7 above. So if 771 (p, R) # 0, then p # m
and cohtp > 1 by Corollary 8.5.10.

The following proposition characterizes which prime ideals of height 1 do not ap-
pearin PE(R).

Proposition 8.5.16. Ifp is a prime ideal of R of coheight 1, then w1 (p, R) = 0 if and
only if p is contained in a unique maximal ideal w of R such that Ry ® k(p) = k(p).
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Proof. Let0 — R — PE°(R) — C — 0 be exact so that PE®(C) = PE'(R).
Then 71 (m, R) = 0 for all maximal ideals m by the above. So if PE®(C) = [] T,,
then 7w = O for each m. Hence T = ép for any prime p of coheight 1 by Theo-
rem 6.7.9. But ép = 0 if and only if C ® k(p) = 0. So 71(p, R) = 0 if and only
ifC ®k(p) =0. But0 > RQ® k(p) — (]_[ﬁm)@)k(p) - C Q®k(p) > 0is
exact. So dimy ) (] ] Ruy) ® k(p) = 1. Thus Ry ® k(p) has dimension 1 for exactly
one maximal ideal mt and so p C w for this m. For any other maximal ideal m,
Ru ® k(p) = 0and so p ¢ m. This completes the proof. |

Lemma 8.5.17. Let I be a nilpotent ideal of R and M be an R-module. If F is a
flat R-module and ¢ : N — F is such that the induced map M/IM — F/IF isan
isomorphism, then @ is an isomorphism.

Proof. Nakayama Lemma implies ¢ is surjective. So Ker ¢ is a pure submodule of
M since F is flat. But Ker¢p C IM andso I Ker¢ = Kerp N IM = Ker ¢. Hence
Kergp = 0. O

Remark 8.5.18. Let / be an ideal of R. If I C p for a prime ideal p of R, then the
identification ﬁp /1 IQP ~ (@ )p/1 and Proposition 6.7.11 show that T, ® R/ is the
completion of a free (R/I),,7-module. The identification 7}, ® k(p) = (T,/1Tp) ®
k(p/I) shows that the free (R/I),,7-module in question has a base having the same
cardinality as that of the base of the free module whose completion is 7}. That is, if
F is aflat R-module and I C p, then 7w, (p/1, FQ R/I) = m,(p, F) foreachn > 0.

We also note that if / ¢ p, then T, ® R/I = 0. Butif I C p, then ﬁp is complete
in the 7-adic topology. So a pure injective flat module F = [] T}, will be complete if
Tp = 0 whenever I ¢ p.

These remarks give the following result.

Proposition 8.5.19. If for each n > 1, F, is a pure injective flat R/I"-module and
Fn4+1 — Fy, are surjective maps with kernels 1™ Fy, 11, then 1(1111 Fy is a pure injective
flat R-module.

Proof. Let Fy = [[ T, (over primes ideals p of R such that / C p) where each
Ty 1 is the completion of a free (R/I),,r-module. From the remark above, we can
construct a pure injective flat R-module F' = [[ Ty (for p D I) and an onto map
F — Fp, with kernel I FF. We now consider

F/I’F

Ve
Ve
e
Ve
yz

F1

P

and we apply Lemma 6.7.13 to get a map F — F, which can be used to make
the diagram above commutative. By Lemma 8.5.17, F/I"F — F, is an isomor-
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phism. We repeat the argument and get a map F — lim F}, inducing an isomorphism

F/I"F — F, for each n. But then, F is complete with respect to the [ -adic topol-

ogy. Hence F =~ lim F/I"F andso F =~ lim F/I"F = lim F},. m|
<« <« <«

Remark 8.5.20. Note thatif F' = 1<£n Fy, in the above is written as [ [ 7, then T, = 0
if I ¢ p. Moreover, if for any n, F,, = [[ Sp/7» where each Sy, ;» is the completion
of a free (R/1"),/rn-module, then T, ® R /1™ = S, 1». Hence the bases of the free
modules whose completions are T} and S,,/7» have the same cardinality.

Theorem 8.5.21. Let I C R be an ideal such that R/1 has finite Krull dimension.
If R is complete with respect to the I-adic topology, then for any prime p of R and
n >0, 7, (p, R) # 0 implies I C p (and so 7wy, (p, R) = 7w, (p/1, R/I)).

Proof. We consider the rings R/I" for n > 1 and their minimal right Pdnj-resolutions
over themselves. By the Change of rings theorem 8.5.1, we can identify the se-
quence 0 — R/I"*1' ® R/I" — PE°(R/I"t!) ® R/I™ — --. with the sequence
0 — R/I" — PE°(R/I") — ---. Thus we have surjective maps PE*(R/I1"*1) —
PE!(R/I™) with kernels 1" PE*(R/I"*1) making the obvious diagram commuta-
tive.

We wish to show that the sequence 0 — lim R/I"(= R) — lim PE°(R/I") —
- -+ is a minimal right $dnj-resolution of R. We first consider the short exact sequence
0 - R/I" — PE°(R/I") — C, — 0. Since R/I"™!' — R/I" is surjective
for each n, the sequence 0 — R — lim PE°(R/I") — 1limC, — 0 is exact by
Theorem 1.6.13. But C, -1 — C,, is also surjective for each n > 1. Hence we repeat
the argument to get that the sequence is exact. Furthermore, each l(ln PE!(R/I")is
flat and pure injective by Proposition 8.5.19.

But if the Krull dimension is finite, say d, then m; (p/I", R/I™) = 0 for all n
and all i > d by Corollary 8.5.12. So the sequence 0 — R — 1(£1 PE°(R/I") —

R Lln PE4(R/I™) — 0 is exact. Hence it is pure exact since all the modules in
the sequence are flat. Finally note that each module in the sequence satisfies (a) and
(b) of Theorem 6.7.17. (a) follows from pure exactness, and for I C p, (b) follows
from k(p) = k(p/I) and the fact that the resolution of R/I is minimal. If / ¢ p,
then 7, = 0 and so there is nothing to prove. So each module l(in PEY(R/I"™) is
a pure injective envelope by Theorem 6.7.17. Hence the sequence is minimal. This
completes the proof. m|

Corollary 8.5.22. right Pdnj-dim g, R/I = right Pdnj- dim g R.

Proof. Suppose right Pdnj-dim gR = n, then w,(p,R) # 0. So I C p and
wn(p/1, R/I) # 0 by the theorem above. Hence

right Pdnj-dim g R < right Pdnj-dim g/ R/ 1.

Thus the result follows from Corollary 8.5.2. m|
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Corollary 8.5.23. If R is complete with respect to the I-adic topology and p C R
is a prime ideal such that contp = 1 and I ¢ p, then p is contained in a unique
maximal ideal m and Ry ® k(p) = k(p).

Proof. Since I ¢ p, m1(p, R) = 0 by the theorem. Then the result follows from
Proposition 8.5.16. m|

Remark 8.5.24. The first part of the conclusion of Corollary 8.5.23 holds without
assuming that R// has finite Krull dimension. For [ is contained in the radical of
R and so R is a Zariski ring with the 7-adic topology. Thus p is a closed ideal and
D = R/p is a one-dimensional Noetherian domain which is complete in the 7-adic
topology where I is the image of /. So I is in the radical of D. Hence D is semilocal
and complete in the topology determined by its Jacobson radical. But then D is the
product of local rings by Theorem 2.5.20. So D is local since D is a domain. Thus p
is contained in a unique maximal ideal.

Lemma 8.5.25. If F is a flat cotorsion R-module, then for each p € Spec R,
k(p) ® Hom(Ryp, F) = k(p) ® Hom(Ryp, F) = k(p) ® Tp.
Proof. By Theorem 5.3.28, F = [[ T4 over g € Spec R. So
Hom(lép, F) = 1_[ Hom(ép, Ty).
But Ty =~ Hom(E (k(q)), E(k(q))™X)) for some set X. So
Hom(Rp, F) = [ [Hom(R, ® E(k(a)), E(k(a)™).

But Iép ® E(k(q)) = E(k(q)*) for some set Xq by Lemma 6.7.7. So
Hom(Rp, [[74) = [[74°. But then Hom(Rp, F) == []c, T by Proposition

6.7.8. Now let S C k(p) be finitely generated. Then S®][],, quq =~ [T(S®T4)%e.

Butif g € p,letr € p, r ¢ g. Then multiplication by r is zero on S and is an au-

tomorphism on 7. Hence S ® T4 = 0 and S ® [[,cp Tqu ~S5SQ® TpX". Thus

X X . 5
k(p) ® ]_[qu Tq® = k(p) ® Ty °. Butif g = p, then Ry ® E(k(p)) = E(k(p))
and so Card X, = 1. Thus half of the result follows.
If ¢ S p, then Ry ® E(k(q)) = 0 as in the proof of Lemma 6.7.7. If ¢ C p, then
Rp® E(k(a)) = E(k(g))- Sok(p) @Hom(Ry, F) = k(D) ®[[qcp Ta = k(D) QT
as in the above. i

Proposition 8.5.26. The complexes obtained from the minimal right Pdnj-resolution
of a flat R-module by applying the functors

k(p) ® Hom(ﬁp, —) and k(p) ® Hom(Rp, —)

are the same and have zero differentiation.
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Proof. Let F be a flat R-module. Then PE"(F) = [[TZ, over ¢ € Spec R, where
T3 denotes the Tg at the nth place in the minimal right JJnj-resolution of F'. If we
apply either of the functors to the resolution, we get the complex 0 — k(p) ® TI? —
k(p) ® Ty — --- by Lemma 8.5.25.

As in the lemma, Hom(Ry, F) = ]_[qu Ty'. So applying Hom(Rp, —) to the
minimal right $Jnj-resolution, we get a map [[,c, Tq — ]_[ZSJ But by Proposi-
tion 6.7.8, Hom(]_[qu Ty, T;’H) = 0. So passing to quotients, that is [ [,c, T
Hqu Ty = Ty, we getamap T — T{,’“. Thus we have a commutative diagram

n n+1
TD TD

| |

k(p) ® T} — k(p) @ T)*!

with the bottom map the map of our complex.
If this map is not zero, let x € 7} have a nonzero image in k(p) ® T;l"'l. Then

xﬁp will be a direct summand of T;’ which is mapped isomorphically onto a direct
summand of T;’“. So xﬁp C Hqu T, will be mapped isomorphically onto a direct

summand of Hqu T(;'Jrl by Proposition 6.7.8. This contradicts the minimality of the
right $dnj-resolution. O

We are now in a position to prove the following result.

Theorem 8.5.27. The following are equivalent for an integer n > 0:

(1) glright Pdnj-dim Flat < n.

(2) glleft Proj-dim Flat < n.

(3) left Proj-dim Iép <n forall p € Spec R and glright Pdnj- dim Flat < oc.

(4) The subcomplex Hom(ﬁp, PE"(F)) — Hom(ﬁp, PE" Y (F)) — --- is pure
exact for all p € Spec R and all F € Flat.

(5) left Proj-dim Ry < n for all p € Spec R and glleft Proj - dim Flat < oo.

(6) The subcomplex Hom(Ry, PE™(F)) — Hom(Ry,, PE"TY(F)) — --- is pure
exact for all p € Spec R and all F € ¥lat.

Proof. (1) < (2) is part of Theorem 8.4.12.

2) = (3). ﬁp is flat and (2) = (1). So (3) follows trivially.

(3) = (4). Let right Pdnj-dim F = m. If m < n, then (4) follows trivially. If
m > n, then

m—1

Hom(R,. PE"(F)) — Hom(R,, PE"*'(F)) — ---°— Hom(R,, PE™(F)) — 0
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is exact since left Proj - dim ﬁp < n recalling that Hom(—, —) is right balanced on
Flat x Flat by Proj x Pdnj (see Example 8.3.4). But

Hom(R,, PE™ 1 (F))/Kero™ ! = Hom(R,, PE™(F))

is flat, being a product of T,’s (see proof of Lemma 8.5.25). Hence Kero™ ! is a
pure submodule and so is flat since Hom(ﬁp, PE™~L(F)) is likewise flat. We now
proceed in this fashion to get the result.

(4) = (1). We apply k(p) ® — to the pure exact subcomplex in (4). Then by
Proposition 8.5.26 above, we get an exact complex k(p) ® T} — k(p)® T];"H — ..
with zero differentiation. Thus k(p) ® T; = 0 fori > n and hence Txl; =0fori > n.
This is true for each p € Spec R and thus PE'(F) = 0 fori > n.

(2) = (5). Same proof as (2) = (3) since Ry is flat.

(5) = (6). Same proof as (3) = (4) since Hom(Ry,, PE'(F)) is also flat.

(6) = (1) A similar proof to (4) = (1). O

Corollary 8.5.28. If R has finite Krull dimension, then the following integers are
equal:

(1) glright Pdnj- dim Flat.

(2) glleft Proj-dim Flat.

(3) sup{left Proj-dim Ry : p € Spec R}.

(4) sup{left Proj-dim Iép 1 p € Spec R}.

Furthermore, this common integer is at most dim R.

Proof. The result follows from Theorem 8.5.27 above and Corollary 8.5.12. It also
follows directly from Corollary 8.4.13, Corollary 8.5.12, and Proposition 8.5.13 and
its proof. m|

Remark 8.5.29. left roj-dim R, = i with Txl; = 0 for all flat modules can occur.
For example, when R = Z and p € Z is prime, left Proj-dim Z,) = 1 but T)p1 =0
for all torsion free groups G.

We now characterize perfect rings by letting n = 0 in Theorem 8.5.27. But first we
need the following result.

Lemma 8.5.30. Let R be local and F be a free R-module with infinite base. If F is
complete, then the maximal ideal w is nilpotent.

Proof. Suppose m is not nilpotent. Then m 2 m? 2 ---. Letr; € m’ — mi*! and
(xi), 1 € N be the base of F. Let y, = 2?21 rix;j. Then (y,) is a Cauchy sequence
which does not converge in F. Forif y =limy, € F,lety = Z?Ll a;x;. Letn be
so large that y, —y € mFF = 2 m¥x; where k = max(m + 1,n + 1). But then
Vn € m¥ which is impossible since k > n. m|
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Theorem 8.5.31. The following are equivalent for a ring R:

(1) Every flat R-module is pure injective.

(2) Every flat R-module is projective (R is perfect).

3) Rp is projective for each p € Spec R and gl right Pdnj- dim Flat < oo.

(4) 0 — Hom(Ry, F) — Hom(R,, PE°(F)) — Hom(R,, PEY(F)) — --- is
pure exact for all p € Spec R and all F € ¥lat.

(5) Ry is projective for each p € Spec R and glleft Pdnj- dim Flat < oo.

(6) 0 — Hom(Ry, F) — Hom(Ry, PE°(F)) — --- is pure exact for all p €
Spec R and all F € Flat.

(7) The pure injective envelope of every flat module is projective.

(8) The pure injective envelope of every free module is projective.

(9) dimR = 0.

Proof. (1) through (6) follow from Theorem 8.5.27.

(1) = (7) since PE(F) is flat for any flat F.

(7) = (8) is trivial.

(8) = (9). Let F = RX) Then PE(F) = [] Fu, over maximal ideals m, by
Remark 6.7.12. So if PE(F) is projective, then Ry is projective and thus free for
each maximal ideal mt. Now let X be infinite. Then by Lemma 8.5.30, the maximal
ideal of Ry, is nilpotent for each maximal ideal mt of R. Hence dim R = 0.

(9) = (1) follows from Corollary 8.5.12. |

Exercises

1. Argue that a ring R is self pure injective if and only if Ext}Q (F,R) = 0 for all
flat R-module F.

2. Let F be a flat R-module. Prove that the map F® R" — PE(F)® R’ in Theorem
8.5.1 satisfies part (b) of Theorem 6.7.17.

3. Prove that if F is a pure injective flat R-module, then F ® R/ is a pure injective
flat R/ I-module.

4. Prove Corollary 8.5.28.

5. Prove thatif F is a flat R-module, then 0, (p/ I, F/IF) = 7, (p, F) for all prime
ideals p such that I C p.

6. Prove that if left Proj-dim R, < n and dim R < oo, then T; =O0foralli > n.
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8.6 A and u-dimensions

In this section & will be a class of R-modules, and we will assume ¥ is closed under
finite direct sums.

We will be concerned with the question of when a module M has an ¥ -precover
¢ : F — M and also when Ker ¢ has an ¥ -precover G — Ker ¢. When this is the
case, we see that for H € ¥, Hom(H,G) — Hom(H, F) - Hom(H, M) — 0 is
an exact sequence.

The A-dimension of M (relative to &) will tell us how long we can continue this
procedure. If M is a left R-module, we will define A ¢ (M) (or we will write A(M)
when ¥ is understood) to be either an integer n > —1 or oco.

Definition 8.6.1. A finite subcomplex F, — --- — Fy —> M — 0 of a left ¥ -
resolution of M is called a partial left ¥ -resolution of M of length n. Partial right
resolutions are defined similarly.

We say A(M) = —1 if M does not have an ¥ -precover. If n > 0 we say that
A(M) = n if there is a partial left ¥ -resolution F, — -+ — F; — Fgp > M — 0
of M of length n and if there exists no longer such complex. We say A(M) = oo if
there exists a partial left ¥ -resolution for every n > 0.

If A(M) = oo, it is natural to ask whether there is an infinite left ¥ -resolution
o> — F1 — Fg > M — 0 of M. We will show that this is indeed the case.

Lemma 8.6.2. If M is a left R-module and F € ¥, then F & M has an ¥ -precover
if and only if M has an ¥ -precover.

Proof. If G — M is an ¥ -precover, thensois F& G — F & M.
Conversely if ¢ : G — F @& M is an ¥ -precover, then sois mp o ¢ : G — M with
7wy 1 F @& M — M the projection map. O

In the language above, this result says A(F @& M) > 0 if and only if A(M) > 0.
We will use this to prove that in fact A(F & M) = A(M).

The next result is called Schanuel’s Lemma when ¥ is the class of projective mod-
ules.

Lemma 8.63. If F — M and G — M are ¥ -precovers with kernels K and L
respectively, then K 8 G =~ L @ F.

Proof. We consider the pullback diagram

7

F — >
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By the definition of a precover, there is a factorization G — F — M of the map
G — M. This means that P — G has a section by the property of a pullback and so
P =~ K & G since Ker(P - G) = Ker(F — M) = K. Similarly P =~ L & F and
SOLOF=KaG. m|

Corollary 8.64. Letn >0and Fy - - — Fy > Fy > M - 0and G, — --- —
G1 — Go > M — 0 be partial left ¥ -resolutions. If K = Ker(Fy, — Fy—1) (or
Ker(Fp — M) ifn = 0) and L = Ker(G,, = Gy—1) (or Ker(Gog — M) ifn = 0),
then

KeG®F1® - =Z2LOF,®Gp—1®---

Proof. By induction on n. If n = 0, this is the preceding result. So we assume n > 0.
Then we have the complexes F;, — F,—1 — -+ = F, — F| & Gog — Ker(Fy —
M)® Gy — 0and G, - Gy—1 — -+ —> G2 > G1 ® Fy — Ker(Gyg > M) &
Fo — 0 which are Hom(¥', —) exact and which have F;,, Gy, ..., Fa, G2, F1 & Gy,
G ® Fop e . AlsoKer(Fp - M) & Gy = Ker(Go — M) & Fy by the previous
result. Then an appeal to an induction hypothesis gives the result. m|

Proposition 8.6.5. If F € &, then A\(F & M) = A(M).

Proof. We prove that forn > —1, A(F & M) > n if and only if A(M) > n. This is
trivial if n = —1 and is true for n = 0 by Lemma 8.6.2. So we proceed by induction
and letn > 0.

Suppose A(M) > n. If F, — --- — Fy — M — 0 is a partial left ¥ -resolution,
then we see from the complex F & F,, —» -+ > F & Fy - F & M — 0 that
AF & M) >n.

Conversely suppose A(F @& M) >nand G, — --- > Gg > FH M — Oisa
partial left  -resolution of F @& M. We know A(M) > 0 and so let Fop — M be an
F -precover with kernel K. Let L = Ker(Go - F@ M). Then F® Fo — F® M is
also an ¥ -precover with kernel K. So L @ F @ Fyp = K & Gy by Lemma 8.6.3. But
clearly A(L) >n—1andso A(L & F & Fy) > n— 1. Butthen A(K & Go) > n —1
gives A(K) > n — 1 by induction. Hence A(M) > n. O

Proposition 8.6.6. IfA(M) >n >k >0and Fy, — -+ - Fp > M — Oisa
partial left  -resolution of M, then A(K) > n —k — 1 where K = Ker(Fy — Fr_1)
and F—y = M. In particular if \(M) = n, then A(K) =n —k — 1.

Proof. Since A(M) > n, there is a partial left ¥ -resolution G, — --- — Go —
M — 0. Let L = Ker(Gry — Gg_1). Then A(L) > n — k — 1. By Corollary
8.64, wehave LD F;, ®Gr_1 ® - = KD Gy & Fj_1 & -+ and so we see that
A(L) = A(K) by Proposition 8.6.5. Hence A(K) > n —k — 1. O
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Corollary 8.6.7. If A(M) = oo then there is an infinite left ¥ -resolution
o> Fp—>F— Fy— M — 00of M.

Proof. If n > O0and F;, — --- - Fy — M — 0 satisfies the usual conditions and
K = Ker(F, — F,—1), then A(K) = oo. So this complex can be extended to a
complex F, 41 — F, — --- —> Fp = M — 0 satisfying the conditions. Continuing
this way we get the desired complex. |

Lemma 8.6.8. If M; — M, is a linear map such that Hom(F, M{) — Hom(F, M>)
is an isomorphism for all F € ¥, then A(My) = A(M53).

Proof. If A(My) > nand F;, — --- — Fyp — My — 0 is a partial left ¥ -resolution,
thensois F, — -+ — Fy — My — 0 with Fy — M, the composition Fy —
My{ — M;. Hence A(M3) > n.

IfA(M3) > nand F, —» --- > Fy — M, — 0 is a partial left resolution, then
by hypothesis, Fy — M5 has a lifting Fy — M; (so Fy — M> is the composition
F() — Ml — Mz).

Then we see that F; — Fo— M is a complex since Hom(F, M;) —Hom(Fy, M>)
is an isomorphism and F; — Fyp — M, is 0. Hence F;, — --- — F] — Fy —
M1 — 0 is a complex. Our hypotheses guarantee it is Hom(¥ ', —) exact. Hence
A(M7) > n. Hence we can conclude A(M1) = A(M>). O

In the next theorem we will consider complexes 0 - M’ — M — M" — 0 of
modules which are Hom(¥ ', —) exact. We note that in this case, if K = Ker(M —
M) then M’ — K is such that Hom(F, M’) — Hom(F, K) is an isomorphism for
all F € ¥ andso A(M') = A(K) by Lemma 8.6.8.

Theorem 8.6.9. Let0 — M’ — M — M"” — 0 be a Hom(¥F , —) exact complex of
left R-modules, then

(1) AM") > min(A(M") + 1, A(M))
(2) A(M) > min(A(M"), A(M"))
(3) A(M’ > min(A(M), A\(M") — 1).

Proof. We prove (1). We only need prove that if n > —1 is an integer and min(A(M ')+
1,A(M)) > n, then A(M"”) > n. If n = —1, this is trivially true. If n = 0, then
A(M) > 0 means M has an ¥ -precover F — M. By hypothesis, Hom(G, M) —
Hom(G,M")— 0 is exact if G € F. So Hom(G, F) —Hom(G, M) —Hom(G,M")
is surjective. Thus F — M” is an ¥ -precover and so A(M") > 0.

We now suppose n > 0. We have A(M’) > n —1> 0and A(M) > n. So we have

partial left  -resolutions F, _; — -+ — Fj > M' — 0and F, > F,—1 — --- —
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Fy — M — 0. Hence we have a commutative diagram

Fjy — o — F} AI 0
Fy, —— Fy Fo M 0
This diagram gives rise to the complex F, ® F,_;, — F1 ® F,_, — -+ —
FiI®F,— FpeM — M —0.
But then we have a commutative diagram
0 0 M’ M’ 0

| b

F,®F —>~'—>F1€BF6—>FOEBM/4>M4>O

n—1

| | .

Fp®F , —> - —> F & F Fo M" 0

We now apply the additive functor Hom(F, —) with any F € % to all the dia-
grams above. Then by Proposition 1.5.14 and our previous remarks, we see that
FL,®F _, > F,®F,_,—> - — FI®F;—> Fp—> M" — 0is Hom(¥, —)
exact. Hence A(M") > n.

The proof of (3) is similar. We need to argue that if min(A(M),A(M") — 1) > n,
then A(M’) > n. We can assume n > 0. Then we get a commutative diagram

F, e Fo M 0
F,//l/+1 F;;/ . F(;/ M// 0

and the complex F,', , & F, — - — F{'® Fo — Fj @ M — M" — 0. But then
we get a commutative diagram

F’;'+169Fn *>~~*>F1”69F0*>F6’EBM*>M”*>O

| | .

0 0 M M 0
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The kernel of the corresponding map of complexes is the complex F,’ 11 ® Fn —
o+ — F/'® Fy - P — 0 where P = Ker(Fj @ M — M"). So

P——sM

L

Fél M/l

is a pullback diagram. Hence by our hypothesison 0 - M’ — M — M" — 0, we
see that the map Fj' — M" has a lifting Fj' — M. But by the property of a pullback
this means P — F has a section. Hence P = Fj @ K where K = Ker(M — M").

But as in the argument for (1), we see that F,, @ F,, — --- — F'@Fy — P — 0
is Hom(¥ ', —) exact. This means A(P) > n. Butsince P = Fj & K we get that
A(K) > n by Proposition 8.6.5. But then by Lemma 8.6.8, we get A(M') > n.

We now prove (2). We assume A(M'), A(M") > n > 0 and argue A(M) > n.
LetF, - -+ > F; > M — 0and F,/ - --- — FJ — M" — 0 be partial left
F -resolutions of M’ and M" respectively. Then by the Horseshoe Lemma 8.2.1, we
get a partial ¥ -resolution of M of length n. Hence A(M) > n. |

Remark 8.6.10. When ¥ is the class of finitely generated projective modules, then
a short complex 0 - M’ — M — M"” — 0 is exact if and only if it is Hom(¥ , —)
exact. In this case A(M) > 0 if and only if M is finitely generated and A(M) > 1 if
and only if M is finitely presented. These A-dimensions are defined in Bourbaki [29,
page 41] and Theorem 8.6.9 corresponds to their Exercise 6.

Definition 8.6.11. For a module M, we define A(M) (or A#(M)) to be —1 if M
does not have a special ¥ -precover. If there is an exact sequence F;, — --- —
Fo - M — 0 where Fp > M, F; — K;_; (where K; = Ker(Fp — M) and
K; = Ker(F;—1 — F;j—p) fori > 1) are special precovers and if there is no longer
such sequence, we write )_k(M ) = n. We say /_\(M ) = oo if there is such a sequence
foreachn > 0.

The proofs of several results concerning A-dimensions are straightforward modifi-
cations of the corresponding results about A-dimensions. These include Propositions
8.6.5, 8.6.6 and Corollary 8.6.7.

Proposition 8.6.12. If ¥ is such that A(M)) > 0 implies A(M) > 0 for all R-modules
M, then A(M) = A(M) forall M.

Proof. Clearly A(M) > A(M). So we argue that A(M) > n implies A(M) > n
for n > 0. By hypothesis, this is true if » = 0. So suppose A(M) > n > 0.
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Then we have )_L(M ) > 0 and so let F — M be a special precover with kernel K.
Then by Proposition 8.6.6, A(K) > n — 1. So A(K) > n — 1 by induction. Hence
A(M) > n. m|

Theorem 8.6.13. If0 — M’ — M — M" — 0 is an exact sequence, then
AM") = min(A(M') + 1, A(M)).

Proof. The argument is a straightforward modification of the proof of (1) of Theorem
8.6.9. O

Theorem 8.6.14. If0 — M’ — M — M" — 0 is exact and Hom(¥ , —) exact, then
A(M) = min(A(M"), A(M")).

Proof. This argument is like that for (2) of Theorem 8.6.9. m|

Definition 8.6.15. The class F is said to be resolving if ¥ contains all the projective
modules, % is closed under extensions and if whenever 0 - F' — F — F” — 0is
exact with F, F” ¢ ¥, F'isalsoin ¥.

Theorem 8.6.16. If ¥ is resolving and 0 — M’ — M — M" — 0 is an exact
sequence of modules, then

A(M') = min(A(M), A(M") — 1).

Proof. We prove by induction on n that if A(M) > n and A(M"”) > n + 1 then
A(M’) > n.

Letn = 0. SoA(M"”) > 1 and A(M) > 0. Then let 0 — K{ — F — M" — 0,
0> K{ = F/ - K{ — 0,and 0 - K9 — Fp — M — 0 be exact sequences
with Ko, K{, K| € FL and F§.F{',Fp € ¥. Then we can construct a pullback
H (withmaps H — M and H — Fj) of M — M"” and Fj — M" and get
a commutative diagram with exact sequences 0 — Kj — H — M — 0 and
0—>M —H— Fj —0.

Since K|} € '+, the sequence 0 — K — H — M — 0is Hom(¥, —) exact. So
by Horseshoe Lemma 8.2.1,we get exact sequences 0 - K — F'@® Fp - H — 0
and 0 - K| - K — Ko — 0 with K € FL since K{, Ko € FL. Therefore,
we can now form the pullback of M" — H and F|' @ Fo — H to get the following
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commutative diagram

/

0 —— F —>F1”EBF0—>F6/—>O

0 M’ H FJ 0

0 0

with exact rows and columns. Since F|' @ Fo, F} € ¥ and ¥ is resolving, F' € ¥ .
As noted above, K € ¥+. Hence F/ — M’ is a special ¥ -precover and so
A(M’) > 0.

Now assume n > 0 and use the construction above. Then by the exactness and
Hom(¥', —) exactness of 0 — K| — K — Ko — 0 (K] € FL gives the
Hom(¥ , —) exactness), we get A(K) > min(A(K7), A(Ko)) by Theorem 8.6.14. But
min(A(K D, A(Ko)) = n — 1 by the A-dimension counterpart of Proposition 8.6.6
(or we can assume we chose K| and Ko so that the inequality holds). But then
A(K) > n — 1 implies A(M’) > n. O

Remark 8.6.17. If ¥ is a class of left R-modules we can define the p-dimension of
a left R-module relative to ¥ (denoted pug (M) or w(M) if ¥ is understood) with
the definition dual to the definition of the A-dimensions above. So ug(M) = —1
means that M does not have an ¥ -preenvelope and g (M) = n with 0 < n < oo
means there is a complex 0 — M — F% — ... — F" with each F' € ¥ such
that if G € ¥, Hom(—, G) makes the complex exact and that there is no longer such
complex. Then ¢ (M) = oo will mean there is such a complex for every n > 0.

We will not state them but only note that all of the definitions and results for A-
dimensions have their counterpart concerning p-dimensions (or ft-dimensions). For
each of these the proof is just the dual of the proof of the corresponding result.

Exercises

1. Prove thatif M = M’ & M”, then A\(M) = min(A(M’), A(M")).

2. Let ¥ = J’rojfg and My, M> be submodules of an R-module M such that
A(M;) = 0 fori = 1,2. Prove that A(M; + M>) > 0 if and only if A(M; N
M>) > 0.
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3. Prove thatif F € %, then A(F @ M) = A(M).

4. Suppose)_t(M) >n>k>0and F, > Fp_;y - -+ —> Fp > M — 0Oisa
partial left ¥ -resolution where Fp — M and F; — F,-__1 for i > 0 are special
F -precovers. Prove that if K = Ker(Fy — Fr_1),then A(K) >n —k — 1.

5. Prove that if A (M) = oo, then there is an infinite left % -resolution - -- — F; —>
Fp - M — 0of M where Fy —- M and F; — F;_; fori > 0 are special
F -precovers.

6. Prove Remark 8.6.10.
7. Prove Theorem 8.6.13.
8. Prove Theorem 8.6.14.
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Iwanaga—Gorenstein and Cohen—Macaulay Rings
and Their Modules

In this chapter we will show that the property of being Iwanaga—Gorenstein or Cohen—
Macaulay imposes nice conditions on the homological properties of modules over
such rings.

9.1 Iwanaga—Gorenstein Rings

Definition 9.1.1. A ring R is called an Iwanaga—Gorenstein ring (or simply a Goren-
stein ring) if R is both left and right Noetherian and if R has finite self-injective
dimension on both the left and the right.

We will first consider these conditions on one side only.

Proposition 9.1.2. If R is left (right) Noetherian and the left (right) self-injective
dimension of R is n < oo, then injdim F' < n for every flat left (right) R-module.
And if flatdim M < oo for a left (right) R-module M, then projdim M < n.

Proof. We give the proof on the left. But injdimlim N; < sup{injdim N;} for any
inductive system of left R-modules since R is left Noetherian, and injdim P < n for
any projective left R-module since injdim g R = n. So the first claim follows since a
flat left R-module is the inductive limit of projective left R-modules.

Now let flatdimM < oo, m > n, and m > flatdimM. Thenlet 0 — F —
Py_1 — -+ —> Py - M — 0 be exact with Py, ..., P,—1 projective. Then F
is flat. But by the above, injdim F < m and so Ext” (M, F) = 0. This means that
id : F — F can be extended to P;,—; — F and so F is a summand of P,,—q. If
P,—1 = F & G, then we have a projective resolution 0 - G — Py — -+ —
Py - M — 0. SoprojdimM < oco. If m — 1 > n, then we repeat the procedure
with G replacing F. So we see that projdim M < n. |

Corollary 9.1.3. If F is a flat left (right) R-module, then projdim F < n.

Lemma 9.1.4. If M C N is a pure submodule of the left R-module N, then

flatdim M < flatdim N.
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Proof. If flatdim N = oo the result is trivial. So suppose flatdim N = n < oo. Let
G be any right R-module and 0 — § — P, — --- — Py — G — 0 be a partial
projective resolution of G.

Consider the commutative diagram

SOM —— P, @M

| |

0 — SN — P, ®N

The bottom row is exact since Tor,4+1(G, N) = 0. The two vertical arrows are in-
jections since M C N is pure. Hence 0 - S ® M — P, ® M is exact and so
Tory+1(G, M) = 0. Hence flatdim M < n. |

The lemma above has a right counterpart. When necessary, we will appeal to such
counterparts even though the result is stated for only one side.

Lemma 9.1.5. If R is left Noetherian and M C N is a pure submodule of the left
R-module N, then
injdim M < injdim N

Proof. We suppose that injdimn N = n < oo. Then Ext"*!(R/I, N) = 0 for all
left ideals / of R. Let0 - § — P, — --- - Py — R/I — 0 be a partial
projective resolution of R/I with Py, ..., P, finitely generated projective modules.
Since Ext"T1(R/I, N) = 0, we have Hom(P,, N) — Hom(S, N) — 0 is exact. But
since M C N is pure, a linear S — M has an extension P, — N if and only if there
is an extension P, — M. Hence Hom(P,, M) — Hom(S, M) — 0 is exact. This
means that Ext” (R /I, M) = 0 for all such / and so injdim M < n by Proposition
8.4.4. O

Proposition 9.1.6. Let R be left and right Noetherian and injdim gR = n < oo.
Then the following are equivalent:

(1) injdim R < oo.

(2) flatdim E < oo for all injective left R-modules E.

(3) flatdim E < n for all injective left R-modules E.

Proof. Suppose (1) holds. Let E be an injective left R-module. Then the character
module EV is a flat right R-module. So by Proposition 9.1.2, E™ has finite injective
dimension. But then ETT has finite flat dimension. Since E C E*T is pure by
Proposition 5.3.9, flatdim £ < flatdim £+ by Lemma 9.1.4. So flatdim E is finite
and so (2) holds.
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Now assume (2). Then RT is an injective left R-module and so has finite flat
dimension. Hence R has finite injective dimension and so Rg has finite injective
dimension by Lemma 9.1.5.

Thus (1) and (2) are equivalent. Then by Proposition 9.1.2, we see that (1), (2) and
(3) are equivalent. O

Proposition 9.1.7. If R is Gorenstein, then the following are equivalent for a left
R-module M :

(1) injdim M < oo.
(2) projdim M < oo.
(3) flatdim M < oo.

Proof. By Proposition 9.1.2 we see that (2) and (3) are equivalent and that (3) im-
plies (1).

To argue (1) = (3), let M have finite injective dimension. Then the right module
M ™ has finite flat dimension. So by (2) = (1) (on the right) we get that M T has
finite injective dimension. So M T has finite flat dimension. Then Lemma 9.1.5
gives that M has finite flat dimension. O

Proposition 9.1.8. If R is left and right Noetherian and injdim gR = m < oo and
injdim Rg = n < oo, then m = n.

Proof. Since injdim Rg = n, Ext" (M, R) # 0 for some finitely generated right R-
module M. Noting that Ext” (M, R) is a left R-module, we have Hom(Ext" (M, R),
E) # 0 for some injective left R-module E. But there are natural isomorphisms

Hom(Exts (M, R), E) = TorR(Hom(R, E), M) = Tor®(M, E)

and so Tor,lf (M, E) # 0. But by Proposition 9.1.6, flatdim g E < m. Hence m > n.
But the same type argument gives m < n and so m = n. m|

Definition 9.1.9. A Gorenstein ring with injdim g R at most n is called n-Gorenstein.
We note that in this case injdim Rpg is also at most n by the above.

Theorem 9.1.10. If R is n-Gorenstein, then the following are equivalent for a left
R-module M :

(1) injdim M < oo.
(2) projdim M < oo.
(3) flatdim M < oc.
(4) injdim M < n.
(5) projdim M < n.
(6) flatdim M < n.
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Proof. By Proposition 9.1.7, (1), (2) and (3) are equivalent and by Proposition 9.1.2,
(3), (5) and (6) are equivalent. And (4) = (1) trivially.

To prove (1) = (4),let0 - M — E® — ... - EK — 0 be an injective
resolution of a left R-module M. Then flatdim M+ < k and so flatdimM+ < n
by the equivalence of (3) and (6) on the right. But then injdim M ¥+ < n and so
injdim M < n by Lemma 9.1.5. This completes the proof. |

Theorem 9.1.11. The following are equivalent for a left and right Noetherian ring R:

(1) R is n-Gorenstein.

(2) The injective dimension of all left and right flat R-modules is at most n.

(3) The injective dimension of all left and right projective R-modules is at most n.
(4) The flat dimension of all left and right injective R-modules is at most n.

(5) The projective dimension of all left and right injective R-modules is at most n.

©6) If--- — P1 = Po — M — 0is a projective resolution of a left (right) R-mod-
ule M, then the subcomplex --- — P,4+1 — P, is a right ¥ lat-resolution.

D If0 - M — E° - E' — ... is an injective resolution of a left (right)
R-module M, then the subcomplex E" — E™T1 — ... is a left dnj-resolution.

Proof. The equivalence of (1), (2), (4), and (6) follows from Theorem 8.4.36.

(2) = (3) = (1) and (5) = (4) are trivial.

(4) = (5). Let E be an injective left or right R-module. Then there is an exact
sequence 0 - F, - Py,_; — -+ — P; — Py — E — 0 with P; projective and Fj,
flat by assumption. But projdim F;, < oo by Theorem 9.1.10 since (4) is equivalent
to (1). So projdim E < oo and thus projdim £ < n again by Theorem 9.1.10.

(5) © (7). We simply note that projdim E < n if and only if Ext' (E, M) = 0 for
alli >n + 1. O

We may now add the following to Corollary 8.4.37.

Corollary 9.1.12. Let R be left and right Noetherian. Then R is injective as a left
and right R-module if and only if every injective left and right R-module is projective.

Exercises

1. The copure injective dimension (cid) of an R-module M is the largest positive
integer n such that Ext" (E, M) # 0 for some injective R-module E. If M is
strongly copure injective, that is, Ext'(E, M) = 0 for all injectives E and all
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i > 0, wesetcid M = 0. Show that the following are equivalent for a left and
right Noetherian ring R.

(a) R is n-Gorenstein.
(b) cid M < n for all left and right R-modules M.

() f0->M — E® - E' - ... - E"1 5 C — 0is an exact sequence of
any left (right) R-module M with each E’ injective, then C is strongly copure
injective.

2. The copure flat dimension (cfd) of an R-module is the largest positive integer n
such that Tor, (E, M) # 0 for some injective R-module E. If there is no such
n, we set cfd M = 0 and we say M is strongly copure flat. State and prove the
counterpart of the exercise above for copure flat dimension.

3. An R-module M is said to be copure flat if Tor; (E, M) = 0 for all injective R-
modules E, and copure injective if Ext' (E, M) = 0 for all injective R-modules
E. Prove that the following are equivalent for a left and right Noetherian ring R.

(a) R is 1-Gorenstein.

(b) An R-module (left and right) M is copure injective if and only if it is strongly
copure injective.

(¢) Every copure injective R-module (left and right) is &-divisible.

(d) Every homomorphic image of a copure injective R-module (left and right) is
copure injective.

(e) Every h-divisible R-module (left and right) is copure injective.

(f) An R-module (left and right) M is copure flat if and only if it is strongly
copure flat.

(g) Every submodule of a copure flat R-module (left and right) is copure flat.

(h) Every submodule of a flat R-module (left and right) is copure flat.

4. Let R be a Noetherian local ring. Prove that if R is Gorenstein, then Ry is
Gorenstein for each p € Spec R.

9.2 The Minimal Injective Resolution of R

In this section, R will be a commutative Noetherian ring. We will study the injective
resolution of R when R is Gorenstein.

We recall from Section 3.3 that there is a bijective correspondence between the
prime ideals p of R and the indecomposable injective modules with p corresponding
to E(R/p). Also, each injective module E can be written uniquely, up to isomor-
phism, as a direct sum of such E(R/p)’s. If M is an R-module, then the cardinal-
ity of the summands of E*(M) isomorphic to E(R/p) in such a decomposition is
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denoted ;i (p, M). The invariants w;(p, M) are called Bass invariants. In several
results below we will consider these invariants under various change of rings.

If S C R is a multiplicative set, then ST'E(R/p) = 0if S Np # @ and
STYE(R/p) = Eg-1x(S7'R/S™!p)if S Np = @ by Theorems 3.3.3 and 3.3.8.

Lemma 9.2.1. If S Np = O for a prime ideal p of R and a multiplicative set S C R,
then for every R-module M, j; (p, M) = j1; (S~ 1p, S™IM).

Proof. This follows from the above and the fact that 0 — S™'M — S~1E®(M) —
ST'EY (M) — --- is a minimal injective resolution of the S~ R-module S~!M by
Remark 3.3.4. o

Lemma 9.2.2. Let M be an R-module and r € R be such that R L RandM 5> M
are both injections, and set R = R/(r). If0 - M — E°(M) — EY(M) — --- is
a minimal injective resolution of M and 0 — M — E°(M) — C — 0 is exact, then

0 — Hom(R, C) — Hom(R, E}(M)) — Hom(R, E*(M)) —> ---
is a minimal injective resolution of Hom(R, C) as an R-module. Furthermore
Hom(R,C) =~ M/rM.

Proof. We note that if 7 is a unit of R then R = 0 and M/rM = 0, and so the
result is trivial. So we assume r is not a unit of R. Then by the exactness of 0 —
R 5 R — R — 0, we see that projdim R = 1. Hence Ext'(R, M) = 0 fori > 2.
This implies the exactness of the sequence 0 — Hom(R, C) — Hom(R, E'(M)) —
Hom(R, E*(M)) — --- Also, each Hom(R, E2(M)) is an injective R-module for
i > 1. Since C is essential in E!(M), we see that Hom(R, C) C C is essential
in Hom(R, E}(C)) c E(C). Proceeding in this manner we see that in fact this
sequence is a minimal injective resolution of Hom(R, C) over R.
For the last claim we consider the commutative diagram with exact rows

0 — M — EM) —= C —= 0

ri ri ri
0 — M — EM) —=C ——= 0
Since M - M is an injection and M C E°®(M) is essential, E®(M) A EO%(M)

is an injection. But then the Snake Lemma gives the exact sequence 0 — Ker(C N
C) — Coker (M = M) — 0, that is, Hom(R, C) =~ M/rM. o

Corollary 9.2.3. Ifr € p is such that R L Rand M 5 M are both injections, then
wi(/(r), M/rM) = piy1(p. M).
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Proof. This follows from the fact that when R = R/(r), Homg(R, E(R/p)) is the
injective envelope of the R-module R/(p/(r) = R/p. i

Theorem 9.2.4. If M is an R-module and p C R is a prime ideal, then p;(p, M) =
dimy ) Ext’R13 (k(p), My) = dimy ) Extx(R/p, M)yp. In particular, if M is finitely
generated, |1 (p, M) < oo foralli > 0.

Proof. By Lemma9.2.1, we may assume R = Rj. Then given0 — M — E°(M) —
EY (M) — ---,let T; be the submodule of E* (M) annihilated by p. Then y; (p, M) =
dimy T; with k = R/p. Minimality guarantees that E* (M) — E'*T1(M) maps T;
to 0. Hence the complex

0 — Hom(k, E°(M)) — Hom(k, E'(M)) — -
has 0 differentiation. Hence Extﬂ,2 (k, M) = Hom(k, EX(M)) = T;. O

Definition 9.2.5. Let M be an R-module. Then a sequence ry, r3, ..., rg of elements
in an ideal / of R is called an M -sequence in I if (ry,...,rs)M # M and x; is not
a zero divisoron M/(ry,...,ri—1)M for 1 <i <s.Ifry,rp,--- is an M-sequence,
then (r1) C (r1,r2) C --- is a strictly increasing ascending chain of ideals in / and
thus must stop since R is Noetherian. So each M -sequence in / can be extended to a
maximal M -sequence in /. If M is finitely generated, then all maximal M -sequences
in I have the same length by Corollary 9.2.8 below. This length is called the depth of
M in I and is denoted by depth; M.

If R is a local ring with maximal ideal m, then the depth of M in m is called the
depth of M and is denoted by depthgp M.

Proposition 9.2.6. Let R be a local ring and let rq, . ..,rs be an R-sequence. Then
projdim R/(ry,...,rs) = s and Ext*(R/(r1,...,r5), M) # 0 for all finitely gener-
ated R-modules M # 0.

Proof. By induction on s > 1. If s = 1, then the exactness of 0 — R LR
R/(r1) — 0 gives projdim R/(r;) < 1. Butif M # 0, the exactness of

Hom(R, M) 0 Hom(R, M) — Ext'(R/(r1), M) — 0
and Nakayama Lemma give that Ext! (R/(r1), M) # 0. Hence in general
0— R/(r1s .. rs—1) = R/(r1,.. . rs—1) = R/(F1....7s—1,75) = 0

is exact and so by induction we see that projdim R/(ry,...,rs) < s. But then for a
finitely generated M # 0 we have that

ExtV(R/(r1, ... re—1, M) 2 Ext™V(R/(r1, . ... Fs—1), M)
— Ext*(R/(r1,...,r5),M) — 0
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is exact. So by the induction hypothesis, Ext* "1 (R/(r1,...,rs—1), M) # 0 and then
by Nakayama Lemma Ext*(R/(ry,...,rs), M) # 0 giving

projdim R/(ry,...,rs) = s
and thus completing the proof. |

Proposition 9.2.7. If M and N are R-modules and ry,r3, ..., rg is an N-sequence
contained in Ann(M), then

. 0 0<i
Ext! (M, N) = JorO=i<s
Hom(M,N/(r1,...,rs)N) fori =s.

In particular, Hom(M, N/(r1, ..., rs)N) depends only on s and not on the sequence
rty...,rg.
Proof. By induction on s > 0. If s = 0, the result is trivial. If s = 1, then

Ext®(M,N) = Hom(M,N) = 0 since 1M = 0 and N L Nisan injection.

The exact sequence 0 — N NN /r1N — 0 gives the exact sequence
Hom(M, N) = 0 — Hom(M, N/r1N) — Ext'(M, N) 25 Ext!(M, N).

But Ext! (M, N) n Ext! (M, N) is 0 since /i M = 0. Then the proof can be com-
pleted by an induction on s. m|

Applying thisto M and N/(r1,...,rs)N whenry,...,rgisamaximal N-sequence
in Ann(M ), we get

Corollary 9.2.8. If N is finitely generated and IN # N for an ideal I, then every
maximal N -sequence in I has length equal to the least i such that Ext'(R/I, N) # 0.

Remark 9.2.9. We note that if N is finitely generated and /N # N for an ideal /,
then depth; N = inf{i : Ext'!(R/I, N) # 0} by the above. So if R is local with
maximal ideal m and residue field k, then depth N = inf{i : Ext'(k, N) # 0} =
inf{i : u;(m, N) # 0}.

Corollary 9.2.10. If M is finitely generated, then the least i such that Ext' (M, R) %
0 is the maximum length of an R-sequence contained in Ann(M ).

Remark 9.2.11. If M is a finitely generated R-module, then the least i such that
Ext'(M, R) # 0 is called the grade of M and is denoted grade M. By Corol-
lary 9.2.10 above, we see that grade M = depth; M where I = Ann(M).
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Corollary 9.2.12. For a prime ideal p C R, depth g, Ry is the least i such that
wi(p, R) > 0.

Proof. Apply the previous corollary when M = k(p). |

Proposition 9.2.13. If p C q are distinct prime ideals of R with no prime ideal
between them and M is finitely generated, then

pi(p, M) # 0 implies  pit1(q, M) # 0

Proof. We assume R = Rp. Letr € q,r ¢ p, B=R/pand C = B/rB. Then C

. o L r
has finite length and B — B is an injection. So the exact sequence 0 - B — B —
C — 0 gives rise to the exact sequence

Exthy (B, M) - Extiy (B, M) — Ext' T1(C, M).

But Ext' (B, M) # 0 by Theorem 9.2.4. Since R is local and r € p, we get
Ext' T1(C, M) # 0. But then since C has finite length, it is easy to argue that
Ext!T1(k, M) # 0 where k = R/p. So the result follows by Theorem 9.2.4. i

Corollary 9.2.14. If R is local with residue field k and M is a finitely generated
R-module, then

injdim M = sup{i : Ext'(k, M) # 0}.
Proof. This follows from Theorem 9.2.4 and Proposition 9.2.13. m|

Corollary 9.2.15. If M is finitely generated and injdimgM = r < oo, then
dim M <r and u,(p, M) > 0 implies p is maximal.

Proof. 1f p € Supp(M) is a minimal prime ideal, then R/p is isomorphic to a sub-
module of M by Theorem 2.4.12. So puo(p,M) > 0. Thenif p = po € p1 <
p2 € -+ & ps is a chain of prime ideals of Supp(M ) with no prime ideals between
successive terms, then by Proposition 9.2.13 g (ps, M) > 0 and so injdim M > s.
That is, r > s. This gives the first conclusion. For the second, if u,(p, M) > 0
and p is not maximal, by Proposition 9.2.13 we get a prime ideal p’ with p C p’ and

Ur+1(p’, M) > 0, contradicting our assumption injdim M = r. i

Theorem 9.2.16. Let (R, m, k) be local and M, N be nonzero finitely generated R-
modules. If injdim N < oo, then

depth M + sup{i : ExtiR(M, N) # 0} = injdim N.
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Proof. If M = k, then the result follows by Corollary 9.2.14. If depth M = 0, then
there is an embedding k C M and thus we have an exact sequence Ext" (M /k, N) —
Ext" (M, N) — Ext"(k, N) — Ext"*'(M/k,N) = 0. But if injdim N = n, then
Ext"(k, N) # 0 and so Ext" (M, N) # 0. Thus the result follows in this case.

We now proceed by induction on depth M. If depthM > 0, let r € m be a
nonzero divisor on M. Then it follows from the exact sequence Ext! (M, N) 5
Ext'(M,N) — Exti+1(M/ rM,N) — Ext!T1(M, N) and Nakayama Lemma that
if Ext! (M, N) # 0 then Ext *1(M/rM,N) # 0. It also trivially follows that if
Ext! (M, N) = Ext! T} (M, N) = 0 then Ext: "1 (M/rM, N) # 0. Hence

sup{i : Ext'(M/rM,N) # 0} = sup{i : Ext'(M, N) # 0} — 1.

Using a similar argument and Remark 9.2.9 we have depth M = depth M/rM + 1
and thus the result follows by induction. |

Corollary 9.2.17. If N is a nonzero finitely generated R-module of finite injective
dimension, then injdim N = depth R.

Proof. We simply set M = R in the theorem. |

Corollary 9.2.18. If R has a nonzero finitely generated R-module of finite injective
dimension and M is a finitely generated R-module, then depth M < depth R.

Proof. We simply note that sup{i : Ext'(M,N) # 0} > 0 where N is as in the
theorem above. i

Remark 9.2.19. For completeness, we note that dually, if --- — Fy — Fg - M —
0 is a minimal free resolution of a finitely generated R-module, then the minimal num-
ber of generators of Fj, called the rank of Fj, is given by B; (M) = dimy, Tor; (M, k)
and one easily gets projdim M = sup{i : Tor;(M,k) # 0}. If depthR > 0,
depth M > 0 and x € m is a nonzero divisor on R and M, then depthg /,g M/rM =
depth M —1, depthg .z R/rR =depth R—1, and projdimg,,.g M/rM = projdim M.
So an induction on depth M gives the following result which is dual to Theorem 9.2.16.

Theorem 9.2.20 (Auslander and Buchsbaum Theorem). Let (R, w, k) be local and
M be a finitely generated R-module. If projdim M < oo, then

proj dim M + depth M = depth R.

Proposition 9.2.21. Let R be a local ring, p € Spec R, and M # 0 be a finitely
generated R-module. If dim R/p < depth M, then Exty(R/p, M) = 0 fori <
depth M — dim R /p.



Section 9.2 The Minimal Injective Resolution of R 229

Proof. By induction on dim R /p. Let mt be the maximal ideal of R. If dim R/p = 0,
then p = m and so the result follows (see Remark 9.2.9). Now suppose dim R/p > 0.
Then p # m and so choose an element 7 in mt — p. Then we consider the exact
sequence 0 — R/p 5 R/p - R/(rR + p) — 0. But by Lemma 2.4.7, there
isachain0 = My C M; C --- C My—_y C M, = R/(rR + p) of submodules
of R/(rR + p) such that M;/M;_; = R/p; for some p; € Spec R. Moreover,
p C p;j and so dimR/p; < dim R/p for each j. So by induction, for each j,
Exti(R/pj, M) = 0fori < depth M —dim R/p; < depth M —dim R/p+ 1. Hence
Ext'!(R/(rR + p).M) = 0 for i < depth M — dim R/p + 1. But then for each
i < depth M —dim R/p, we have an exact sequence

0 — Ext'(R/p, M) > Ext (R/p, M) — Ext "' (R/(*rR + p), M) = 0.
So the result follows from Nakayama Lemma. m|
Theorem 9.2.22. If R is local and M # 0 is finitely generated, then
depth M <dimR/p forallp € Ass M.

Proof. If p € Ass M, then Hom(R /p, M) # 0 and so depth M < dim R/p by the
proposition above. o

Corollary 9.2.23. If R is local, then depth M < dim M for all nonzero finitely gen-
erated R-modules M.

Proof. If p € Ass M, then Ann(M) C p. Sodim R/p < dim R/Ann(M) = dim M
for each p € Ass(M). Hence depth M < dim M by the theorem. O

Definition 9.2.24. Suppose R is local and M is a finitely generated R-module. Then
depthM < dim M < dim R from the above. If depth M = dim M, then we say
M is Cohen—Macaulay. Tf R is Cohen—Macaulay as an R-module, then R is said
to be a Cohen—Macaulay ring. If depth M = dim R, then M is said to be maximal
Cohen—Macaulay.

Corollary 9.2.25. [finjdim g R < oo, then injdim g R = dim R and R is a Cohen—
Macaulay ring.

Proof. injdim R = depth R by Corollary 9.2.17 and inj dim R > dim R by Corollary
9.2.15. But depth R < dim R by the above and so depth R = dim R and injdim R =
dim R. O

Corollary 9.2.26. If for a prime ideal p injdim Ry, = oo, then u;(p, R) > 0 for all
i > htp.
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Proof. We can again assume R = R, and use induction on ht p. If ht p = 0, then p is
the only prime ideal and so u; (p, R) = 0 implies E*(R) = 0 which contradicts our
hypothesis.

Assume htp = 7 > 0 and let ¢ # p be a prime ideal. If s = dim R/qg, then
htp + s < h. If injdim g, Rq = oo, then by the induction hypothesis j; (g, R) > 0
fori > htq. So wi4+s(p, R) > 0 fori > htq and then by the above ;(p, R) > 0 for
j = h=htp.

So now assume injdim g, Rq < oo for all g # p. Then E'(R)q = Ofori > htg
and so for i > htp. Therefore E’(R) must be the direct sum of copies of E(R/p)’s
only. Since E*(R) # 0 for i > htp, we have u;(p, R) > 0 fori > htp. |

Theorem 9.2.27. If (R, m, k) is a local ring, then the following are equivalent:
(1) injdim R < oo.
(2) pi(m, R) =0 foralli > dim R.
(3) pi(m, R) = 0 for somei > dim R.

|0 fori <dimR
@) pi(m. R) = {1 fori = dimR.

(5) R is Cohen—Macaulay and jgim r (1, R) = 1.
(6) wi(p, R) = 8;n(p) for all prime ideals p where §; y(p) is the Kronecker delta.

Proof. (1) = (2) by Corollary 9.2.25, (2) = (3) is trivial, and (3) = (1) by
Corollary 9.2.26.

(1) = (4). By Corollary 9.2.25, R is Cohen—Macaulay and by Corollary 9.2.12
this is equivalent to p; (1, R) = 0 fori < htm = dim R.

Now let I be generated by a maximal R-sequence 71,73, ..., g wWhere d = dim R.
Then by several applications of Corollary 9.2.25, R/ is self-injective. But by Propo-
sition 3.4.3 this means pg(m, R) = no(R/1) = 1.

(4) = (2). With the same notation, puo(m(R/I1),R/I) = 1 and so R/I is self
injective by Proposition 3.4.3. Hence p;4+q(m, R) = pi(m/I, R/1) = 0 for all
i >0.

(4) & (5) is trivial.

(2) and (4) give p;(m, R) = 8;4 where d = htm. Since injdim R < oo gives
injdim Ry < oo for all prime ideals p C R, we get (1) = (6). (6) = (1)iseasy. O

Corollary 9.2.28. If R is a Gorenstein local ring and I C R is generated by an
R-sequence, then R/ 1 is Gorenstein.

Proof. This follows from the Theorem and applications of Corollary 9.2.3. m|

Corollary 9.2.29. If R is local, then R is Gorenstein if and only if R is.
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Proof. If R is Gorenstein and 0 — R — E%R) — .-+ — E"(R) — 0 is an
injective resolution of R, then 0 — R=R ® RR — R® REO(R) > R®
RE ”(R) — 0 is an injective resolutions of R as an R-module. So R is Gorenstein.

If R is Gorenstein, then 1n] dim 3 R < oo and so injdim RR < oo since R is

a flat R-module. But R C R is pure. Thus injdim gR < injdim rRR < oo by
Lemma 9.1.5. o

Exercises

1. Let M be an R-module and r € R be such that R 5 Rand M 5 M are both
injections, and set R = R/(r). If N is an R-module such that rN = 0, prove
that

Extid (N, M) = Ext’, (N, M/rM)
for alli > 0. Conclude that injdim g M > injdim gM/rM + 1.

2. Let R be a Noetherian local ring with maximal ideal mt and M be a finitely
generated R-module. If ¥ € m is as in Problem 1 above, argue that

(a) injdim gM = injdim zgM/rM + 1.
(b) depth M = depth gM/rM + 1.
(c) depth M/rM = depth zM/rM.
3. Let R be alocal ring and M a finitely generated R-module. Argue that
(a) depth M = depth IQA;I .
(b) M is Cohen—Macaulay if and only if M is Cohen—Macaulay.

4. Let (R, m, k) be alocal ring. Prove that if M is a finitely generated R-module,
then projdim M = sup{i : Tor; (M, k) # 0} < projdimk.

5. Let (R, m, k) be a local ring and M be a finitely generated R-module. Prove

that if € m is such that R — R and M — M are both injections, then
projdim M = projdim g,,g M/rM.

6. Prove Theorem 9.2.20.

7. Let (R, m, k) be a local ring, A_4 a finitely generated R-module, r,...,r4 an
M -regular sequence in mi,and M = M/(ry,...,rq)M. Prove that

(a) dimM =dim M —d.

(b) depth M = depth M —d.

(c) M is Cohen—Macaulay if and only if M is.
(d) projdim M = projdim M + d.
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9.3 More on Flat and Injective Modules

We now show that when a commutative Noetherian ring R is generically Gorenstein
(that is, Ry, is Gorenstein for all minimal prime ideals p of R), we get nice properties
holding on modules over R.

In this section, R will again denote a commutative Noetherian ring.

Lemma 9.3.1. For a prime ideal p C R, E(R/p) ® E(R/p) # 0 if and only if
depth Ry, = 0.

Proof. Suppose E(R/p) ® E(R/p) # 0. Then since E(R/p) is an injective cogen-
erator for Ry-modules,

(E(R/p) ® E(R/p))" = Hom(E(R/p), E(R/p)") 2= Hom(E(R /p), Rp) # 0.

But E(R/p) is an Artinian Ry-module. So k(p) C I/Q\p. But then depth I/Q\p = 0 (over
j?;) and thus depth Ry, = 0 (over Ryp).

Conversely, if depth R, = 0 then, k(p) C Ry and so k(p) C R\p. So by Matlis
duality, we get a surjection R\pv = E(R/p) — k(p)’ = k(p). But this implies
Hom(E(R/p), 1/2;) # 0 and so, as above, E(R/p) ® E(R/p) # 0. |

Lemma 9.3.2. For a prime ideal p C R, E(R/p) ® E(R/p) is a nonzero injective
module if and only if Ry is Gorenstein of Krull dimension 0.

Proof. The Matlis dual of E(R/p) ® E(R/p) is Hom(E(R/p), 7?;). It1 c R\p
is the largest ideal in 1/?; of finite length, then 7V is the largest quotient of E(R/p)
of finite length (over 1/2;). Then since o (E(R/p)) has finite length for any o €
Hom(E(R/p), I/i’;), we get Hom(E(R/p), 73;) = Hom(/", ). This shows that
Hom(E(R/p), I/Q;) has finite length and so it is Matlis reflexive. But it is the dual
of E(R/p) ® E(R/p). So E(R/p) ® E(R/p) has finite length (and is also reflex-
ive).

So now assume £ (R/p) ® E(R/p) is nonzero and injective. Then its Matlis dual
Hom(E(R/p), Rp) is flat. But by the preceding, it is also a finitely generated Rp
module and so it is a nonzero free Rp -module. Thus since Hom(E (R /p), Rp) has
finite length, so does 1/2;. Thus I/Q; has Krull dimension 0. Hence I/Q\p = Ry. Let
P = pRyand p” = 0 and p"~! # 0O for some n > 1. Since Hom(E(R/p), ﬁp) %
0 is free, ﬁ"_lHom(E(R/p),I/Q;) # 0. If for every o € Hom(E(R/p),I/Q;),
o(E(R/p)) C b, then p*"lo = 0 and so ﬁ”_lHom(E(R/p),I/?;) = 0, a con-
tradiction. This means o (E(R/p)) = 7?; for some o. So I/Q; = Ry is a direct
summand of E(R/p) and so is injective.

Conversely, if Ry, is Gorenstein of dimension 0, then Ry, is self-injective and Artin-
ian and so Ry = E(Ryp) = E(R/p). Thus E(R/p) ® E(R/p) = Ry = E(R/p) is
a nonzero injective module. m|
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In the next theorem, we will use the notation F (M) — M for the flat cover of an
R-module M which exists by Theorem 7.4.4.

Theorem 9.3.3. The following are equivalent for a commutative Noetherian ring R:
(1) E(R) is flat.
(2) Ry is a Gorenstein ring of Krull dimension 0 for all p € Ass(R).
(3) E(F) is flat for all flat R-modules F.
(4) F(E) is injective for all injective R-modules E.
(5) E ® E’ is an injective module for all injective R-modules E and E’.

(6) STIR is an injective R-module where S is the set of nonzero divisors of R.

Proof. (1) = (2). Since R/p is isomorphic to a submodule of R, E(R/p) is a sum-
mand of E(R) and so is flat. But then ﬁ\p = Hompg(E(R/p), E(R/p)) is injective as
an R-module (and so as an k;—module) since the first £(R/p) is flat and the second
is injective. But if 73\1, is self-injective, it has Krull dimension 0 and so is Artinian.
But then Ry, is Artinian and Ry, = I/Q;.

(2) = (1). If p € Ass(R), then depth R, = 0. So if R, is Gorenstein, R has
Krull dimension 0. Thus Ry, is self-injective and so E(R/p) = Ryp. So E(R/p) isa
flat R-module. Since E(R) is the direct sum of E(R/p)’s with p € Ass(R), E(R) is
also flat.

(3) = (1) trivially.

(2) = (6). If Ass(R) = {p1,...,pz},then § = R — (p; U--- U p;) is the set of
nonzero divisors of R. So ST R is a semi local ring of Krull dimension 0 with prime
ideals S~p;,..., S 'p,. Hence S™!R is isomorphic to Ry, X -+ X Ry, . But each
Ry, is an injective R-module. So S™! R is injective.

(6) = (1). This is true since Ry, with p € Ass(R) is a localization of S~IR.

(6) = (3). By (6), E(R) = S™'Rand so E(R") = S™!R" forn > 1. But then
since any flat R-module F is the inductive limit of finitely generated free modules, it
is easy to see that S~ F = E(F).

(1) = (5). We only need show that E(R/p) ® E(R/q) is injective for any prime
ideals p and g of R. We note that if r € R is not a zero divisor on R, then E LE
is surjective for any injective R-module E. And if r € p for a prime ideal p, then
E(R/p) A E(R/p) is locally nilpotent. Hence if r € p and r is not a zero divisor
on R, then E(R/p) ® E(R/q) = 0. For if x € E(R/p), we have r"x = 0 for
somen > l,andif y € E(R/q), y = r"z forsome z € E(R/q). Sox ® y =
xQr'z=xr"®z=08z =0.Hence E(R/p) ® E(R/q) =0ifp ¢ Ass(R) or
q ¢ Ass(R). In a similar manner we see that E(R/p) ® E(R/q) = O when p ¢ q.
For then if r € p, E(R/p) A E(R/p) is locally nilpotent and E(R/q) A E(R/q)
is an isomorphism.
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So we are reduced to showing that E(R/p) ® E(R/p) is injective if p € Ass(R).
But this follows from the fact that E(R/p) = Ry (see (1) = (2)) and the fact that
Ry ® RRpy = Ry.

(5) = (2). Let p € Ass(R). Then R/p C R and so depth Ry, is 0. So by Lem-
ma9.3.1, E(R/p) ® E(R/p) # 0. But then by Lemma 9.3.2 and the assumption (5),
we get (2).

(3) = (4). Let G be an injective R-module and let F(G) — G be a flat cover.
Then F(G) — G can be extended to E(F(G)) — G. But E(F(G)) is flat by
assumption. So

E(F(G))
F(G) G

can be completed to a commutative diagram. But then the restriction of E(F(G)) —
G to F(G) is an automorphism of F(G) (by the definition of a flat cover). Thus F(G)
is a direct summand of E(F(G)) and so is injective.

(4) = (3). Let L be flat. Then the diagram

e
e
e
£

F(E(L)) — E(L)

can be completed to a commutative diagram. By (4), F(E(L)) is injective and so
L — F(E(L)) (which is an injection) can be extended to an injection E(L) —
F(E(L)). Therefore we can assume E(L) C F(E(L)). Then E(L) is flat since it is
a direct summand of a flat module. m|

We note that when R, is Gorenstein for p € Ass(R), then htp = 0, that is, p is
a minimal prime ideal. Since any minimal prime p is in Ass(R), (2) of the theorem
simply says R is generically Gorenstein.

Exercises
1. Prove thatif p C g, then E(R/p) ® E(R/q) = 0.
2. Prove that if R is Gorenstein, then E(R) is a flat R-module.

3. Prove thatif E(R) is flat, then Ry ® rRp = Rp.
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9.4 Torsion Products of Injective Modules

R will again always be commutative and Noetherian. In the last section it was shown
that R is generically Gorenstein if and only if £ ® E’ is injective whenever E and
E’ are injective R-modules. In this section, we will show that Tor; (E, E’) is injective
for all injective £ and E’ and all i > 0 if and only if Ry is Gorenstein for all prime
ideals p. Since these two properties are local we will also assume R is a local ring
with maximal ideal m and residue field k.

Lemma 9.4.1. We have
Exti(E(k), R) = Bxtg (E(k), R) = Ext,(E(k), R)
foralli > 0.
Proof.
0>R=R® gRR—> R® rE°(R) > R® rE'(R) >

gives an injective resolution of R as an R-module. If p C R is a prime ideal, then
E(R/p) L E (R/p) is locally nilpotent if r € p and is an isomorphism if r ¢
p. Hence the same holds for R® E(R/p) L Re E(R/p) and so R® E(R/p)
is the direct sum of copies of E(R/p). Hence if p # wm, then Homg(E(k), R®
E(R/p)) =0.1fp = m, then R ® grE(k) = E(k).

From these remarks it follows that Homg(E(k), E'(R)) =~ Homg(E(k), R ®
RE /(R)) and we get the first 1somorph1sm above. For the second, we note that since
R is a flat R-module, 0 - R — E9 (R) — EL (R) -++ is also an injective

resolution of R as an R-module.
Then note that if ¢ C R is a prime ideal and g # 1), then ¢ N R # wm. Hence
again arguing with scalar multiplications, we see that Homg (E(k), E3(R/q)) = 0

and Homz(E(k), E 3 (ﬁ)) = 0. Since Homg(E(k), E(k)) = Homz(E(k), E(k)),
we see that Hompg (E (k), E% (Ié)) = Homy (E(k), E% (I%)). This gives the second
isomorphism. m|

Remark 9.4.2. If r is not a zero divisor on R or on M and R = R/(r), then
Tor1 (R,M) = 0. Hence if S C M and r is not a zero divisor on M/S, then
Tor (R,M/S) = 0implies that 0 - R ® S — R ® M is exact.

Lemma 9.4.3. Suppose r € wm is not a zero divisor of R and let R =R/(r). Ifris
not a zero divisor on Ext’ R(E(k),R) for 0 <i < n, then

Exts ! (Eg (k). R) = Exty(Er(k). R) ® R

forl <i <n-—1.



236 Chapter 9 Iwanaga—Gorenstein and Cohen—Macaulay Rings and Their Modules

Proof. Apply Homg(Eg(k),—) to 0 — E°(R) — E'(R) — --- and get the com-
plex
0 — RMO 5 RMI 5 ...

with p; = pi(m, R). The homology of this complex gives us the modules
Ext’k (E(k), R). We note that since r is not a zero divisor of R, depth R > 1 and
so o = 0.

We now let B, Z! C RMi be the images and kernels of the boundary maps in the
complex above.

Now by Lemma 9.2.2,0 — R — Homg (R, EL(R)) — Homg(R, E%Z(R)) — ---
is a minimal injective resolution of R as an R-module. So we compute Extj,é (Ex(k), R)
by applying Homz (E z(k), —) to the deleted complex 0 — Hompg (R, EIIQ(R)) —
Hompg (R, EIZQ(R)) — -+ and compute homology. But Homg (R, Eg(k)) = E (k).
So we get the complex

0— RM' — RM2 — ...

But then this is just the complex tensored with Rsince R = R ® rRR.

Now we note that r is neither a zero divisor on R%i /Z! ¢ RMi*1 nor on RMi / B
since it is neither a zero divisor on Ext' (E(k), R) = Z'/B’ nor on Ié“f/Z" for
0<i < n.ASO by Remark 9.4.2, 0 — BO®R — R @ R = R% and 0 —
Z' ® R — R™ are exact.

These observations show that Z '® E and B! ® R can be identified with the obvious
kernels and images in 0 — RM1 — RH2 — ... for 1 <i < n — 1. Then the exact
sequence B! — Z! — Ext' (E(k), R) — 0 tensored with R gives the isomorphism

Bxtly |(E(k), R) = Exti (E(k), R) ® R
forl <i <n-—1. -

Lemma 9.4.4. If A and B are Artinian modules, then Tor; (A, B) is Artinian for all
1 >0.

Proof. Tt suffices to show that Tor; (4, B)? =~ Ext (A, BY) is finitely generated. But

B is finitely generated and so ; (mt, BY) = p; is finite. But then Hom(4, Ei(BY)) =
Hom(A, E(k)*) is finitely generated and hence so is Ext' (4, BY). |

Lemma 9.4.5. If p, g are prime ideals and p ¢ g or g ¢ p, then
Tor; (E(R/p). E(R/g)) =0

foralli > 0.
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Proof. Suppose p Z q. If r € p, r ¢ g, then

Tor; (E(R/p), E(R/q)) — Tor; (E(R/p), E(R/4))

is both locally nilpotent and an isomorphism. Hence Tor; (E(R/p), E(R/q)) = 0.
O

Theorem 9.4.6. The following are equivalent for R:
(1) R is Gorenstein.
(2) For any injective modules E and E’ and any i > 0, Tor; (E, E') is injective.
(3) For any prime ideal p C R

; o ifi #htp
Tor;"(E(R/p), E(R/p)) = {E(R/p) ifi = htp.

Proof. (1) = (3). We have
Tor;* (E(R/p), E(R/p))" = Extg(E(R/p), Rp)
= Exty, (E(R/p), Ry)
= Ext’~ (E(R/p), Ry)
Ry
where the Matlis dual is with respect to Ry.
Since Ry is Gorenstein,

1 ifi =dimR, = htp

[(m(Ry), Ry) =
#i(m(Ry). Ry) {0 otherwise

by Theorem 9.2.27. This shows that Ext’é (E(R/p), Iép) is IQP for i = htp and
P

0 otherwise. Then since E(R/p)’ = Iép, the claim follows by Lemma 9.4.4 since
Tor; (E(R/p), E(R/p)) is then Matlis reflexive (over Rp).

(3) = (2) is trivial.

(2) = (1). By Lemma 9.4.5, (2) simply says that Tor; (E(R/p), E(R/p)) is injec-
tive for all prime ideals p and all i > 0. Since

TorR(E(R/p), E(R/p)) = TorR(E(R/p), E(R/p))p = Tor, *(E(k(p)), E (k(p))),

we can assume p = m and that Tor; (E (k), E(k)) is injective for all i > 0. Since by
Lemma 9.4.4 this module is also Artinian, it is the direct sum of finitely many copies
of E(k).

But then Tor; (E(k), E(k))' = ExtiR(E (k), R) is a finitely generated R-mod-
ule for each i. Using Lemma 9.4.1, we see we can assume R is complete and
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so Ext'(E(k), R) is finitely generated and free for each i. If depthR = d
and rq,...,rg is an R-sequence, then letting R = R/(r1,...,rg) and making re-
peated use of Lemma 9.4.3, we see that we can also assume depthR = 0.
This implies k¥ C R and so by Matlis duality, k is a quotient of E(k). Therefore
Hom(E (k), R) = Ext®(E(k), R) # 0 is a finitely generated free R-module. Then
Hom(E (k) ® E(k), E(k)) = Hom(E (k), R) shows that E(k) ® E(k) # 0. Its dual
is finitely generated and projective. Hence E (k) ® E(k) # 0 is an injective module.
Then by Lemma 9.3.2, R is Gorenstein of Krull dimension 0. This completes the
proof. m|

Exercises

1. Let R be a Gorenstein ring. Prove that every flat R-module F' can be embedded
in Pyp=o E(R/p)X») for some sets Xp.

Hint: show that F ® E(R) = Py, E(R/p)*¥).

2. Let R be 1-Gorenstein and M be an R-module. Prove that M is cotorsion if and
only if Ext! (E(R), M) = 0.

3. Let R be 1-Gorenstein. Prove that every h-divisible R-module is strongly cotor-
sion, that is, Ext' (F, M) = 0 for all flat R-modules M and all i > 1.

9.5 Local Cohomology and the Dualizing Module
In this section, R will again denote a commutative Noetherian ring.
Definition 9.5.1. Let / be an ideal of R and M be an R-module. Then we set
Li(M)={xe M :I'x =0 for some ¢t > 0}.
We note that Homg(R/I*, M) = {x € M : I'x = 0}. Thus
Li(M) = l_ir_)nHomR(R/It, M).

It is clear that Ly is a left exact covariant functor and so we can compute the right
derived functors R' L of L using an injective resolution of M (see Section 8.2).

Definition 9.5.2. The. derived functors R L are called local cohomology functors
and are denoted by H;. Thus

H{(M)=R'L;(M) = Ri(li_n)lHom(R/It,M))
~ 1; i t
=h_r)nR Hom(R/I', M)
~ H_r)nExtiR(R/]’, M).



Section 9.5 Local Cohomology and the Dualizing Module 239

since 111})1 commutes with homology. We note that if i > 0 and FE is an injective
R-module, then H}(E) = 0.

Now let0 - M — E® — E! — ... be the minimal injective resolution of M.
Then E' =~ @peSpecR w(p, M)E(R/p). Butif m is a maximal ideal, then

0 if p#m

h_r)nHom(R/mt,E(R/p)) = {E(R/m) ifp=m.

So Lw(E") = @u'(m, M)E(R/m). Thus if M is finitely generated, then
w(m, M) < oo for each i by Theorem 9.2.4 and so Ly (E?) is Artinian. Hence
HI’;I(M ) is Artinian for each i. Furthermore if R is local, then depth M = inf{i :
wi(m, M) # 0} by Remark 9.2.9. So if i < depth M, then H. = 0. Now let
s = depth M. Then

Hy (M) = Ker(Lw(E*(M)) = L (E*T1(M)))
= Ker(E*(M) — ESTY(M)) N L (E®).
But Ker(E*(M) — EST1(M)) is an essential submodule of ES(M) and Ly (E®) is

nonzero since s = depth M. So HJ (M) # 0.
We summarize the above in the following.

Lemma 9.5.3. Let R be local and M be a finitely generated R-module. Then Hr"n (M)
is an Artinian R-module and depth M is the least integer s such that HJ), (M) # 0.

Proposition 9.5.4. Let R be a local ring with maximal ideal w, and M be a finitely
generated R-module. Then Hy, (M) = H{, (M) ® R = H. (M).

Proof. Since Hr"n(M) is Artinian by the above, HI"H(M) = li_n;L,- where L; are
submodules of H} (M) of finite length. Then

HL (M) = lim Z; = lim(L; ® R) ~ (lim L;) ® R
and we have the first isomorphism. But
Hi (M)® R = l_ir_)nExti(R/mt, M)® R
~ T ipIat N
x~ ll_r)nExt (R/w*, M)

= H} (M)

since R is a flat R-module. O
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Definition 9.5.5. Let x= x1, x2,..., X, be a sequence of elements of R. Then we
define a complex Ko (x) by Ko(x) = Rand K,(x) =0if p >n. If 1 < p < n, then
Kp(x) is the free R-module of rank (;) with basis {ej,i,...i, : 1 <i1 <--- <ip <nj.
The differentiation dp, : K, (x) — Kp—1(x) is defined by

p
dp(eil...ip) = Z(_1)1+1xijei1 i

ko
J=1

where fj means that 7; is deleted and we set d,(¢;) = x; if p = 1. Thend,_10d, =0
and we have a complex Ko (x)

Ko@) : 0 — Kn(t) 2 Kpo1(x) = - — K1(x) & Ko(x) — 0

where each K, (x) is free and finitely generated.
The complex Ke(x) is called the Koszul complex. In particular, if n = 1, then
K (x) is the complex

0—>R1>R—>0

with K1(x) = Ko(x) = Rand K,(x) = 0if p # 0,1. If n = 2, then the Koszul
complex is
d 5 d
0—-R—->R" —-R—0

with bases e12, {e1, e2}, {1} respectively and differentials d; (e¢;) = x; and d»(e12) =
X1€2 — X2€1.

One may check that Ke(x) = Ke(x1) ® Ke(x2) ® -+ @ Ke(xy,) where the tensor
product of two complexes of R-modules Co and D, is a complex Co ® gDe where

(Co® RDo)n = @ CP®DlI
p+q=n

with differentials
d: (C. ® RD.)n — (Co ® RDo)n—l

definedby d(x ® y) =dx Q@ y + (—1)?x ® dy.

If M is an R-module, then Ko (x, M) is the complex Kq(x) ® M whose homology
groups Hp,(Ke(x) ® M) are denoted by Hy,(x, M). So Ho(x, M) = M/(x1M +
coo+ x,M) and Hy(x, M) = {y € M : x;y = Oforl < i < n}. In partic-
ular, if n = 1, then Ho(x, M) = M/xM and H;(x,M) = Anny(x) = {y €
M : xy = 0}. K*(x, M) denotes the complex Hom (K, (x), M) whose cohomology
groups H? (Hom(Ke(x), M)) are denoted by H?(x, M). In this case H%(x, M) =
Hom(R/xR,M) = {y € M : xjy = Oforl < i < n} = Hy(x,M). More
generally H,(x, M) = H" P (x, M).
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Lemma 9.5.6. If C is a complex of R-modules, then there is an exact sequence
0 — Ho(x, Hy(C)) - Hp(x.C) = Hy(x, Hy,—1(C)) = 0.

Proof. (Ke(x) ® C)p = (Ko(x) ® Cp) @& (K1(x) ® Cp—1). So we have an exact
sequence of complexes 0 — (Ko (x)®C), = (Ke(x)®C), — (K1(x)®C)p—1 — 0
since Ko(x) = K1(x) = R. Thus we have an associated exact sequence

Ki(x) ® Hy(€) "2 Ko(x) ® Hy(C) > Hy(Ke(x) ® C) — Ki(x) ® Hp1(C)

®id
"5 Ko(x) ® Hpo1(C).

But
Coker(x ® idg,,(c)) = Hp(C)/xHp(C) = Ho(x, Hp(C))
and
Ker(x ® ide_l(C)) o~ Anan_l(C)(x) = Hi(x, Hy—1(C))
and so we are done. O

We now show that local cohomology groups Hrin (M) can be expressed in terms of
Koszul complexes.

Letx’ denote the sequence x4, x5, ..., x%. Then for each x;, there is a natural map
K. (xl? h 5 K, (x!) given by the diagram

Xt

Ko(x!*1): 0 R—>R 0
xf

Ke(x!) : 0 R R 0

Since Ko (x) = Ko (x1)®---®Ke (X, ), we can tensor these maps to get a map of com-
plexes Ko (x’ 1) — K, (x?). Hence we get a map of homology groups H; (x' ™!, M) —
H;(x, M) and a map of cohomology groups H'(x', M) — H'(x'*!, M). Thus we
have an inverse system {H;(x’, M)} and a directed system {H’(x’, M)}. We set
HI(M) = lim Hix', M).

Lemma 9.5.7. Let x = X1,X2,...,X, be a sequence of elements of R and M be a
finitely generated R-module. Then for each t, there is an s > t such that the map
H;(x*, M) — H;(x*, M) is a zero homomorphism for each i > 1.

Proof. By induction on n. Suppose n = 1. Theni = 1 and Hy(x’, M) = Annyy (x1).
We note that if s > ¢, then the map Hy(x%, M) — Hy(x’, M) is multiplication by
x*~!. But the modules Hy(x?, M) form an increasing sequence of submodules of M .
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Hence since M is Noetherian, there is a 7o such that Annp(x’) is maximal. But
then x" Hy(x*, M) = 0 for each z. Soif s = ¢ + to, then the map Hy(x*, M) —
Hi(x', M) is multiplication by x*~! = x0 and thus is zero.

Now suppose n > 1 and lety = x1, X2, ..., X,—1. Then by Lemma 9.5.6, we have
an exact sequence

0 — Ho(x,, Hi(y', M)) — H;(x', M) — Hy(x}, Hi—1(y', M)) — 0.
If s > ¢, then we have a factorization
f g
Ho(x;, Hi(y*, M)) = Ho(x;. H;(y', M)) = Ho(x},. H; (5", M)).
By induction hypothesis, there is an s > ¢ such that H;(y*, M) — H;(y', M) is
zero and thus gf = 0. Hence there is an s > ¢ such that Ho(x}), H;(y*, M)) —
Ho(x},, Hi(y", M)) is zero. Similarly, we have a factorization
f g
Hi(xy, Hi-1(y*, M)) > Hi(x;, Hi1(', M)) > Hi(x},, Hi_1('. M)).

But H;—1(y", M) is finitely generated. So by induction, there is an s > ¢ such that
g = 0andhence gf = 0.

But now it easily follows that the middle term H; (x’, M) has the same property
(see Problem 4 at the end of this section). O

If E is an injective R-module and i > 0, then
H'(x', E) = H (Hom(K.(x"), E))
~ H'(Hom(K.(x"), Hom(R, E)))
~ H'(Hom(K.(x") ® R, E))
=~ Hom(H;(x", R), E).

But for each 7, there is an s > ¢ such that the map H;(x*,R) — H;(x',R) is a
zero homomorphism by Lemma 9.5.7 above. Hence H}(E) = li_r)nH '(x', E) =~

h_r)nHom(H i(x", R), E) = 0. We are now in a position to prove the following result.

Theorem 9.5.8. Let R be a local ring, I be an ideal of R generated by the sequence
X = X1,X2,...,Xn, and M be an R-module. Then

H} (M) = HL(M).
Proof. We first note that
0 1 t
Hy (M) = lg_)nHom(R/I , M)
. 2
= lg_)nHom(R/x R, M)
=1lim H'(x', M)
—
= HY(M).
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If0 > M — M — M" — 0is an exact sequence of R-modules, then we have an
exact sequence of complexes

. ¢ ’ . t . t "
0— h_n)lHom(K.(x ), M") — 1£>nH0m(K.(x ), M) — 1£>nH0m(K.(x ), M") — 0.

Thus we get an associated long exact sequence of the cohomology groups H,ﬁ (—).
But for each i > 0, Hy(E) = H;(E) = 0 for every injective R-module E by the
above. So H (M) = H;(M) by Theorem 8.2.11. O

Corollary 9.5.9. Let R be local with maximal ideal m and M be an R-module. If
the ideal generated by X = x1, X2, ..., Xn is m-primary, then Hy (M) = H(M). In
particular, H:, (M) = 0 fori > n.

Proof. Let I = xR. Then for some r > 0, m" C I C w since / is m-primary by
Proposition 2.4.25. Thus

HY(M) = 1_ir_)nH0m(R/1’, M) = l_ir_)nHom(R/m’, M) = H2(M)

and so H Il (M) =~ Hl (M) as in the theorem above. So the first part of the result
follows from the theorem. But Ke(x) has length n. So H} (M) = H}(M) = 0 for
i >n. |

Corollary 9.5.10. H: (M) = 0 foralli > dim R.

Proof. Letd = dim R. Then there is a sequence x = X1, X2, ..., X4 of elements of R
such that +/xR = m by Proposition 2.4.17 and Theorem 2.4.33. So xR is m-primary.
Thus the result follows from the previous corollary. |

Theorem 9.5.11. Let (R, m, k) be a local ring and M be a finitely generated R-mod-
ule. Then the following are equivalent:

(1) M is a maximal Cohen—Macaulay module.
(2) pi(m, M) =0foralli <dim R.
(3) Hi (M) =0foralli # dimR.

Proof. (1) = (2) is trivial since depth M = depth R.

(2) = (1). depthM < dimR and depthM = inf{i : p;(m,M) # 0}. So
depth M = dim R by (2).

(1) = (3). Since depth M = dim R by assumption, H. (M) = 0 for all i <
dim R by Lemma 9.5.3. So (3) follows from Corollary 9.5.10 above.

(3) = (1). depth M = inf{i : HI"n(M) # 0} by Lemma 9.5.3. So depth M >
dim R by assumption. So M is maximal Cohen—Macaulay. |

Corollary 9.5.12. R is Cohen—Macaulay if and only if Hr’.n(R) = 0 foralli #
dim R.
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Corollary 9.5.13. The following are equivalent for a local ring of Krull dimension d
with residue field k :

(1) R is Gorenstein.
(2) R is Cohen—Macaulay and Hr‘fI (R) = E(k).
(3) HL(R) =0fori # d and H&(R) = E(k).

Proof. (1) < (2) by Theorem 9.2.4 since Hftit (R) = E(k) means pg(m, R) = 1.
(2) & (3) follows from Corollary 9.5.12. m|

Definition 9.5.14. If R is a local Cohen—Macaulay ring with residue field k, then a
finitely generated R-module €2 is called a dualizing module of R if

s = {) §1 7o

k ifi =dimR.
Remark 9.5.15. We note that a dualizing module of R is maximal Cohen—Macaulay,
and if R is a Gorenstein local ring then R is a dualizing module of R by Theorem
9.2.27.

If dim R = 0 then Q2 = E(k) is seen to be dualizing and in fact, if 2 is dualizing
then since Ext! (k, Q) = 0 fori > 0, Q is injective. Since Hom(k, 2) = k, we then
get Q =~ E(k).

Now suppose €2 is a dualizing module of R. Then for any p € Spec R, Q2 is a
dualizing module of Ry. Also, it is easy to check that Qisa dualizing module of R
and /1 is a dualizing module of R/ if I is generated by an R-sequence. If the
sequence is maximal, then dim R// = 0 and so Q/IQ = Eg,r(k). It is also well
known that a dualizing module of R, if it exists, is unique up to isomorphism.

We now consider the functors 7% (—) = Hom(HI‘tlI_i (=), E(k)). Then T%(—) is a
contravariant left exact functor which converts sums to products. So if we set Q2 =
T°(R) = Hom(HE (R), E(k)), then T°(—) = Hom(—, ) by Theorem 1.4.18. We
are now in a position to prove the following local duality theorems.

Theorem 9.5.16. Let (R, m, k) be a complete local Cohen—Macaulay ring of dimen-
sion d. Then R has a dualizing module Q2 such that if M is a finitely generated
R-module, then

Exty (M, Q) = Hom(HZ ™ (M), E(k))

and
HE (M) = Hom(Ext4™ (M, Q), E (k).

Proof. We prove the existence of isomorphisms for i > 0 since if i < 0, then
HZ~(M) = 0 by Corollary 9.5.10 and Ext's (M, Q) = 0.
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Now let 7% and 2 be defined as above. If i = 0, then Hom(M, Q) =~ T°(R) =
Hom(HftlI (M), E(k)) from the above. But every exact sequence 0 — M’ — M —
M" — 0 has an associated long exact sequence of cohomology groups Hriu (—) (see
the proof of Theorem 9.5.8) and so {7} is a strongly connected sequence of func-
tors. Moreover, T!(R) = Hom(Hr‘fI_i(R),E(k)). Soifi > 1,thend —i < d
and HE~(R) = 0 by Corollary 9.5.12. Hence T'(R) = 0 for all i > 1. But
if F is free, then T'(F) = 0 for all i > 1 for T? takes direct sums to prod-
ucts since Ext’ (N, —) commutes with arbitrary sums if N is finitely generated (see
Lemma 3.1.16). Hence T'(—) =~ R"(Hom(—,Q)) by Theorem 8.2.12. But then
Hom(Ext?{i (M, ), E(k)) = Hom(Hom(H} (M), E(k)), E(k)) = HL (M) since
an (M) is Artinian and R is complete.

It now remains to show that 2 is a dualizing module for R. But Q is finitely
generated since HZ (R) is Artinian, and H. (R) = 0if i # d by Corollary 9.5.12
since R is Cohen—Macaulay. So ExtiR(k,Q) = 0ifi # d. But Ext‘lie(k,Q) ~
Hom(HY (k), E(k)) =~ Hom(k, E(k)) = k. Thus € is a dualizing module. |

Theorem 9.5.17. Let (R, m, k) be a local Cohen-Macaulay ring of dimension d and
M be a finitely generated R-module. If R has a dualizing module <2, then

Extlp (M, Q)" = Homg(HZ= (M), E(k))

and
HE (M) = Hompg (Exty (M, Q), E(k)).

Proof. By Theorem 9.5.16, Proposition 9.5.4 and the uniqueness of €2, we have
Hi(M)=HL (M) = Homf‘,(Ext;g—l (M, Q), E(k)) = Homg (Ext4 ™ (M, Q), E (k))

since Extf{i (M, Q) is a finitely generated R-module. So we have the second isomor-
phisms. But

Homg (Hy3 " (M), E(k)) = Homg (Homg (Extg (M, Q). E(k)), E (k))
=~ Exth (M, Q) ® R
and so we have the first isomorphisms. m|

Remark 9.5.18. By setting M = R in the theorem above, we see that if €2 is a
dualizing module of R, then

Hompg(HZ (R), E(k)) = g<Q.
Herzog—Kunz [111] show that the converse also holds.

Corollary 9.5.19.
injdim Q = flatdim HE(R) =d and H. (M) = Torg_;(M. HE(R)).
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Proof. 1Ifi > d, then ExtiR (M, )" = 0 by the above theorem and so ExtiR (M, Q) =
0 for each finitely generated R-module M. Thus injdim 2 < d by Proposition 8.4.4.
But injdim 2 = d by Theorem 9.2.16. So d = injdim R = injdim Hr‘fI(R)V =
flatdim HZ (R).

Finally, H (M) = TorR . (M.Homg(Q, E(k))) = Tor® (M, HZ(R)). O

Corollary 9.5.20. If R is a local Gorenstein ring and M is a finitely generated R-
module, then

Extp (M, R)" = Homg(HZ ™ (M), E(k))

and
HL (M) = Hom(Ext4™ (M, R), E(k))

Proof. As noted before, Q2 = R in this case. O

Definition 9.5.21. If (R, m, k) is local, then a finitely generated R-module K is said
to be a canonical module of R if

Hompg(HZ(R). E(k)) =~ rK.

We note that if R is complete, then K = HomR(HI‘fI(R), E(k)) is a canonical
module of R. If R is Cohen—Macaulay, then K is a canonical module of R if and only
if K is a dualizing module of R by Remark 9.5.18. We have the following results.

Proposition 9.5.22. Let (R, m, k) be a local ring with a canonical module. Then the
following are equivalent for an integer d > 1:

(1) R is Cohen—Macaulay of Krull dimension d.
(2) flatdim HZ (R) = d.
(3) projdim HZ(R) = d.

Proof. (1) = (2) by Corollary 9.5.19.

(2) = (1). If flatdim HZ (R) = d, then flatdimz HZ(R) = d since HZ(R) is
Artinian and so is an R-module naturally. Thus Hr‘[’i (R)V is a nonzero finitely gener-
ated R-module of finite injective dimension. So Ris Cohen—Macaulay (see Strooker
[174, Theorem 13.1.7]) and hence R is Cohen—Macaulay. Furthermore, dim R = d
by Corollary 9.5.12.

(2) = (3). dim R = d since 2 = 1. So proj dim HI‘ZL(R) < d by Corollary 8.5.28.
But then proj dim Ht‘fl (R)=d.

(3) = (2) is easy. |
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Proposition 9.5.23. Let (R, 1w, k) be Cohen—Macaulay. Then the following are equiv-
alent for a finitely generated R-module M :

(1) M is maximal Cohen—Macaulay.

2) Ext"R (M, L) = 0foralli > 1 and all finitely generated R-modules L of finite
injective dimension.

Furthermore, if R admits a canonical module K, then each of the above statements
is equivalent to the following:

(3) Exth(M,K) =0foralli > 1.

(4) Exth(M, K) = 0 foralli > 1.
Proof. (1) < (2). If L is a finitely generated R-module with injdim L < oo, then
injdim L = depth R by Corollary 9.2.17. But then depth M + sup{i : Ext' (M, L) #

0} = depth R by Theorem 9.2.16. So the result follows.
(1) < (3). By the local duality (Theorem 9.5.17),

Ext!(M,K) ® rR =~ Hom(HSZ™' (M), E(k)).

So M is maximal Cohen-Macaulay if and only if Hr‘é_i(M) = O foralli > O by
Theorem 9.5.11, and hence if and only if Ext' (M, K) = 0 for all i > 0.

(3) © (4) is trivial since Extiy (M, K) ® gR = Exth (M, K). O
Exercises
1. Prove that if x = x1, x2,..., X, is a sequence of elements of R, then Ko(x) =

Ke(x1) ® -+ ® Ko (xp).

2. Let M be an R-module and x = xi,...,x, be an M-sequence. Prove that
Hp(x, M) =0for p>0and Ho(x, M) = M/xM.

3. Let M be an R-module and x = x;...,Xx, be a sequence of elements of R.
Prove that

(a) Ho(x,M)= M/xM.
(b) H%(x, M) =Hom(R/xR,M)={ye M :x;y =0fori =1,...,n}.
(c) Hp(x, M) is isomorphic to H"~?(x, M) for all p > 0.

4. An inverse system is said to be essentially zero if for each i > 0, there exists a
J > i such that M; — M; is zero. Let 0 — ((M]), (f};)) — (M), (fij)) —
((M]"), (f})) — 0 be an exact sequence of inverse systems. Prove that if
(M), (fl;)) and ((M]"), (fi;./)) are essentially zero, then so is ((M;), (fij)).
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5. Let €2 be a dualizing module of R. Prove that
(a) 2y is a dualizing module of Ry for each p € Spec R.
(b) € is a dualizing module of R.
(¢) If I is generated by an R-sequence, then /12 is a dualizing module of R/ 1.

6. (Herzog—Kunz [111] or Bruns—Herzog [32]) Prove that a dualizing module of R,
if it exists, is unique up to isomorphism.

7. Let R be a commutative Noetherian ring and k(p) denote the quotient ring of
R/p. Prove that R is Gorenstein if and only if

flatdim g, E(k(p)) = projdim g, E(k(p)) = htp

for all p € Spec R.



Chapter 10
Gorenstein Modules

Auslander introduced the notion of G-dimension of finitely generated modules over
Cohen—Macaulay rings. It seems appropriate to call G-dimension 0 modules Goren-
stein projective. Our aim in this chapter is to define and study Gorenstein injective,
Gorenstein projective, and Gorenstein flat modules. The way we define Gorenstein
injective modules can be dualized and allow us to define Gorenstein projective mod-
ules (that is, modules of G-dimension 0) whether the modules are finitely generated
or not. These notions generalize the usual injective, projective, and flat modules.

10.1 Gorenstein Injective Modules

Definition 10.1.1. A module N is said to be Gorenstein injective if there exists a
Hom(dnj, —) exact exact sequence

o> Ey > Ey—> E*—> E!' > ...

of injective modules such that N = Ker(E® — E'). We note that in the above defini-
tion, the complex --- — E; — Eg — E® — E! — ... is a complete Jnj-resolution
of N. Moreover, if N is a Gorenstein injective R-module, then Ext! (E,N) = 0 for
alli > 1 and all injective R-modules E, or equivalently, every right dnj-resolution of
N is aleft dnj-resolution. As a consequence, we have the following result.

Proposition 10.1.2. The injective dimension of a Gorenstein injective R-module is
either zero or infinite.

Proof. Suppose 0 - N — E® — E! — ... - E"1 5 E™ 5 (is aright dnj-
resolution of a Gorenstein injective R-module N. Then it is also a left dnj-resolution
of E™ by the remarks above. But then the resolution is split exact since E? € Jnj for
each i. Thus N is injective. m|

If R is Noetherian, every R-module N has a (minimal) complete dnj-resolution
by Theorem 5.4.1. Furthermore, in this case we can compute left derived func-
tors Ext; (M, N) of Hom(M, N) by using a right dnj-resolution of M or a left dnj-
resolution of N (see Example 8.3.5). Hence we get the following characterization of
Gorenstein injective modules where Ext’ (M, N)) denote the standard derived functors
of Example 8.3.1.



250 Chapter 10 Gorenstein Modules

Proposition 10.1.3. Let R be a Noetherian ring. Then the following are equivalent
for an R-module N :

(1) N is Gorenstein injective.

(2) Ext;(Q, N) = Ext'(Q,N) = 0fori > 1 and Exto(Q, N) = Ext_(Q, N) = 0
for all projective or injective R-modules Q.

(3) Ext; (0, N) = Ext'(Q, N) = 0 fori > 1 and Exto(Q, N) = Ext_(Q, N) = 0
for all modules Q of finite projective or injective dimension.

(4) Every complete dnj-resolution of N is exact and Hom(dnj, —) exact.

(5) Every left dnj-resolution of N is exact and Ext(E,N) = 0 for all i > 1 and
any injective R-module E.

(6) The minimal complete dnj-resolution of N is exact and Hom(dnj, —) exact.

(7) The minimal left dnj-resolution of N is exact and Ext (E,N) = 0 fori > 1
and any injective R-module E.

Proof. (1) = (2). If N is Gorenstein injective, let --- — E; — Eg — E° —
E! — ... be as in Definition 10.1.1 above. If Q is projective, then the homology
groups vanish since the complex is exact. If Q is injective, then they vanish by defi-
nition of Gorenstein injective.

(2) = (3). This follows by induction on the dimension using the extended long
exact sequences in part (1) of Theorem 8.2.7.

(2) = (4).Let--- > E; - Eg — E® - E! — ... be a complete Jnj-resolution
of N. Then the extension groups in the assumption can be computed by applying
Hom(Q, —) and computing homology (see Proposition 8.2.9). If we set Q = R, we
get that the complex is exact. If Q is injective and we apply Hom(Q, —), we again
get an exact sequence since the extension groups vanish and so (4) follows.

(3) = (2); (4) = (5) and (6); (5) = (7); and (6) = (7) are trivial.

(7) = (1) follows from the definitions of left dnj-resolution and Gorenstein injec-
tive. m|

Theorem 10.1.4. Let R be Noetherian and 0 — N’ — N — N" — 0 be an exact
sequence of R-modules. If N', N" are Gorenstein injective, then sois N. If N', N are
Gorenstein injective, then so is N”. If N and N" are Gorenstein injective, then N’ is
Gorenstein injective if and only if Ext'(E, N') = 0 for all injective R-modules E.

Proof. If N’ is Gorenstein injective, then Ext! (E, N') = 0 for all injectives E. But
Ext!(E, N’) = 0implies that 0 — Hom(E, N’) — Hom(E, N) — Hom(E, N") —
0 is exact. So we get the extended long exact sequence of part (1) of Theorem 8.2.7.
Hence if any two of N’, N or N are Gorenstein injective, then so is the third. m|
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Remark 10.1.5. We note that if R is Noetherian and N is Gorenstein injective, then
any complete Jnj-resolution --- — E; — Eg — E® — E! — ... of N is exact
and each of K = Ker(E! — E'T1), Kitr» = Ker(Ejy1 — Ej) fori >0, K1 =
Ker(Eg — E°) is Gorenstein injective by Proposition 10.1.3. In particular, E®/N
and Ker(E9 — N) are Gorenstein injective and E9 — N is surjective. So we have
the following result recalling that a module is said to be reduced if it has no nonzero
injective submodules.

Proposition 10.1.6. Let R be Noetherian. If N is a reduced Gorenstein injective
R-module and E — N is its injective cover, then E — N is surjective, K =
Ker(E — N) is reduced and Gorenstein injective and K C E is an injective en-
velope.

Proof. Tt only remains to argue that K C E is essential. But if £/ C E is injective
and K N E’ = 0, then E’ is isomorphic to a submodule of E/K =~ N. So E' =0
since N is reduced. O

Corollary 10.1.7. If N is a nonzero reduced Gorenstein injective R-module, then N
has infinite injective and projective dimensions.

Proof. The first part is a special case of Proposition 10.1.2 or simply note that if
K? = 0,then N = 0 and so N has infinite injective dimension.

Now let 0 - K;j4+1 — E;{(N) - Ei_{(N) - -+ > Eo(N) > N — 0be
the minimal left dnj-resolution of N. Then this is also a minimal right dnj-resolution
of K11 fori > 0. So Ext!(N, K;) =~ Ext'*(N, K;+1). But 0 - K; — E¢ —
N — 0 does not split and so Ext! (N, K1) # 0. Thus Ext! T1(V, K;41) # 0 for any
i > 1. Hence N has infinite projective dimension. m|

Proposition 10.1.8. Let R be n-Gorenstein and M be an R-module. If0 — M —
E° > E' - ... > Ei=1 5 C! — 0 s a right dnj-resolution of M, then E?~1 —
C' is an injective precover for each i > n + 1. If furthermore the resolution is
minimal, then C' is reduced for eachi > n+1, and Ei-1 & Clisan injective cover
foralli >n+ 1.

Proof. E™ — E™"T1 — ... isaleft dnj-resolution by Theorem 9.1.11 and so Ei~! —
C' is an injective precover for each i > n + 1.

Now suppose the resolution is minimal. If E is an injective submodule of C"*1,
then we have a factorization E — E" — C"T! of the inclusion E C C"T! since
E™ — C™*!is an injective precover from the above. If E # 0, then this would
contradict the minimality of the resolution. So C"*! is reduced.

We now note that C**! = Ker(E"T! — E"*2) and E"*! — C"*2 is an
injective precover. So E"T! has a summand E (say E"T! = E @ E’) with E —
C™*2 an injective cover and E’ in the kernel of E#T! — C"*2, But then E/ C
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C"t1l So E’ = 0 since C" 11 isreduced. Thus E"t1 — C"*2 isa cover. The same
argument works for E — C'T! wheni > n + 2. |

Corollary 10.1.9. Let M, N be R-modules and
0>M—>E°SE' ... El 5 Ccitl 59

and . .
0>N->HSH!' ... gl - pitl 5

be right dnj-resolutions of M and N respectively where i > n. If f : CIT1 — pitl

is any homomorphism, then there exist maps E* — H", ..., E' — H' such that the
diagram
En En+l . Ei Ci+1 0
L L
H" Hn+1 . Hi Di+1 0

is a commutative diagram.
Furthermore, if the resolutions are minimal and f is an isomorphism, then each of
the maps E"t! — H"t1 ... H' — E' are also isomorphisms.

Proof. The result follows from the proposition above and definitions of precovers and
covers. m|

Corollary 10.1.10. If the minimal right dnj-resolution 0 — M — E°(M) —
EY (M) — --- is eventually periodic, then the complex E"T1(M) — E"T2(M) —
- is also periodic.

Proof. Any isomorphism C' — C*7 fori > n + 1 and m > 0 induces an isomor-
phism C*T1 — C*T147 by the Corollary above. i

We note that Corollary 10.1.10 above is similar to a result of Eisenbud [46] con-
cerning minimal projective resolutions over hypersurface rings.

Proposition 10.1.11. Let R be Noetherian and injdim gR = n. If
o> FEy—>FE > Eyg—> M —0

is a left dnj-resolution of an R-module M and C; = Coker(E;+; — E;), then
Ci — E;_y is an injection for i > n — 1. If furthermore, the resolution is minimal,
then C; is reduced for each i > n and C; — E;j_1 is an injective envelope for
i>n+1
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Proof. -+ — Eny1 — E, — E,_1 — E,_, is exact by Theorem 8.4.36. So
C; — E;_1 is an injection for each i > n — 1. Now suppose i > n and the resolution
is minimal. Then E;_; — C;_; is an injective cover with kernel C;. But the kernel
of an injective cover is reduced. So C; is reduced for i > n.

Now if i > n and E is an injective submodule of E;_; such that £ N C; = 0, then
E;_1 — C;—; maps E isomorphically into C;—;. But C;_; is reduced by the above.
So E = 0 and hence C; — E;_ is an injective envelope. O

Corollary 10.1.12. Let M, N be R-modules and
0—>Ciy1 > E(M)—>---—> Eog(M) > M — 0

and
00— Djt1 > Ei{(N)—> -+ —> Eog(N) > N —0

be left dnj-resolutions of M and N respectively withi > n—2and f : Ci+1 — Dj41
be any homomorphism, then there exists a commutative diagram

0 — Cit1 —= Ei(M) —— -+ —— Ey_»(M)

S |

0 —— Dit1 —> Ei(N) —> -+ — Ep»(N)

Furthermore, if the resolutions are minimal and f is an isomorphism, then so are
each of the maps E;(M) — E;(N),--- , E,(M) — E,(N).

Proof. This follows from the proposition above and the definition of an injective en-
velope. O

We are now in a position to show that there is an abundant supply of Gorenstein
injective modules.

Theorem 10.1.13. Suppose R is n-Gorenstein and M is an R-module. Then
(1) If0 - M — E° - E' — ... is a right dnj-resolution of M and C* =
Ker(E' — E‘+1)f0ri > 0, then C* is Gorenstein injective for i > n, and is
reduced for i > n + 1 if the resolution is minimal.
) If--- - E1 > Eo > M — 0 is a left dnj-resolution of M and C; =
Coker(Ej+1 — E;) fori > 0, then C; is Gorenstein injective fori > n — 1,
and is reduced for i > n if the resolution is minimal.

Proof. By Theorem 9.1.11,if i > n, then any right dnj-resolution 0 — C! — E? —
E't1 — ... of C' is also a left dnj-resolution. But then any left dnj-resolution of C*
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- — E; - Eog — C' — 0 is exact by Theorem 8.4.36. Pasting these sequences
together, we get a Hom(dnj, —) exact exact sequence

---—>E1—>EO—>Ei—>Ei+1—>---

of injective modules. So C' is Gorenstein injective. If i > n + 1 and the right Jnj-
resolution of M is minimal, then C" is reduced by Proposition 10.1.8.

The proof of (2) follows similarly from Theorem 9.1.11 and Proposition 10.1.11.

O

Remark 10.1.14. If G is a finite group, then it is easy to see that the group ring ZG
is 1-Gorenstein for

072G — QG — QG/ZG — 0

is an exact sequence of left and right ZG-modules. But QG = Q ®z ZG =
Homgyz (ZG, Q) is an injective ZG-module (see Brown [31]). Similarly QG/ZG is
injective.

>rom this we can argue that a ZG-module is Gorenstein injective if and only if it
is a divisible Z-module. The condition is necessary since every injective ZG-module
is divisible and M is a quotient of an injective module. Conversely, if M is divisible,
then Homgz (ZG, M) is injective. But Homz(ZG, M) =~ ZG ®z M and there is
a surjection ZG ®7 M — M. So M is Gorenstein injective by Theorem 10.1.13
above.

Proposition 10.1.15. The following are equivalent for an R-module M :
(1) Ext!(M, N) = 0 for all Gorenstein injective modules N.

(2) Ext'(M,N) = 0 foralli > 1 and all Gorenstein injective modules N.
3) Ext’ (M, N) = 0 for all Gorenstein injective modules N .
(4) Exto(M, N) = 0 for all Gorenstein injective modules N.
(5) Ext{(M, N) = 0 for all Gorenstein injective modules N .
(6) Ext;(M,N) = O0foralli > 1 and all Gorenstein injective modules N .
If furthermore R is n-Gorenstein, then each of the above statements is equivalent to
(7) M has finite injective dimension.
(8) M has finite projective dimension.
(9) M has finite injective dimension at most n.

(10) M has finite projective dimension at most n.
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Proof. (1) = (2). We consider the exact sequence 0 - N — E°(N) — N” — 0.
Then Ext' (M, N") = Ext?>(M, N). But Ext! (M, N”) = 0 by assumption since N
is Gorenstein injective. So Ext>(M, N) = 0. So (2) follows by induction.

(2) = (1) and (6) = (5) are trivial.

(1) & (3) We now consider the exact sequences 0 - N — E°(N) - N” — 0
and 0 —> N’ — Eo(N) — N — 0. Then Ext (M.N") = Ext'(M,N) and
Ext’ (M, N) = Ext' (M, N') by part (1) of Theorem 8.2.7. So the result follows since
N’ and N are Gorenstein injective.

(3) & (4) and (3) < (5) follow similarly from the extended long exact sequence
in Theorem 8.2.7.

(5) = (6). Using the exact sequence 0 — N’ — Eo(N) — N — 0 and Theorem
8.2.7, we get that Exta(M, N) = Exty (M, N’) and so Exty(M, N) = 0. The result
then follows by induction.

6) = (9). Let0 > M — E°(M) — --- — E" (M) — C" — 0 be the mini-
mal right dnj-resolution of M. Then C" is Gorenstein injective by Theorem 10.1.13.
So Ext,(M,C") = 0. But then Hom(E**!(M),C") — Hom(E"(M),C") —
Hom(E"~1(M), C™") is exact and so C" is a retract of E(M). Thus C" is injective.

(7), (8), (9), and (10) are equivalent by Theorem 9.1.10 and (8) = (1) by Propo-
sition 10.1.3. O

Exercises

1. Prove that (2) implies (3) in Proposition 10.1.3.
2. Let N be a reduced Gorenstein injective left R-module. Prove that

(a) the kernels K;, K in the complete minimal dnj-resolution of N are reduced
and Gorenstein injective.

(b) for any i, K; = 0 if and only if N = 0 if and only if K' =0.
Prove Corollary 10.1.9.

Prove Corollary 10.1.12.

Prove part 2 of Theorem 10.1.13.

SRRl

Let R be an n-Gorenstein commutative ring. Prove that if G is a Gorenstein
injective R-module, then S~ G is a Gorenstein injective S~ R-module for each
multiplicative subset S of R.

7. Let R be a commutative Noetherian ring of finite Krull dimension. Prove that
an R-module M is Gorenstein injective if and only if Hom(F, M) is Gorenstein
injective for all flat R-modules F'.

Hint: projdim F' < oo in this case.

8. An R-module N is said to be mock finitely generated if for any finitely generated
R-module M, each of Ext' (M, N), Ext; (M, N), m{f (M,N), and E_xt% (M,N)
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are finitely generated R-modules where Ext; (M, N) are the left derived functors
obtained by using a left dnj-resolution of N or a right dnj-resolution of M. Prove
the following

(@ f0 - N — N — N” — 0is a Hom(Jnj, —) exact exact sequence of
R-modules, then if any two of N/, N, N” are mock finitely generated then so
is the third.

(b) If N is mock finitely generated, and C is a cosyzygy of a finitely generated
R-module, then ExtiR (C, N) is finitely generated for all i > 1.

(c) Let R be a commutative Noetherian ring. Then every finitely generated R-
module is mock finitely generated (see Enochs—Jenda [68, Proposition 3.2]).

9. Let R be a Gorenstein commutative ring, M a Gorenstein injective R-module,
and C a cosyzygy of a finitely generated R-module. Prove that

(a) ExtiR(C, M), = ExtiRp (Cp, My) foralli > 1 forall p € Spec R.
i ~ i :
(b) Extix(C, M), = ExtRp (Cp, My) foralli > 1 forall p € Spec R.
10. Let R and M be as in the previous problem, and N be a finitely generated R-mod-
ule. Prove that ExtiR (N.M)p = ExtiRp (Nyp, My) foralli > Oandall p € Spec R.

11. Let R be a local ring with maximal ideal m and residue field k. Let--- — E; —
Eo — M — 0 be the minimal left dnj-resolution of M and v; (p, M) denote the
number of components of E; that are isomorphic to E(R/p) where p € Spec R.
Prove that

(a) vi(m, M) = dimg ExtiR(k, M)

(b) If R is Gorenstein and M is a reduced Gorenstein injective R-module, then
for each p € Spec R,

. R .
v (p, M) = dimy ) Ext; * (k(p), Mp) = dimyy, ExtiR(R/p, M)y.

In particular, if M is mock finitely generated, then v; (p, M) < oo for all ;.

10.2 Gorenstein Projective Modules

We now dualize the notion of Gorenstein injective modules introduced in the previous
section.

Definition 10.2.1. A module M is said to be Gorenstein projective if there is a
Hom(—, $roj) exact exact sequence

i > P> Pyg— P> pl ...

of projective modules such that M = Ker(P® — P1).
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Remark 10.2.2. The complex above is a complete #roj -resolution of M. We note
that if M is Gorenstein projective, then Ext’ (M, P) = 0foralli > 1 and all pro-
jective R-modules P and so by induction, Ext! (M,L) = 0O foralli > 1 and all
R-modules L of finite projective dimension. In particular, every left #roj -resolution
of M is Hom(—, $roj) exact. So we have a dual result to Proposition 10.1.2.

Proposition 10.2.3. The projective dimension of a Gorenstein projective module is
either zero or infinite.

We will be needing the following two results the first of which is a generalization
of Lemma 3.1.16.

Lemma 10.2.4. Let R be left coherent, M be a finitely presented R-module, and
li_n>1 Nj be a directed limit of R-modules. Then

Exth (M, lim Nj) = li_r)nExt"R (M, Nj) foralli > 0.
Proof. This follows as in the proof of Lemma 3.1.16 by Remark 2.3.12. |

Lemma 10.2.5. If R is left coherent and M is a finitely presented R-module, then a
complex0 — M — P® — Pl — ... with P’ finitely generated and projective is a
right ¥ lat-resolution if and only if the dual complex --- — P'* — P%* — M* — 0
is exact.

Proof. If F is a flat R-module, then we can write F' = 1111)1 F; with each F; finitely

generated and free. So if the dual sequence is exact, then --- — Hom(P!, Fj) —
Hom(P?, Fj) — Hom(M, Fj) — 0 is exact. But Hom(N, —) commutes with direct
limits when N is finitely presented by the previous lemma and so the claim follows
since the direct limit functor preserves exactness. The converse is trivial. m|

Although modules M always have projective precovers, they many not have pro-
jective preenvelopes. However, if R is left coherent and M is a finitely presented
right R-module, then M has a finitely generated projective preenvelope. Thus we can
construct a right ,‘/’rojfg-resolution of M. So we can compute left derived functors
Ext, (M, N) by using a right ,‘Projfg-resolution of M or a flat resolution of N (see
Example 8.3.11).

If furthermore R is right coherent, then M also has a left J’rojf -resolution (see
Example 8.3.3) and thus in this case the module M has a complete J rojfg-resolution.

We are now in a position to state the following result which is dual to Proposi-
tion 10.1.3.

Proposition 10.2.6. Let R be left coherent and M be a finitely presented right R-
module. Then the following are equivalent:
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(1) M is Gorenstein projective.

(2) Ext;(M, Q) = Ext'(M, Q) = Ofori > 1 and Exto(M, Q) = Ext’(M, 0)=0
for all projective or injective R-modules Q.

(3) Ext;(M, Q) = Ext' (M, Q) = Ofori > 1 and Ext (M, Q) = Exto(M, Q) = 0
for all modules Q of finite projective or injective dimension.

(4) Every right ?rojfg—resolution of M is exact and Ext' (M, P) = 0 foralli > 1
and all projective R-modules P.

If furthermore R is right coherent, then each of the above statements are equivalent
to the following:

(5) Every complete Proj fg-resolution of M is exact and Hom(—, Proj) exact.

(6) There exists an exact sequence --- — P; — Py — PO — pl 5 ... of
projective modules such that M = Ker(Py — P°) and Hom(—, R) leaves the
sequence exact.

(7) Ext;(M, R) = Ext' (M, R) = 0 fori > 1 and Exto(M, R) = Ext (M, R) = 0.

(8) Every complete ?rojfg-resolution of M is exact and remains exact when
Hom(—, R) is applied to it.

(9) Every right I/’rojfg—resolution of M is exact and Ext' (M, R) = 0 forall i > 1.
(10) M is reflexive and Ext' (M, R) = Ext'(M*,R) = 0 for all i > 0.

(11) Every complete {Pm]}g-resolution of M is exact and Hom(—, ¥ lat) exact.

Proof. The equivalence of (1) through (4) and (5) through (9) follow as in Proposition
10.1.3.

(4) = (9) and (11) = (8) are trivial.

(9) = (4). Let P be a projective R-module. Then P is a direct summand of a free
R-module, say F = P & P'. So Extiy (M. F) = Extx (M. P) ® Extig(M. P'). But
Exty(M, F) = li_n)lExt’R (M, R) by Lemma 10.2.4 above. So Extz(M, P) = 0 and
thus we are done.

(9) & (10). f0 - M — P° - P! — ... is aright Proj,,-resolution of
M, then it is exact and so 0 — M** — PO** _ pl¥* _, ... s also exact since
finitely generated projective modules are reflexive. In particular, M is reflexive and
Ext! (M*, R) = 0 forall i > 0. Conversely, if Ext' (M *, R) = 0 and M is reflexive,
then0 - M — P% — P! — ... is exact.

(8) = (11). Let--- - Py — Py — P% — P! — ... be a complete Proj,-
resolution of M. Then --- — P* — P%* — P¥ — P* — ... is exact and so
sequences --- — P; — Pgand P° — P! — ... are right Flat-resolutions by
Lemma 10.2.5 above. |
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Corollary 10.2.7. Let R be a local Cohen—Macaulay ring. Then every finitely gener-
ated Gorenstein projective R-module is maximal Cohen—Macaulay.

Proof. This follows from the Proposition above and Proposition 9.5.23. |

Theorem 10.2.8. Ler R be left coherent and 0 — M' — M — M" — 0 be
an exact sequence of finitely presented right R-modules. If M', M" are Gorenstein
projective, then so is M. If M, M" are Gorenstein projective, then so is M'. If
M, M’ are Gorenstein projective, then M" is Gorenstein projective if and only if
Ext!(M”, P) = 0 for all finitely generated projective R-modules P.

Proof. 0 — Hom(M",P) — Hom(M,P) — Hom(M’,P) — 0 is exact if
Ext'(M”,P) = 0. So we have the extended long exact sequence of part (2) of
Theorem 8.2.7 since fProj/.g is a preenveloping class (see Example 8.3.10). Thus if

any two of M’, M, M" are Gorenstein projective, then so is the third. O

Remark 10.2.9. There are results concerning Gorenstein projective modules analo-
gous to those of Gorenstein injective modules.

Even though finitely presented right R-modules over left coherent rings R have
projective precovers and preenvelopes, they may fail to have covers and envelopes.
However, if they do have covers and envelopes, for example when R is a local ring
(see Theorem 5.3.3 and Proposition 6.6.8), then all the results in Section 7.1 have
counterparts for Gorenstein projective modules where in this setting reduced means
no nonzero projective summands. We now summarize some of these results below
omitting obvious corollaries.

We first note that if R is left and right coherent and M is a finitely presented
Gorenstein projective right R-module, then any complete ?rojfg—resolution R
Py - Py — P® — P! — ... of M is exact and each C' = Ker(P' — PIT1),
Ci+> = Ker(Pjy1 — P;) fori > 0, C; = Ker(Py — P?) are Gorenstein projec-
tive by Proposition 10.2.6. In particular, P°/M and Ker(Py — M) are Gorenstein
projective and M — PO is a monomorphism. So we have the following result.

Proposition 10.2.10. Let R be a local left and right coherent ring, M be a reduced
finitely presented Gorenstein projective R-module, and M — P be its flat envelope.
Then M — P is a monomorphism, C = Coker(M — P) is reduced and Gorenstein
projective, and P — C is a projective cover.

Proof. M — P is a monomorphism and C is Gorenstein projective from the above.
Now let P’ be a projective summand of C. Then P = P’ & P” for some projective
P”. Butthen M — P’ is a flat preenvelope of M since M is reduced. So P’ = 0.
Thus C is reduced.
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Now let ¢ : Pp — C be a projective cover. Then we consider the following
commutative diagram.

P0—>C—>O

i

P()*>Ci>0

But g o f is an automorphism. So P = Im f @ Kerg and v o g = 1. Therefore
Kerg € Kery = M. But M is reduced. So Ker g = 0 and thus P = Py and we are
done. O

Corollary 10.2.11. If M is a nonzero reduced finitely presented Gorenstein projective
R-module, then M has infinite projective and injective dimensions.

Proposition 10.2.12. Let R be n-Gorenstein and M be an R-module. If 0 — C; —
Pi_y — ---— Py > Py > M — 0is a projective resolution of M, then C; —
P;_1 is a flat preenvelope for i > n + 1. If furthermore, flat envelopes exist and the
resolution is minimal, then C; is reduced for eachi > n + 1, and C; — P;_1 is a
flat envelope foralli > n + 1.

Proof. The first part follows from Theorem 9.1.11. The rest follows using an argu-
ment dual to that of Proposition 10.1.8. O

Lemma 10.2.13. Let R be n-Gorenstein. Then the class £ of R-modules of finite
injective dimension is preenveloping.

Proof. Let M be an R-module with Card M < Ry, andlet L € £. Let f : M — L
be any map and let xo € M. By Proposition 7.4.5, there is a submodule L’ of L
with Card L’ < Card R such that f(xg) € L' and L', L/L’ € £. Now consider the
map M — L — L/L’ and choose x; € M. Then using Proposition 7.4.5 again,
we can find a submodule L” of L with Card L” < Card R such that f(x;) € L”,
L' c L, and L",L"/L" € £. So f(xg), f(x1) € L" and L/L" € £. But £ is
closed under direct limits. So if we well order M and proceed in this manner, we see
that we can find a submodule L of L with Card L < R, -Card R such that f(M) C L
and L, L/L € £. Hence the result follows by Proposition 6.2.1. |

We note that the preenvelopes guaranteed by the lemma above are monomorphisms
since £ contains injective modules.
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Theorem 10.2.14. Let R be n-Gorenstein, - -+ — Py — Py — M — 0 be a projec-
tive resolution of an R-module M, and C; = Coker(P;+1 — P;) fori > 0, then C;
is Gorenstein projective for i > n, and is reduced fori > n + 1 if flat envelopes exist
and the resolution is minimal.

Proof. Leti > n. Then Ext/ (C;, P) = 0 for all ; > 1 and for all projective R-
modules P by Proposition 10.2.12 above. So it suffices to show that C; has an exact
right Proj-resolution. But by the remark above, C; has an injective £-preenvelope
C; > L. Nowlet0 - K — Q — L — 0 be exact with Q projective. Then K € L.
But Ext/ (C;, L) = 0 for all j = 1and for all L € £ by induction. So in particular
Ext!(C;, K) = 0. Hence Hom(C;, Q) — Hom(C;, L) — 0 is exact and so the map
C; — L above can be lifted to an injective projective preenvelope C; — Q. Then
Ext/(Q/C;, P) = O forall j > 1 and all projectives P. But Q/C; has an injective
£-preenvelope and so by the above it also has an injective projective preenvelope.
We proceed in this manner to get an exact right #roj-resolution of C;. Hence C; is
Gorenstein projective.

The second part follows from Proposition 10.2.12 above. O

Proposition 10.2.15. Let R be a left Noetherian ring with injdim gR = n, and M
be a finitely presented right R-module. If0 — M — P° — Pl — ... is a right
?ro;}g-resolution of M and C' = Ker(P' — Pt then PI=' — C is surjective
fori > n — 1. If furthermore, projective covers exist and the resolution is minimal,
then C* is reduced for eachi > n and P*~' — C' is a projective cover fori > n+1.

Proof. The first part follows from Theorem 8.4.36. If i > n and the resolution is
minimal, then C*~! — P~1 is a projective envelope with cokernel C’. But then
C' is reduced. It remains to show Pi~! — C7 is a cover. But this follows as in
Proposition 10.2.10 above since C*~! is reduced. |

Theorem 10.2.16. Let R be n-Gorenstein and M be a finitely presented left R-mod-
ule. If0 - M — P° — P! — ... isa right ?rojfg—resolution of M and C' =
Ker(P! — P'*Y) fori > 0, then C* is Gorenstein projective for i > n — 1, and is

reduced for i > n if the resolution is minimal.

Proof. This follows from Theorem 9.1.11 and Proposition 10.2.15 above. |

Proposition 10.2.17. Let R be left coherent. Then the following are equivalent for a
right R-module N :

(1) Ext!(M, N) = 0 for all finitely presented Gorenstein projective right R-mod-
ules M.

(2) Ext'!(M,N) = 0 forall i > 1 and all finitely presented Gorenstein projective
right R-modules M.
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3) mo (M, N) = 0 for all finitely presented Gorenstein projective right R-module

M.

(4) Exto(M, N) = 0 for all finitely presented Gorenstein projective right R-mod-
ules M.

(5) Exty(M, N) = 0 for all finitely presented Gorenstein projective right R-mod-
ules M.

(6) Ext;j(M,N) = 0 for alli > 1 and all finitely presented Gorenstein projective
right R-modules M .

If furthermore R is n-Gorenstein and N is a finitely presented right R-module, then
each of the above statements is equivalent to

(7) N has finite injective dimension at most n.

(8) N has finite projective dimension at most n.

Proof. This follows as in Proposition 10.1.15 using corresponding dual results.

We now provide a proof for (6) = (8) for completeness. Let N be a finitely
generated right R-module and 0 - C,, - Py,—1 — P2 — -+ > P; - Py —
N — 0 be a projective resolution of N with P; finitely generated. Then C,, is finitely
generated. But C,, is Gorenstein projective by Theorem 10.2.14. So Ext,(C,, N) =
0. Thus Hom(C,, P,+1) — Hom(C,, P,) — Hom(C,, P,—1) is exact. So C,, is a
summand of P, and thus N has projective dimension at most 7. m|

Remark 10.2.18. A similar argument to Remark 10.1.14 shows that a finitely gener-
ated Z G-module is Gorenstein projective if and only if it is a free Z-module.

Exercises

Prove Proposition 10.2.3.
Prove Corollary 10.2.7.
Prove Corollary 10.2.11.
Prove Proposition 10.2.12.
Prove Remark 10.2.18.

(Enochs—Jenda [63]). Let R be n-Gorenstein and N be a Gorenstein injective
R-module. Then prove that the following are equivalent.

A

(a) N is mock finitely generated.

(b) For every finitely generated Gorenstein projective R-module M, each of
ExtR(M, N), Exty (M, N), Exta (M. N), and Extiy (M, N are finitely gener-
ated forall i > 1.

(c) For every finitely generated Gorenstein projective R-module M, Ext}e (M,N)
is finitely generated.
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7. Let R be n-Gorenstein and M be a finitely generated R-module. Prove that
if0 > M - E° - E' — ... is a right Jnj-resolution of M and C! =
Ker(E! — E'*1), then C' is a mock finitely generated Gorenstein injective
R-module for all i > n.

8. Let R be a complete local ring. Prove that the following are equivalent for a
nonzero Artinian R-module M .

(1) M is Gorenstein injective.
(2) M7 is Gorenstein projective.
(3) Hom(E(k), M) is a nonzero Gorenstein projective R-module.

9. (Enochs—Jenda [69]). Let R be a complete local ring. Prove that the following
are equivalent for nonzero R-module M .

(1) M is a finitely generated Gorenstein injective R- module.
(2) M is of finite length and MV is Gorenstein projective.

(3) M is of finite length and Hom(E (k), M) is a nonzero Gorenstein projective
R-module.

In this case, R is either 0-Gorenstein, that is quasi—Frobenius, or injdim R = oco.

10.3 Gorenstein Flat Modules

Definition 10.3.1. A module M is said to be Gorenstein flat if there exists an Jnj ® —
exact exact sequence

---—>F1—>F0—>F0—>F1—>---

of flat modules such that M = Ker(F® — F1).

It follows from this definition that Tor; (E, M) = O for all i > 1 and any injective
module £. We will show in Theorem 10.3.8 below that over n-Gorenstein rings, this
condition in fact characterizes Gorenstein flat modules.

If M is a finitely presented Gorenstein projective R-module over a left and right
coherent ring, then M has a complete J/’rojfg—resolution .o > Py - Py —> PY >

P! — .... But then subcomplexes -+ - Py - Pp > M — 0and0 - M —
P® — P! — ... are Hom(—, Flat) exact by Proposition 10.2.6. Thus if E is an
injective right R-module, then

o >E®@PL >E®P)—>E®P°>EQP > ...

is exact as in Example 8.3.9. Hence we have the following result.
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Proposition 10.3.2. Let R be left and right coherent. Then every finitely presented
Gorenstein projective R-module is Gorenstein flat.

Proposition 10.3.3. If R is Noetherian and M is a Gorenstein flat R-module, then
the character module M is a Gorenstein injective right R-module.

Proof. If M is Gorenstein flat, then there exists an exact sequence --- — F; —
Fy — F% — F! — ... of flat R-modules such that --- - E ® F; - E ® Fy —
E® F' - E® F' — ... is exact for all injective right R-modules E where
M = Ker(F® — F!). Butthen--- - (EQ F)T - (E® FO)* - (E®
Fo)T - (E® F;)* — -+ isexact. So--- — Hom(E, F'*) - Hom(E, F°") —

Hom(E,F0+) — Hom(E,FlJr) — .- is exact for all injectives £. But --- —
F'* — F%% — F — F¥ — ... is an exact sequence of injective right R-
modules with M+ = Ker(Fo+ — F1+). Hence M T Gorenstein injective. i

Corollary 10.3.4. The flat dimension of a Gorenstein flat module is either zero or
infinite.

Lemma 10.3.5. Let R be right coherent, M be an R-module, and 0 — M — F 0
F! — ... be a right Flat-resolution. Then Tor;(L, M) = 0 for alli > 1 and all
right R-modules L of finite injective dimension if and only if the sequence --- —
L®F - L®F — LQF° > L®F! — - is exact for all such L where
coo—> F1 — Fy > M — 0is a flat resolution of M.

Proof. By Example 8.3.9, the sequence 0 = E®Q M - EQ F* - EQ F! — ...
is exact since E is injective. So if F denotes the complex --- — F| — Fy — FO —
F! — ... then E ® F is an exact complex since Tor; (E, M) = 0 forall i > 1.

We now proceed to argue that the complex L ® F is exact by induction on m =
injdim L. The case m = 0 is the above. If m = 1,1let0 - L — E* - E! - 0
be exact with E®, E! injective. Then we have an exact sequence 0 — L ® F —
E°®F — E! ® F — 0 of complexes with the last two exact. Hence L ® F is exact.
We then argue by induction in the obvious manner. The converse is trivial. m|

Lemma 10.3.6. Let R be n-Gorenstein and M be an R-module. Suppose there exists
an exact sequence 0 - M — F® — F' — ... — F" with F' flat. Then for each
finitely generated R-module N, any map N — M has a factorization N — C — M
where C is a finitely generated Gorenstein projective R-module.

Proof. Consider the exact sequence 0 - M — F* - F! — ... - F*=1 5 [
0.Let0 > N - P> - P! — ... - P"71 . D — 0 be aright Proj, -resolution
of Nand0 - C — P,_1 — Py — ---— Py — Py — D — 0 be exact with P;
finitely generated projective. Then C is Gorenstein projective by Theorem 10.2.16.
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Now let f : N — M be a map. Then we can form the following commutative
diagram with obvious commutativity.

0 N PO Pl pr1 D 0
\ n \hn—] \ \hO \d
0O —C —= P41 — P> Py D 0
f L/gn f() i /gn—] i / fn—l i /gO fn L/”
0 M FO F1 Fr1 L 0

By homotopy, f — gn o hy can be factored through P°. So f can be factored through
C @ PP. Thus the result follows since C @ P is Gorenstein projective. |

The argument in the proof of the following result is a modification of an analogous
result in Lazard’s thesis [137].

Lemma 10.3.7. Let R be any ring and M be an R-module. If for each finitely gen-
erated R-module N, any map N — M has a factorization N — C — M where
C is a finitely generated Gorenstein projective R-module, then M is a direct limit of
some inductive system ((C;), (fji)) where each C; is a finitely generated Gorenstein
projective R-module.

Proof. We construct a set of pairs (C, f') where C is a finitely generated Gorenstein
projective R-module and f : C — M is a map which includes every such C — M
up to isomorphism.

Let D = @ C, over all such pairs (C, f), and let g : D — M be given by the
maps in the pairs (C, f). Now set D = @72, Di where D; = D for each i and let
D — M agree with g on each D;. Consider the directed set (S, U) where U is the
sum of a finite number of summands C (for various pairs (C, f) and various i) and S
is a finitely generated submodule of U with S C Ker(D — M). Order the pairs by
(S,U) < (S8",U"ifandonlyif S Cc S",U C U". Theneasilyli_r)nU/S ~ M.

But U/S is finitely generated. So by the hypothesis, the map U/S — M has a

factorization U/S ﬁ) C i> M where we can suppose (C, f) is in our original set of
pairs. We now note that each of the summands C in U is a summand of some D;. So
let 7 be a nonnegative integer such that ng # i for all such i, and U be the sum of
U and C as a summand of Dy,. We writt U = U & C.

Now let & be the map U — U/S ﬁ) C and define S = {(u,—h(u)) : u € U}.
Then U/S =~ C and S C Ker(D — M). Ifu € S, then h(u) = Oandso S C S.
Hence (U, S) < (U, S). Note that U/S is Gorenstein projective since C is. Thus
we have constructed a cofinal subset of the pairs (S, U) such that U/S is finitely
generated and Gorenstein projective. This completes the proof. m|
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We are now in a position to prove the main result of this section.

Theorem 10.3.8. Let R be n-Gorenstein and M be an R-module. Then the following
are equivalent:

(1) M is Gorenstein flat.

(2) There exists an exact sequence 0 — M — FO > F! — ... — F" with each
F* flat.

(3) If N is any finitely generated R-module, then any map N — M can be factored
through a finitely generated Gorenstein projective R-module.

4 M = 11_1’)1’1 C; for some inductive system ((C;), ( f;i)) where each C; is a finitely
generated Gorenstein projective R-module.

(5) Tor;(E, M) = 0 foralli > 1 and all injective right R-modules E.

(6) Tor; (E, M) = 0 for1 <i < n and all injective right R-modules E.

(7) M ™ is a Gorenstein injective right R-module.

(8) Tori (L, M) = 0 for all right R-modules L with injdim L < oo.

(9) Tor;(L,M) =O0foralli > 1 and all right R-modules L with injdim L < oo.

Proof. (1) = (2), (5) = (6), and (9) = (8) are trivial, (2) = (3) is Lemma 10.3.6,
(3) = (4) is Lemma 10.3.7, and (1) = (7) follows from Proposition 10.3.3.

(4) = (5). Every finitely generated Gorenstein projective is Gorenstein flat by
Proposition 10.3.2 and so (5) follows since Tor commutes with direct limits.

(6) = (5). projdim E < n for each right injective R-module £ by Theorem 9.1.10
since R is n-Gorenstein. So Tor; (E, M) = 0 fori > n + 1 and so (5) follows.

(5) = (9). Let0 > L - E® - E! - ... - E™ — 0 be exact with each E’
injective. Then Tor; (L, M) = Tory,+; (E™, M) and so (9) follows.

(9) = (1). Let F be as in Lemma 10.3.5. Then E ® F is exact for each injec-
tive right R-module E. Furthermore, injdim R < n (as a right R-module). So the
complex F = R ® F is exact by Lemma 10.3.5 and so M is Gorenstein flat.

(8) = (9). Suppose injdimL < ocoand 0 - L' — P — L — 0 is exact with P
projective. Then injdim L” < oo by Theorem 9.1.10 and so (9) follows by dimension
shifting.

(7) = (8). Suppose M is Gorenstein injective. Then there is an exact sequence
E, - Eny — -+~ > E; - Eyg — M™T — 0 where each E; is injective. So we
have an exact sequence

O—>M++—>E3'—>E1+—>---—>E,T

with each E;" flat. But M satisfies (2) and hence (9) by the above. So
Tor; (L, M*T) = 0foralli > 1 and for all right R-modules L such that injdim L <
oo.But0 - M — M+t — M*%/M — 0is pure exact. So Tor; (L, M T+ /M) =
0 for all such L. But then Tor; (L, M+ /M) = 0 for all i > 1 and all such L since
(8) is equivalent to (9). Hence (8) follows. O
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Corollary 10.3.9. If R is n-Gorenstein and G is a Gorenstein injective left (right)
R-module, then G is a Gorenstein flat right (left) R-module.

Proof. Let G be a Gorenstein injective left R-module. Then there is an exact sequence
E, - --- - Ei - Ey — G — 0 with the E;’s injective. Then 0 — G+ —
Ef — Ef — .- — E; is exact with each El-+ flat. So by Theorem 10.3.8, GV is
Gorenstein flat. O

Corollary 10.3.10. If R is Gorenstein, then every Gorenstein projective R-module is
Gorenstein flat.

Proof. This is trivial since Gorenstein projective modules satisfy part (2) of the theo-
rem. =

Corollary 10.3.11. If R is Gorenstein, then a finitely generated R-module is Goren-
stein flat if and only if it is Gorenstein projective.

Proof. Let M be a finitely generated Gorenstein flat R-module. Then the identity
map M — M has a factorization M — C — M where C is a finitely generated
Gorenstein projective R-module by the theorem above. So M is isomorphic to a
direct summand of C and so is Gorenstein projective. The converse follows from
Proposition 10.3.2 or Corollary 10.3.10 above. m|

Corollary 10.3.12. If R is Gorenstein, then arbitrary products and sums and any
inductive limit of Gorenstein flat modules are Gorenstein flat.

Proof. (5) of the theorem shows that any inductive limit and arbitrary sums are Goren-
stein flat. The products are Gorenstein flat by (2). m|

Corollary 10.3.13. Let R be n-Gorenstein and M be an R-module. Then

M- - F - Fp - M — 0 is a flat resolution of M and C; =
Coker(F; 1 — F;) fori > 0, then C; is Gorenstein flat for i > n.

Q) If0 > M — F° - F!' — ... is a right Flat-resolution of M and C' =
Ker(F! — F'*1) fori > 0, then C' is Gorenstein flat fori > n — 1.

Proof. 1) Torj(L,C;) = Tor;4 (L, M). Butif injdim L < oo, then flatdim L < n
since R is n-Gorenstein and so Tor; + j(L, M) = Oforall j > 1 and all i > n. Thus
if i > n, then Torj(L,C;) = 0 foralli > 1. Hence C; is Gorenstein flat for each
i > n by Theorem 10.3.8. (2) follows from (1) and Theorem 8.4.36. O

Theorem 10.3.14. Suppose R is Gorenstein and 0 —- M’ — M — M"” — O is an
exact sequence of R-modules. Then if M’ and M" are Gorenstein flat, so is M. If
M and M" are Gorenstein flat, so is M'. If M" and M are Gorenstein flat, then M"
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is Gorenstein flat if and only if 0 — E @ M’ — E ® M is exact for any injective
module E.

Proof. This follows from (5) and (8) of the theorem. O

Exercises

1. Prove Corollary 10.3.4.

2. Prove part (2) of Corollary 10.3.13.
3. Prove Theorem 10.3.14.
4

. Prove that if G is a finite group, then a Z G-module is Gorenstein flat if and only
if it is torsion free as a Z-module.

5. Prove that the following are equivalent for an n-Gorenstein ring R.
(a) R is quasi-Frobenius.
(b) Every R-module is Gorenstein injective.
(c) Every R-module is Gorenstein projective.
(d) Every R-module is Gorenstein flat.
6. Prove that the following are equivalent for an n-Gorenstein ring R.
(a) glright dnj-dim g M < oo.
(b) Every Gorenstein injective R-module is injective.
(c) Every Gorenstein projective R-module is projective.

(d) Every Gorenstein flat R-module is flat.

10.4 Foxby Classes

Throughout this section, R will denote a local Cohen—Macaulay ring of Krull dimen-
sion d admitting a dualizing module 2 and with residue field k.

Definition 10.4.1. 9Gy(R) will denote the class of R-modules M such that
Tor; (2, M) = Ext'(Q,Q ® M) = 0 forall i > 1 and such that the natural map
M — Hom(2, Q2 ® M) is an isomorphism. $o(R) will denote the class of R-mod-
ules N such that Ext' (Q, N) = Tor; (€2, Hom(Q, N)) = 0 for all i > 1 and such
that the natural map 2 ® Hom(2, N) — N is an isomorphism. & (R) and $o(R)
are called Foxby classes. This notation will also be used to denote the corresponding

full subcategories.
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Remark 10.4.2. The functor Q @ — : §9(R) — Fo(R) gives an equivalence between
the two categories. Similarly, Hom(2, —) : o(R) — &p(R) gives an equivalence. It
follows, for example, that if My, M» € §9(R), then

Hom(My, M5) = Hom(M1, Hom(2, Q2 ® M3)) =~ Hom(Q2 ® M1, Q2 ® M),
and if My, M» € Jo(R), then
Hom(M1{, M5) = Hom(Hom($2, M), Hom($2, M5)).
We state the following result for completeness.

Proposition 10.4.3. The following are equivalent for a ring R:
(1) R is Gorenstein.
(2) M € §y(R) for all R-modules M.
(3) M € $o(R) for all R-modules M.

Proof. (1) = (2), (3) trivially since 2 = R if R is Gorenstein.

(2).3) = (1). If M € (R) (or M € Jo(R)) for all M, then Tor; (2, M) =0
(or Ext' (2, M) = 0) for all R-modules M and all i > 1. Thus 2 is projective and

so finitely generated and free. But injdim 2 = d. So R is Gorenstein. m|
‘ 0 ifi 40
Lemma 10.4.4. Extiy(Q, Q)" 2 { . i #
R ifi =0.

Proof. Since 2 is maximal Cohen-Macaulay, H ”;1( R)(Q) = O forall i # d by
Theorem 9.5.11 and so Extp(Q, )" = Hom(Hjl(_Ié)(Q),E(k)) = Oforalli > 1
by Theorem 9.5.17. Thus the case i # 0 follows.

Now let 0 - Q@ — E® — E! — ... be the minimal injective resolution of
Q2. Then HZ(R)(Q) ~ Ker(Lm(R)(Ed(SZ)) — Lm(R)(Ed"‘l(Q))) (see Defini-
tion 9.5.2). But E4(Q) = E(k) and E4*1(Q) = 0. So Hf () = E(k). Thus
Hompg(Q, Q)" = Homg(E(k), E(k))" =~ R. O

Proposition 10.4.5. If P is projective, then P € §y(R).

Proof. Since Ext' (R, Q) = 0 for i > 1 by the lemma above, Ext' (2, Q ® P) = 0
for all projective R-modules P and all i > 1. Moreover, P — Hom(2,Q2 ® P) is
an isomorphism for any projective P since it is an isomorphism when P = R. Hence
the result follows. i

Proposition 10.4.6. If E is injective, then E € $o(R).
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Proof. Let I be an ideal generated by a maximal R-sequence ry,73,...,7g. Then
Hom(R/I*, Er(k)) = Egyyi(k). But Q/1'Q = Epg/p: (k) (see Remark 9.5.15).
So Hom(2/1'Q2, Eg,y:(k)) = R/I* by Matlis duality. Hence

Q® pHomg(Q, Eg/e(k)) = Homg(R, Eg/y: (k))
by Lemma 10.4.4. But Homg(R, Eg ¢ (k)) = Eg/g:(k). So
Q@ ® rHomg(2, Eg/yt(k)) = Egyy (k).
Now taking inductive limits, we get that 2 ® Hom(2, E(k)) = E (k).
Now if E = E(R/p) for an arbitrary prime ideal p, then 2 ® Hom(Q2, E) — E is
an isomorphism by localizing at p and appealing to the case £ = E(k) above. Thus
Q ® Hom(2, E) — E is an isomorphism for any injective R-module E. But if £

is injective, Ext! (€, E) = 0 and Tor; (2, Hom(2, E)) = Hom(Ext' (22, ), E) =0
forall i > 1 by Lemma 10.4.4, and so we are done.

O

Notation. We will let W denote the class of all modules W such that W ~ Q ®
P for some projective P, and let 'V be the class of all modules V' such that V' =~
Hom(€2, E) for some injective module E.

Proposition 10.4.7. V is a preenveloping class and ‘W is a precovering class.

Proof. Let M be an R-module and embed 2 ® M in an injective R-module E. Then
the composition of the maps M — Hom(2,Q2 ® M) and Hom(2,Q2 ® M) C
Hom(€2, E) is a V-preenvelope. For if V € V, and M — V is a map, then we
haveamap Q @ M — Q ® V =~ Q ® Hom(L2, E’) for some injective E’. But
Q ® Hom(Q2, E’) =~ E’ since E’ € go(R) by Proposition 10.4.6 above. So the map
Q ® M — E’ can be extended to a map E — E’. This gives a map Hom(2, E) —
Hom(2, E’) such that the composition M — Hom(2, E) — Hom(L2, E’) is the
map M — Hom(Q2, E') = V.

Now note that for any M, if W € W, then W — M is a 'W-precover if and
only if Hom(2, W) — Hom(2, M) — 0 is exact. So QUmELM)) _ pr js 4
‘W-precover. |

Proposition 10.4.8. The following are equivalent for an R-module M :
(1) M € %o(R)

(2) There exists an exact sequence
---—>P1—>P0—>V°—>V1—>---

of R-modules with each P; € Proj, Vi € V, such that M = Ker(V? — V1)
and Q ® — leaves the sequence exact.

(3) M has an exact right 'V-resolution and the functor Q ® — leaves any projective
resolution of M exact.
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Proof. (1) = (2). Let--- — Py — Py — M — 0 be a projective resolution of M.
Then:--- > Q® P > Q® Pp > Q ® M — 0 is exact since Tor; (2, M) = 0 for
alli > 1 and Q ® — is right exact. Now let0 - Q @ M — E - El &5 ... bean
injective resolution of Q@ ® M and set V! = Hom(2, E?). Then we get a complex

0—>Hom(Q,. QM) >V >Vl ...

which is exact since Ext' (2, Q2 ® M) = O foralli > 1 and Hom(2, —) is left exact.
So the result follows since M =~ Hom(2, Q2 ® M).

(2) & (3) Wenote that 0 - M — V® — V! — ... is aright V-resolution if and
only if --- — Hom(V?, Hom(R2, E)) — Hom(M,Hom(2, E)) — 0 is exact for all
injective R-modules E if and only if - -- — Hom(Q®V!, E) - Hom(Q®V’, E) —
Hom(Q2 ® E, E) — 0 is exact for all injective modules £ and if and only if Q ® —
makes the complex 0 — M — V9% — V1 — ... exact. Finally, it is easy to see
that Q ® — leaves --- — P; — Py — M — 0 exact if and only if it leaves every
projective resolution exact.

2)= (). 2® —leaves --- — P; — Py — M — 0 exact means Tor; (2, M) =
0foralli > 1. But Vi =~ Hom(£2, Ei) for some injective E'.SoQQVi~2Q®
Hom(Q2, E?) 2 E' by Proposition 10.4.6. Thus the natural map V! — Hom(2, Q ®
V%) is an isomorphism, and 0 - Q@M — Q@ V? - Q@ V! — ... isan
injective resolution of € ® M since it is exact by assumption. But then the complex
0 - Hom(2, 2 ® M) - Hom(Q,2 ® V%) — Hom(Q,Q @ V1) — .- is

equivalent to the exact sequence 0 — M — V0 — V‘1 — ---. So the natural
map M — Hom(2, 2 ® M) is an isomorphism and Ext' (2,2 ® M) = 0 for all
i>1. m|

Similarly, we have the following result noting that a complex - -+ — W; — Wy —
M — 0 with each W; € W is a left W-resolution of M if and only if Hom(2, —)
makes the complex exact.

Proposition 10.4.9. The following are equivalent for an R-module M :
(1) M € Jo(R).
(2) There exists an exact sequence

e > Wy > Wy > E° > El > ...
of R-modules with each E' injective, W; € ‘W, such that M = Ker(E® — E1)
and Hom(2, —) leaves the sequence exact.

(3) M has an exact left 'W-resolution and the functor Hom($2, —) leaves every in-
Jjective resolution of M exact.

Theorem 10.4.10. Let 0 — M’ — M — M" — 0 be an exact sequence of R-
modules. Then if any two of M', M, M" are in §o(R) (or $o(R)), then so is the
third.
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Proof. If M" € §p(R), then Tor; (2, M") = 0andso 0 - QM — QQ®
M — Q®M" — 0isexact. If M € Gy(R), then Tor; (2, M) = 0 and we
have an exact sequence 0 — Tor;(Q, M") - QM — QM. So0 —
Hom(2, Tor; (2, M"”)) — Hom(2,Q ® M’) — Hom(2, 2 ® M) is exact. But
then if M, M’ € §y(R), then 0 — Hom(2, Tor; (2, M")) — M’ — M is exact
and so Tory (2, M) = 0. Hence if any two of M', M, M" are in §p(R), then 0 —
QM — QM — Q® M” — 0 is exact. But this is equivalent to 0 —
Hom(M”,Hom(L2, E)) — Hom(M,Hom(L2, E)) — Hom(M',Hom(Q2, E)) — 0
is exact for all injective R-modules E. Thus 0 — Hom(M",V) — Hom(M,V) —
Hom(M’,V) — 0 is exact for all V € V. So by the Horseshoe Lemma (8.2.1),
right V-resolutions of M’ and M" can be combined to form a right V-resolution of
M. Similarly for projective resolutions of M’ and M”. Then we can paste these
resolutions together along 0 - M’ — M — M" — 0 to get a short exact sequence
of complexes which remains exact when we apply 2 ® — to it. So if any two of the
complexes are exact, then so is the third. But then the result follows by Proposition
10.4.8. An analogous proof gives the result for go(R). |

Corollary 10.4.11. If projdim M < oo, then M € §y(R), and if injdim M < oo,
then M € Jo(R).

Proof. This follows from the theorem and Propositions 10.4.5 and 10.4.6. |

Lemma 10.4.12. If M € §y(R), then Ext'(M, V) =0 foralli > 1 andall V € V.

Proof. We first note that M =~ Hom(2, 2 ® M). Now let V =~ Hom(L2, E) with £
injective. Then

Ext (M, V) =~ Ext' (M, Hom(2, E)) =~ Hom(Tor; (2, Hom(Q ® M)), E) = 0
foralli > 1since 2 ® M € $o(R). O

Theorem 10.4.13. Every R-module M € §y(R) has a 'V-envelope.

Proof. If M € §y(R), then M =~ Hom(2,2 ® M) and so M has a one to one
V-preenvelope by the proof of Proposition 10.4.7. Thus V-preenvelopes of M are
injections. Now let ((Vy), (¢g4)) be an inductive system of V-preenvelopes of M.
Then we have an exact sequence 0 — M — limV,. ButlimV, € V C §y(R).
So (lim V) /M € §y(R) by Theorem 10.4.10 and hence for ﬁ)y map M — V with
V € 'V, we have a factorization M — lim V; — V by the Lemma above. Thus M
has a V-envelope by Lemma 6.6.1. |

We now need the following result which holds for any local ring.

Proposition 10.4.14. If R is any local ring, then the class £ of modules of finite
projective dimension is preenveloping.
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Proof. If projdim L < oo, then projdim L. < dim R (see Raynaud—Gruson [160,
Theorem 3.2.6]). Moreover, every flat module has projective dimension at most dim R
by Corollary 8.5.28. So the class of modules of finite projective dimension is closed
under products.

Now for any R-module M, there is an infinite cardinal X, (depending on M) such
that if L € &£ and S C L is a submodule with Card S < Card M, then there is
a pure submodule L’ of L (hence L’ € £) containing S with Card L’ < R, by
Lemma 5.3.12. So M has an £-preenvelope by Corollary 6.2.2. m|

We note that an £-preenvelope need not be a monomorphism.
We are now in a position to prove the following result.

Lemma 10.4.15. If M € §y(R) and0 - C — P;_4 — --- > P1 —> Py —
M — 0 is exact with each P; projective, then C is Gorenstein projective.

Proof. We first note that any projective resolution of M remains exact when we apply
Q ® — by Proposition 10.4.8 since M € §y(R). Butif P and Q are projective, then
Ext(Q ® 0.2 ® P) = 0 forall i > 1 since Ext'(Q2,Q) = 0 foralli > 1 by
Lemma 10.4.4. Furthermore, injdimQ = d and so injdimQ ® P < d. Hence
Extd‘H(Q ® M,Q2® P) = 0foralli > 1 and all projective P. Thus the exact
sequence

> QP > ROP; > QP —> > QAP > QOM —0

remains exact beginning with the term Hom(Q2 ® P;, 2 ® P) when Hom(—, 2 ® P)
is applied to it with P projective. But Hom(2 ® P;,Q2 ® P) =~ Hom(P;, P) for
eachi. So 0 - Hom(C, P) - Hom(P,, P) — Hom(P;4,, P) — --- is exact for
all projective R-modules P.

Now it remains to show that C has an exact right JProj-resolution. But by Propo-
sition 10.4.14, C has an £-preenvelope C — L which is a monomorphism since
C C Pj_1. Now let Q — L be a projective precover, and K = Ker(Q — L).
Then K € £. But Ext! (C,P) = O foralli > 1 and all projectives P from the
above. So Ext! (C,L) = O0foralli > 1 and for all L € £ by induction. In partic-
ular, Ext!(C, K) = 0. Hence C — L can be lifted to a monomorphism C — Q
which is still an £-preenvelope. We now need to argue that Q/C has a projective
preenvelope that is a monomorphism. But Ext'(Q/C, P) = 0 for all projective P
forall i > 1. Thus Ext/(Q/C,L) = Oforall L € £ and all i > 1. But by The-
orem 10.4.10, Q/C € §y(R). Now embed 2 ® Q/C into an injective E. Then
0/C ~Hom(2,Q2 ® Q/C) C Hom(£2, E). But flatdim Hom(£2, E) < oo and so
Hom(2, E) € £. Thus any £-preenvelope of Q/C is a monomorphism. So we have
an £-preenvelope Q/C — Q! which is a monomorphism with Q! projective by the
argument above. Now let 0° = Q. Then we have an exact right $roj-resolution
0 - C — Q% — Q! We now proceed in this manner to construct an exact right
Proj-resolution 0 - C — Q% — Q! - 0% — ..., ]
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Lemma 10.4.16. If M is a Gorenstein projective R-module, then M € §y(R).

Proof. Let--- — Py — Py — P% — P! — ... be a complete Proj-resolution of
M . This exact sequence is left exact by Hom(—, L) whenever L is a module of finite
projective dimension. In particular, Hom(—, Hom($2, E)) leaves the sequence exact
for any injective R-module E. Hence so does Hom(2 ® —, E). Thus Q ® — leaves
the sequence exact since E is arbitrary. So Tor; (2, M) = 0 foralli > 1.

We note that 0 — QM — QR P? - Q® Plisexactand so 0 — Hom(2, 2 ®
M) — Hom(22, 2® P%) — Hom(Q, Q® P!) is exact. But Hom(Q, Q® P) = P!
since P! € §y(R) by Proposition 10.4.5. So the natural map M — Hom(Q2, Q @ M)
is an isomorphism.

Now consider the short exact sequence 0 — M — P% — N — 0. Then N is
also Gorenstein projective and so N — Hom(€2, 2 ® N) is an isomorphism from the
above. But0 - QM — Q®P? - Q®N — 0is exact. So applying Hom(Q2, —)
we getthat0 > M — P® - N — Ext'(Q, Q@ M) — Ext'(Q, Q ® P°) is exact.
But Ext!(Q,Q ® P% = 0 since Ext'(Q,Q) = 0. Thus Ext'(Q,Q ® M) = 0
and hence likewise Ext! (2, Q2 ® N) = 0. But Ext>(Q,Q ® P%) = 0. So we get
Ext’(2,Q2 ® M) = 0 and by induction we get that Ext' (2, Q2 ® M) = 0 for all
i>1. O

Proposition 10.4.17. M € Gy(R) if and only if for some n > 0, there exists an exact
sequence 0 - Cp — Cp—y — -+ — C1 — Cop - M — 0 with each C; Gorenstein
projective. If there is such a sequence, then there is one withn < d.

Proof. This follows from Theorem 10.4.10, Lemmas 10.4.15 and 10.4.16. O

Theorem 10.4.18. The following are equivalent for an R-module C :
(1) C is Gorenstein projective.

(2) C € Gy(R) and Ext'(C, L) = 0 for all i > 1 and all L such that projdim L <
00.

(3) C has an exact right Proj-resolution and Ext' (C, L) = 0 for all i > 1 and all
L such that projdim L < oo.

(4) There exists an exact sequence 0 — C — PO pl ... pd-l . p_o
0 with each P* projective and B € §y(R).

(5) There exists an exact sequence 0 — Cp, — Cp—qy — -+ — C; - Co—C —
0 with each C; Gorenstein projective for some n > 0 and Ext'(C, L) = 0 for
alli > 1 and all L such that projdim L < oc.

Proof. (1) = (2). C € §y(R) by Lemma 10.4.16 and the second part is standard.
(2) = (3). We apply the arguments we used concerning the C in the proof of
Lemma 10.4.15 to get that C has an exact right $Proj -resolution.
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(3) = (1) by definition and (1) = (4) is trivial since if --- — P; — Py —
PO > Pl ... pd 5 pd+l ... jsacomplete Proj-resolution of C, then
B = Ker(P? — P2+1) is Gorenstein projective and so is in §o(R).

(4) = (1) by Lemma 10.4.15 and (2) < (5) follows from Proposition 10.4.17. O

Corollary 10.4.19. If C = C; & Cy, then C is Gorenstein injective if and only if Cy
and Cy are.

Similar arguments give the following results.

Lemma 10.4.20. If M € Jo(R) and0 - M — E® — ... > E4"1 5 G - 0is
exact with E* injective, then G is Gorenstein injective.

Proposition 10.4.21. Ifinjdim L < oo for an R-module L, then injdim L < d.

Proof. Since injdim L < oo, we have that L € Jo(R) by Corollary 10.4.11. Then if

0—>L—>E"—> E! ... 5 E4971 5 G — 0isexact with E®, E!,... E9-1
injective, G is Gorenstein injective by Lemma 10.4.20. But injdim G < oo. So G is
injective by Proposition 10.1.2. Hence injdim L < d. |

Lemma 10.4.22. If M is Gorenstein injective, then M € $o(R).

Proposition 10.4.23. M < 4o(R) if and only if for some n > 0, there exists an exact
sequence 0 - M — G° - G! — ... = G" — 0 with each G* Gorenstein
injective. If there is such a sequence, then there is one withn < d.

Theorem 10.4.24. The following are equivalent for an R-module G :
(1) G is Gorenstein injective.

(2) G € 4o(R) and Ext'(L,G) = 0 forall i > 1 and all R-modules L such that
injdim L < oo.

(3) G has an exact left dnj-resolution and Ext' (L, G) = 0 forall i > 1 and all L
such that injdim L < oo.

(4) There exists an exact sequence 0 - K — Egz_1 — --- — Eg — G — 0 with
each E; injective and K € $o(R).

(5) There exists an exact sequence 0 — G — GY — Gl_ — .- = G" — 0 with
each G' Gorenstein injective for some n > 0 and Ext' (L, G) = 0 forall i > 1
and all L such that injdim L < oc.

Corollary 10.4.25. If G = G| @ Gy, then G is Gorenstein injective if and only if Gy
and G are.
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We now need the following result which holds for any commutative Noetherian
ring.

Lemma 10.4.26. Let R be a commutative Noetherian ring. If --- — F~1 — F0 —
F! — ... isan exact sequence of flat R-modules such that E ® — leaves the sequence
exact when E is an injective R-module, then Hom(—, K) leaves the sequence exact
when K is cotorsion and of finite flat dimension.

Proof. 1f K is flat and cotorsion, then K is a summand of an R-module Hom(E, E')
where E, E’ are injective R-modules by Lemma 5.3.27. But Hom(—, Hom(E, E!))
Hom(E ® —, E'). So Hom(—,Hom(E, E')) leaves the sequence exact. Hence
Hom(—, K) for such a K leaves the sequence exact.

Now suppose 0 — K’ — K — K" — 0 is an exact sequence such that Hom(F, —)
leaves the sequence exact whenever F is flat. Then applying each of Hom(—, K'),
Hom(—, K) and Hom(—, K”) to the exact sequence F : --- — F~!1 — F0
F! — ... we get the short exact sequence 0 — Hom(F, k') — Hom(F, K) —
Hom(F, K”) — 0 of complexes. Hence if any two of Hom(—, K’), Hom(—, K) and
Hom(—, K”) leave F exact, so does the third. Now if K has finite flat dimension,
then K has a minimal left ¥lat-resolution 0 — F,, — F,—4 — -+ —> Fy —
K — 0 by Theorem 7.4.4. If furthermore K is cotorsion, then each Fj is cotorsion by
Corollary 5.3.26. So each Hom(—, F;) leaves the sequence F exact and hence we get
by induction that Hom(—, K) leaves the sequence exact. m|

Corollary 10.4.27. If M is a Gorenstein flat R-module and K is cotorsion and of
finite flat dimension, then Ext' (M, K) = 0 forall i > 1.

Theorem 10.4.28. Let £ be the class of R-modules of finite injective dimension. Then
an R-module M is Gorenstein flat if and only if M € §y(R) and Tor; (L, M) = 0 for
alli > landall L € £.

Proof. Suppose M is Gorenstein flat. Then there is an dnj ® — exact exact se-
quence --- — F; — Fy — F° — F! — ... with each F;, F' flat such that
M = Ker(F® — F'). Hence L ® — leaves the sequence exact for each L € £. So
Tor; (L, M) = Oforalli > 1 and all L € £. In particular, Tor; (2, M) = 0 for all
i > 1. Thus we have an exact sequence

0 - Hom(Q,Q ® M) - Hom(Q, Q ® F°)
— Hom(Q2, Q2 ® F!) > Hom(Q2,Q ® F?)
where F' =~ Hom(Q, Q ® F?) since F' is in §y(R). Hence M =~ Hom(Q, Q2 ® M).

It now remains to show that Ext' (2,2 ® M) = 0 for each i > 1. We consider the
exact sequence 0 - M — F% — Y — 0. Then clearly Y is Gorenstein flat. So
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Tor; (2,Y) =0foralli > 1 and Y =~ Hom($2, 2 ® Y) by the above. Thus we have
an exact sequence

0 — Hom(Q2, Q2 ® M) — Hom(Q,Q ® F°)
—Hom(Q,Q®Y) - Ext! (2, Q2 M) — 0.

So Ext!(2,Q ® M) = 0. Similarly Ext!(Q,Q ® Y) = 0. But then Ext>(Q,Q ®
M) = 0. So repeating the argument gives Ext’ (2,2 M) =0foralli > 1. Hence
M € Gy(R).

Conversely, suppose --- — F; — Fyg — M — 0 is a flat resolution of M. Then
E ® — leaves the resolution exact for all injectives E since Tor; (E, M) = 0 for all
i > 1 and all such E by assumption. To show that M is Gorenstein flat, we only need
to construct the other half of the complete flat resolution of M.

LetY = Q ® M. Then Ext/(Q,Y) = Ext'(Q,Q2 ® M) = 0 forall i > 1 since
M € §y(R) by assumption. Now let 0 — ¥ — E — X — 0 be exact with E
the injective envelope of Y. Then we have an exact sequence 0 — Hom(2,Y) —
Hom(2, ) — Hom(2,X) — 0. But M =~ Hom(2,2 ® M) =~ Hom(2,Y)
and L = Hom(£2, E) has finite flat dimension. So we consider the exact sequence
0> M — L - W — 0. Since Flat is covering by Theorem 7.4.4, we have an
exact sequence 0 - K — F — L — 0 where FF — L is a flat cover. Thus we can
form the following pullback diagram

0 0
0 K P M 0
0 K F L 0
W — W
0 0

But K is cotorsion and flatdim K < co. So Hom(—, K) leaves --- — F, — F| —
Fo exact by Lemma 10.4.26. Hence Ext! (M, K) = 0 and thus M is a direct summand
of P. So M can be embedded into a flat R-module F. But then M can be embed-
ded into a flat preenvelope M — F giving an exact sequence 0 - M — F —
C — 0. So we get that 0 — Hom(C, F') — Hom(F, F!) — Hom(M, F!) — 0
is exact for all flat R-modules F. In particular, 0 — Hom(C,Hom(E, E(k))) —
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Hom(F,Hom(E, E(k))) — Hom(M,Hom(E, E(k))) — 0 is exact. Thus £ ® —
leaves 0 > M — F — C — Oexact. But M, F € §y(R). So C € §y(R) by
Theorem 10.4.10. Furthermore, it is now easy to check that Tor; (L, C) = 0 for all
L € £ and all i > 1. We then repeat the argument above to get the desired complete
flat resolution of M. Hence M is Gorenstein flat. |

Corollary 10.4.29. Any Gorenstein projective R-module is Gorenstein flat.

Proof. Let M be Gorenstein projective. Then M € §p(R) by Lemma 10.4.16. If
L € £, then Hom(L, E(k)) has finite projective dimension since it has finite flat di-
mension and so Hom(Tor; (L, M), E(k)) = Ext' (M, Hom(L, E(k))) = 0 fori > 1.
Thus Tor; (L, M) = O foralli > 1and all L € £. Hence M is Gorenstein flat by the
theorem. i

Corollary 10.4.30. Any direct limit of a family of Gorenstein flat modules is Goren-
stein flat.

Proof. This also follows from the theorem since §y(R) is closed under direct limits.
O

We are now in a position to state the Cohen—Macaulay version of Theorem 10.3.8.

Theorem 10.4.31. Let £ be the class of R-modules of finite injective dimension. Then
the following are equivalent for an R-module M :

(1) M is Gorenstein flat.

(2) M € %o(R) and there exists an exact sequence 0 — M — FO > ...
FA=Y — Fd with each F* flat.

(3) M € §y(R) and if N is any finitely generated R-module, then any map N — M
can be factored through a finitely generated Gorenstein projective R-module.

4) M € §y(R) and M = lim C; for some inductive system ((C;), (fji)) where
each C; is a finitely generated Gorenstein projective R-module.

(5) M € §y(R) and Tor;(E, M) = 0 foralli > 1 and all injective R-modules E.

(6) M € §y(R) and Tor;(L,M) =0 foralli > 1 andall L € £.

(7) M € §y(R) and Tori(L,M) =O0forall L € £.

(8) M is Gorenstein injective.

Proof. (1) = (2) and (6) = (7) are trivial.

(2) = (3) follows as in Lemma 10.3.6 using Lemma 10.4.15.

(3) = (4) by Lemma 10.3.7.

4) = (5), (5) = (6) follow as in (4) = (5), (5) = (9) of Theorem 10.3.8.

(6) < (1) is Theorem 10.4.28.
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(7) = (6). L € go(R) since L € £. So there is an exact sequence 0 — L' —
W — L — 0 by Proposition 10.4.9 where W = Q ® P with P projective. Further-
more, Tor; (2, M) = 0 for all i > 1 since M € §y(R). Hence Tor; (W, M) = 0 for
alli > 1. But L’ € £ since W € £. So (6) follows by dimension shifting.

(8) ¢ (1). If M™ is Gorenstein injective, then there exists an exact sequence
Ej—Ej_y — - — E; - Eyg - M™T — 0 with each E; injective. So M+ is
Gorenstein flat and thus the result follows as in Theorem 10.3.8. The converse follows
by Proposition 10.3.3. m|

Corollary 10.4.32. If M is Gorenstein injective, then M is Gorenstein flat.

Corollary 10.4.33. A finitely generated R-module is Gorenstein flat if and only if it
is Gorenstein projective.

Exercises
1. Prove that the functor Q ® — : G9(R) — Fo(R) gives an equivalence between
the two categories and so does Hom(2, —) : $o(R) — o(R).
2. Prove Proposition 10.4.9.
3. Prove the second part of Theorem 10.4.10.

4. Let X denote the class of R-modules X such that X =~ Q ® F for some flat
R-module F. Prove that XX C Jo(R).

5. Prove that §y(R) contains flat R-modules. Conclude that if flatdim M < oo,
then M € Gy(R).

Prove that the class V is precovering.
Prove Lemma 10.4.20.

Prove Lemma 10.4.22.

Prove Proposition 10.4.23.

10. Prove Theorem 10.4.24.

11. Prove Corollaries 10.4.32 and 10.4.33.

A



Chapter 11
Gorenstein Covers and Envelopes

In this chapter we consider the existence of precovers, covers, preenvelopes and en-
velopes for the various Gorenstein related classes of modules.

11.1 Gorenstein Injective Precovers and Covers

We now show that over n-Gorenstein rings, Gorenstein injective modules are precov-
ering and covering.
We start with the following result.

Theorem 11.1.1. If R is n-Gorenstein, then every R-module has a Gorenstein injec-
tive precover.

Proof. Let M be an R-module and --- — E,—y — ---— E; - Eg —> M — Obe a
left dnj-resolution of M. Nowlet0 - K — E® - El - ... - E"7 1 5 ... bea
right dnj-resolution of K. Then C = Coker (E"~2 — E"~1) is Gorenstein injective
by Theorem 10.1.13. So if G is Gorenstein injective and -+ — Hp—1 — -+ —
Hy — Hy — G — 0is a left dnj-resolution of G with L = Ker(H,—; — Hyp—3),
then given amap f : G — M we can construct the following commutative diagram

00— L —— H, 4 H, Hy G 0
/| s S/
80
0— K E® E"2 E"! C 0
e DN
0— K —— E,1 Eq Ey M — 0

By homotopy, f — h, o g, can be factored through Eg. So f : G — M can be
factored through the Gorenstein injective module C @ Eg. Thus C @ Eg — M is a
Gorenstein injective precover. O

Lemma 11.1.2. Let R be n-Gorenstein. Then every inductive limit of Gorenstein
injective modules is Gorenstein injective.

Proof. If M is Gorenstein injective, then M has an exact left dnj-resolution --- —
Ei{(M) - Eo(M) - M — 0. Soif ((Gi),(g;;)) is an inductive system with
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G; Gorenstein injective, then we get an inductive system (E¢(G;), E¢(¢j;)) for any
£ > 1. Hence we have an exact sequence

~'-—>lir_)nE1(Gi) —>111E>1E0(Gi) —>lir_>nGi — 0.

But lim E,(G;) is injective for each £ since R is Noetherian. So h_r)n G; is Gorenstein
injective by Theorem 10.1.13. m|

Theorem 11.1.3. Let R be n-Gorenstein. Then every R-module has a Gorenstein
injective cover.

Proof. This follows from Theorem 11.1.1, Lemma 11.1.2 and Corollary 5.2.7. m|

Exercises

1. Prove that if R is n-Gorenstein, then R is Gorenstein injective if and only if every
Gorenstein injective cover is surjective.

2. Let R be a local Cohen—Macaulay ring of Krull dimension ¢ admitting a dualiz-
ing module, M be an R-module, and0 - K - E;_{ — -+ > E; —> Eg —
M — 0 be a left dnj-resolution of M. Prove that if K € Jo(R), then M has a
Gorenstein injective cover.

11.2 Gorenstein Injective Preenvelopes

We first consider the existence of a Gorenstein injective preenvelope M — G of a
module M. Since injective modules are Gorenstein injective, such a preenvelope is
necessarily an injection. We can find such a preenvelope if we can exhibit an exact
sequence 0 - M — G — L — 0 with G Gorenstein injective and with injdim L <
0. For then by Proposition 10.1.3, Ext! (L, H) = 0 when H is Gorenstein injective.
So Hom(G, H) — Hom(M, H) — Extl(L, H) = 0is exact, showing that M — G
is a preenvelope.
We now recall from Proposition 1.5.14 that if

§9 §1
0 c C! c? o 0
ifo ifl le lfn
§9 §1
0 BY B! B2 B" 0

is a commutative diagram of R-modules with exact rows, then 0 — C°® — B% @
C! - B'®C? - ... > B"!1 @ (C" - B" — 0 is an exact sequence where
the map Bi1 @ C! — B! & C'H1is (x,y) > (8(x) + (=1)! f1(¥),8(y)) (where
B'=C'=0fori <0Oandi > n).
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Theorem 11.2.1. If R is an n-Gorenstein ring, then every R-module M has a Goren-
stein injective preenvelope M — G such that if 0 - M — G — L — 0 is exact,
then injdim L < n — 1 whenevern > 1.

Proof. Let0 - M — E° — ... - E"™ ! — H — 0 be a partial injective
resolution of M. By Theorem 10.1.13, H is Gorenstein injective. Hence by the
definition of a Gorenstein injective module, there exists a Hom(Jnj, —) exact exact
sequence 0 - G — E,—1 — -+ - E9 — H — 0 where G is also Gorenstein
injective by Theorem 10.1.4. But then the diagram

0 M EO En_1 — = H ——= 0
| I I
| I I
A Al Al

0 G En i Eo H 0

can be completed to a commutative diagram. So by the remark above, we get an exact
sequence0 > M - GO E* - E, 1®E' - ... > Eg® H - H — 0. This

exact sequence has the exact subcomplex 0 - 0 - 0 — -+ - H ﬂid H — 0.
Forming the quotient complex, we get an exact sequence 0 - M — G @ E° —
E" '®E| - -.-— Eg — 0by Remark 1.5.15. But thenif 0 = M — G ® E® —
L — 0is exact, we see thatinjdim L <n — 1. Since G & E 0 is Gorenstein injective
by Theorem 10.1.4, we see that M — G @ E° is the desired Gorenstein injective
preenvelope. O

Corollary 11.2.2. If R is n-Gorenstein, then the following are equivalent for any
R-module M :

(1) M is Gorenstein injective.

(2) Ext' (L, M) = 0 for all R-modules L with projdim L < ocoand alli > 1.
(3) Ext!'(L, M) = 0 for all R-modules L with projdim L < oo.

(4) Ext (E, M) = 0 for all injective R-modules E and all i > 1.

Proof. (1) = (2) by Proposition 10.1.3 and (2) = (3), (4) are trivial.
(3) = (1). By the theorem above, there is an exact sequence 0 -> M — G —
L — 0 with G Gorenstein injective and injdim L. < oo. So projdim L < oo by
Theorem 9.1.10. But then the exact sequence splits and so M is Gorenstein injective.
(4) = (1) (4) means that any right dnj-resolution of M is a left dnj-resolution. So
M 1is Gorenstein injective by Theorem 10.1.13. |

Remark 11.2.3. It follows from Proposition 10.1.15 and Corollary 11.2.2 above that
(£, Gordnj) is a cotorsion theory over any Iwanaga—Gorenstein ring R where &£ con-
sists of all L with injdim L < oo (or equivalently, projdim L < oo) and §ordnj
denotes the class of all Gorenstein injective R-modules.
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Corollary 11.2.4. The following are equivalent for a Gorenstein injective preenve-
lope M — G of Theorem 11.2.1:

(1) injdim M < oo.
(2) G is injective.

(3) M — G is an injective preenvelope.

Proof. (1) & (2). Let0 - M — G — L — 0 be an exact sequence with G
Gorenstein injective and injdim L < oo (see Theorem 11.2.1). If injdim M < oo,
then injdim G < oo and thus G is injective by Proposition 10.1.2. Conversely, if G
is injective, then injdim M < oo since injdim L < oo.

(2) = (3) is trivial since injectives are Gorenstein injective. (3) = (2) is also
trivial. |

If R is Gorenstein, then the class §ordnj is preenveloping by the above and hence
by Proposition 8.1.3 every R-module has a right ordnj-resolution. This resolution
is exact and is usually called a Gorenstein injective resolution.

Proposition 11.2.5. Let R be an n-Gorenstein ring and £ be the class of R-modules
of finite projective dimension. Then the following are equivalent for an R-module M
and integer r > 0:

(1) right§ordnj-dimM <r.

(2) There exists an exact sequence 0 — M — G® > ... > G" — 0 with each G*
Gorenstein injective.

(3) Ext'(L,M) =0foralli >r + landall L € &.

4) Ext'TY(L, M) =0forall L € &.

(5) Ext'(E,M) =0 foralli > r + 1 and all injective R-modules E.
(6) Every rth dnj-cosyzygy of M is Gorenstein injective.

(7) Every rth '§ordnj-cosyzygy of M is Gorenstein injective.

Proof. (1) = (2); (3) = (4) and (5); and (7) = (6) are trivial.

(2) = (3). Ext'(L, M) =~ Ext'"(L,G") = 0 for all i > r by Corollary 11.2.2.
So (3) follows.

4) = (1) Let0 > M — G° - G' — ... be aright Yordnj-resolution and
G = Ker(G" — G"*1). Then Ext'(L,G) = Ext' T1(L, M) forall L € £. So G is
Gorenstein injective by Corollary 11.2.2. (5) = (1) is similar.

(5) = (7) If G is an rth Gordnj-cosyzygy, then Ext' =" (E, G) = Ext' (E, M) for
alli > 1. So G is Gorenstein injective again by Corollary 11.2.2.

(6) = (5) If G is an rth dnj-cosyzygy, then Ext' (E, M) = Ext'~"(E,G) = 0 for
all injectives E and all i > r since G is Gorenstein injective. m|
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Over Cohen—Macaulay rings, we have the following result.

Theorem 11.2.6. Let R be a local Cohen—Macaulay ring of Krull dimension d ad-
mitting a dualizing module. Then every R-module M € $o(R) has a Gorenstein
injective preenvelope M — G such that if 0 - M — G — L — 0 is exact, then
injdimL <d — 1.

Proof. The follows as in Theorem 11.2.1 using Lemma 10.4.20 instead of Theorem
10.1.13. i

Corollary 11.2.7. An R-module M is Gorenstein injective if and only if M € $o(R)
and Ext' (L, M) = 0 for all R-modules L with injdim L < oo.

Proof. If M € $o(R), then M has a Gorenstein injective preenvelope ¥ : M — G
with injdim Coker ¥ < d —1. So Ext! (L, M) = 0for all L such that injdim L < oo
means M is a summand of G and hence M is Gorenstein injective. The converse
follows from Theorem 10.4.24. m|

Proposition 11.2.8. Let R be as in Theorem 11.2.6. Then the following are equivalent
for an R-module M € Jo(R):

(1) Ext'(M, N) = 0 foralli > 1 and all Gorenstein injective R-modules N.

(2) Ext!(M, N) = 0 for all Gorenstein injective R-modules N .

(3) M has finite injective dimension.

(4) M has injective dimension at most d.
Proof. (1) < (2) is part of Proposition 10.1.15.

(1) = (4). Let0 > M — E° — E! — ... be an injective resolution of M and
K be a dth dnj-cosyzygy of M. Then K is Gorenstein injective by Lemma 10.4.20.
So Extd(M, K) = 0 by assumption. Thus Hom(E4*1, K) — Hom(E?,K) —

Hom(Ed_l, K) is exact and so K is a summand of E4 and hence injdimM <d.
(4) = (3) is trivial, and (3) = (1) by Proposition 10.1.3. |

Exercises

1. Prove that if R is n-Gorenstein, then right §ordnj-dim M < injdim M for each
R-module M.

2. Prove that if R is n-Gorenstein and M is an R-module, then
right Sordnj-dimM <n and right Sordnj-dim M = injdim M

if and only if injdim M < oo.
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3. Let R be a local Cohen—Macaulay ring of finite Krull dimension and £ be the
class of R-modules of finite injective dimension. State and prove a result corre-
sponding to Proposition 11.2.5.

4. Let R and £ be as in Problem 3 above. State and prove a result corresponding to
Problem 2 above.

5. Prove Theorem 11.2.6.

11.3 Gorenstein Injective Envelopes
We now want to show the existence of Gorenstein injective envelopes.

Lemma 11.3.1. If R is n-Gorenstein and £ is the class of R-modules L such that
injdim L < oo, then £ is closed under inductive limits.

Proof. By Theorem 9.1.10 we have injdim L < n for all L € £. Since R is left
Noetherian we have inj dimli_r)n L; < sup; injdim L; for any inductive system (L;) of
left R-modules. Hence inj dimli_r)nLi <nifall L; € £. O

Theorem 11.3.2. If R is n-Gorenstein, then every R-module M has a Gorenstein
injective envelope M — G such that if 0 - M — G — L — 0 is exact, then
injdim L < n — 1 whenever n > 1.

Proof. By Remark 11.2.3, (£, §ordnj) is a cotorsion theory which has enough in-
jectives by Theorem 11.2.1. So the result follows from Theorem 7.2.6 and the lemma
above. i

Using this theorem we get the following result.

Corollary 11.3.3. If M — G is a Gorenstein injective envelope, then injdim M < oo
if and only if M — G is an injective envelope.

Proof. This follows from Corollary 11.2.4. m|

Theorem 11.3.4. Let R be n-Gorenstein. If M is an R-module and 0 — M —
G" > G - ... > G’_’ — -+ is a minimal right §ordnj-resolution, then G* is
injective fori > 1 and G* = 0 fori > n.

Proof. This follows from Corollary 11.3.3 and Theorem 11.3.2. m|

Definition 11.3.5. Let A be an R-submodule of B. Then A C B is called a Goren-
stein extension if projdim B/A < oo, and a Gorenstein injective extension if B is
furthermore Gorenstein injective. We note that every Gorenstein injective envelope
over an n-Gorenstein ring is a Gorenstein injective extension. The Gorenstein injec-
tive envelope of an R-module M is denoted by G(M).
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Proposition 11.3.6. Let R be n-Gorenstein. Then the following are equivalent for an
R-module M :

(1) M C G is a Gorenstein injective extension.
(2) M C G is a Gorenstein injective preenvelope with projdim G/ M < oo.

(3) G = G(M) @ E for some injective R-module E where the isomorphism leaves
M fixed.

Proof. (1) = (2). If M C G is a Gorenstein injective extension, then proj dim G/ M <
oo by definition and so Ext! (G/M, G’) = 0 for all Gorenstein injective R-modules
G’ by Corollary 11.2.2. Thus M C G is a Gorenstein injective preenvelope.

(2) = (3). (2) implies that we have the following commutative diagram with exact
rOws

L

0 M G G/M

I

0—>M —>GM) —>= GM)/M ——= 0

0

But G(M) - G — G(M) is an automorphism. So G =~ G(M) & G’ for some
Gorenstein injective R-module G’. But then G’ is also a summand of G/ M. Hence
G’ is injective by Proposition 10.1.2.

(3) = (2) and (2) = (1) are trivial. |

Proposition 11.3.7. Let R be n-Gorenstein and M be a submodule of a Gorenstein
injective R-module G. If projdim M < oo, then G =~ E(M) & G’ for some Goren-
stein injective R-module G'.

Proof. By Corollary 11.3.3, E(M) = G(M) and so we have the following commu-
tative diagram

L]

0 M G G/M

T

0

But then E(M) — G — E(M) is an automorphism and so the result follows. m|
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Corollary 11.3.8. The following are equivalent for a Gorenstein injective R-mod-
ule G:

(1) G is reduced.
(2) G = G(M) for every submodule M of G such that projdim G/ M < oc.

(3) G has no nontrivial submodules of finite projective dimension.

Proof. (1) = (2) follows from Proposition 11.3.6.

(2) = (3). Let M be a submodule of finite projective dimension. Then G = E(M )&
G’ for some Gorenstein injective G’ by Proposition 11.3.7. But proj dim E(M) < oc.
So G’ C G is a Gorenstein injective extension. Thus G =~ G(G’) =~ G’ by assump-
tion. Hence E(M) = 0.

(3) = (1) follows easily since every injective module has finite projective dimen-
sion. O

Proposition 11.3.9. If R is n-Gorenstein and M; — G; is a Gorenstein injective en-
velope of M; for eachi € I, then @ M; — P G; is a Gorenstein injective envelope.

Proof. We first argue that @ G; is Gorenstein injective. Since each G; is Gorenstein
injective, there is an exact sequence E? — -+ — E!' — G; — 0 with each Ej in-
jective. But then we have the exact sequence P E? - > @QE' > PG —0.
So by Theorem 10.1.13, we see that €D G; is Gorenstein injective. Then by Corol-
lary 6.4.4, we get that p M; — €P G; is a Gorenstein injective envelope. m|

Proposition 11.3.10. Let R be n-Gorenstein and M C G be a Gorenstein injective
envelope. If [ : G — G is linear and M C Ker f, then f is locally nilpotent on G
(that is, for each x € G there is an m > 1 such that f™(x) = 0).

Proof. By the preceding result we know that M @M &M B--- CGHGCHG P ---
is a Gorenstein injective envelope. Let ¢ : G @ G @ --- — G @ --- be the map
such that ¥ (xo, x1, x2,...) = (x0,x1 — f(x0),x2 — f(x1),...). By our hypothesis
on f, v is the identity on M & M & ---. Since we have an envelope, ¢ must
be an automorphism. Let x € G. Then (x,0,0,...) must be in the image of .
Let ¥ (x0,x1,X2,...) = (x,0,0,...). Then we see that xo = x, x; = f(x),
X2 = f2(x),....Butfor large m, x,, = 0, thatis f(x) = 0. |

Corollary 11.3.11. If R is a commutative n-Gorenstein ring and M C G is a Goren-
stein injective envelope where IM = 0 for some ideal I C R, then for each x € G,
I"x = 0 for some m > 1.

Proof. If r € I, we consider the function f : G — G with f(x) = rx. By applying
Proposition 11.3.10 above to this f, we see that for each x € G, rx = 0 for some
m > 1. Then since [ is finitely generated we see that for each x € G, [x = 0 for
some m > 1. O
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Exercises

1. Prove Theorem 11.3.4.

2. Let A C B C C be modules and consider the three inclusions A C B, B C C,
and A C C. Prove that if any two of these are Gorenstein extensions, then so is
the third.

3. Let R be n-Gorenstein and N be a submodule of M. Prove that N C M is
a Gorenstein extension if and only if G(M) =~ G(N) & E for some injective
R-module E where the isomorphism leaves N fixed.

4. Let R be a local Cohen—Macaulay ring of Krull dimension d admitting a dual-
izing module. Prove that every N € Jo(R) has a Gorenstein injective envelope
¥ : N — G such that injdim Coker < d — 1.

5. Let R be as in Problem 4 above. Prove that every N € {o(R) has a minimal
right §or dnj-resolution of the fom 0 — N — G° — E! — E? — ... —
E?=1 5 E4 5 0 where G° is Gorenstein injective and each E’ is injective.

6. Let R be Iwanaga—Gorenstein. Prove that the class £ of R-modules of finite
projective dimension is covering. And moreover, if 0 - K — P - M — 0is
exact where P — M is an £-precover, then K is Gorenstein injective.

7. Prove that if R is Iwanaga—Gorenstein then the minimal left £-resolution of an
R-module M is of the form

—>E2—>E1—>L0—>M—>0

where Lo € £ and E; is injective for each i.

8. Prove that if R is a local Cohen—Macaulay ring of Krull dimension d admitting a
dualizing module and if £ is the class of R-modules of finite injective dimension,
then every N € Jo(R) has an £-cover. And moreover, if ¢ : P — N issuch a
cover, then Ker v is Gorenstein injective.

11.4 Gorenstein Essential Extensions

Definition 11.4.1. Let A be a submodule of an R-module B. Then A is said to
be a Gorenstein essential submodule of B if for each submodule N of B such that
projdim N < co, NN A = 0 implies N = 0. If 4 is a Gorenstein essential sub-
module of B and A C B is a Gorenstein extension, then we say that A C B is a
Gorenstein essential extension.

It is trivial to see that every essential submodule is Gorenstein essential, and if
A C B C C are modules such that A C C is Gorenstein essential, then A, B are
Gorenstein essential submodules of B, C respectively.
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Lemma 11.4.2. Let R be n-Gorenstein. Then the following are equivalent for an
R-module G:

(1) G is Gorenstein injective.
(2) G has no proper Gorenstein essential extensions.

(3) G is a direct summand of all Gorenstein extensions of itself.

Proof. (1) = (2). Let G C H be a Gorenstein essential extension of a Gorenstein
injective R-module G. Then H =~ G @& E for some injective R-module E by Propo-
sition 11.3.6. But projdim E < oo, G N E = 0, and G is a Gorenstein essential
submodule of H. So E = 0.

(2) = (3). Suppose G has a proper Gorenstein extension H, and let € be the
collection of all nonzero submodules N of H such that projdim N < coand NNG =
0. € # @ for otherwise H would be a proper Gorenstein essential extension of G.
Now order € by inclusion and we note that € is an inductive system since R is n-
Gorenstein. Hence € has a maximal element Ny by Zorn’s Lemma. We now argue
that in fact H = G @ Npy.

We first note that H/(G + No) = (H/G)/(No/G N No) = (H/G)/Np. So
H/(G + Np) has finite projective dimension since H/G and Ngy do. Hence (G +
No)/No C H/Ny is a Gorenstein extension. But G =~ (G + Ny)/Ng has no proper
Gorenstein essential extensions. Hence if H # G + Ny, then (G + No)/No <
H /Ny is not a Gorenstein essential extension. So there is a submodule M of H such
that No € M, projdim M /Ny < oo, (M/No) N ((G + No)/No) = 0. But then
projdimM < ocoand M NG = 0. So M is in € contradicting the maximality of Ny.
Hence H = G & Ny.

(3) = (1). By Theorem 11.2.1, H has an injective Gorenstein injective preenve-
lope H — G with projdim G/H < co. So G C H is a Gorenstein extension. Thus
G is a direct summand of H and so we are done. O

Lemma 11.4.3. If E is an injective submodule of an R-module M and S C M is
maximal with respectto ENS =0,then M = E & S.

Proof. (E & S)/S is a summand of M/S since E is injective. But then M/S =
(T/S) ® E for some R-module 7. Hence E =~ M/S since S is maximal with
respectto ENS =0. Thus M == E @ S. m|

Definition 11.4.4. A C C is said to be a minimal Gorenstein injective extension if it
is a Gorenstein injective extension and whenever A C B & C is such that A C B
is a Gorenstein extension, then B is not Gorenstein injective. A C B is said to be a
maximal Gorenstein essential extension if A C B is a Gorenstein essential extension
and whenever A C B & C is such that A & C is a Gorenstein extension, then A is
not a Gorenstein essential submodule of C.
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Theorem 11.4.5. Let R be n-Gorenstein. Then the following are equivalent for a
submodule M of an R-module G :

(1) M C G is a Gorenstein injective envelope.
(2) G is a Gorenstein essential Gorenstein injective extension of M.
(3) G is a minimal Gorenstein injective extension of M.

(4) G is a maximal Gorenstein essential extension of M.

Proof. (1) = (2). M C G is a Gorenstein injective extension by Theorem 11.2.1.
We now show that M is a Gorenstein essential submodule.

Let N C G be a submodule of finite projective dimension such that N N M = 0.
Then E(N) is a submodule of G by Proposition 11.3.7. Now let G’ > M be maximal
in G with respectto G'NE(N) = 0. Thus G =~ E(N)® G’ by Lemma 11.4.3 above
and G/M =~ E(N) & G’/M. Butthen M C G’ is a Gorenstein injective extension.
SoG' =~ G(M)® E = G @ E for some injective R-module E by Proposition 11.3.6.
Hence E(N) = 0 and so M is a Gorenstein essential submodule.

(2) = (3). Let H be a Gorenstein injective extension of M contained in G. Then
projdimG/H < oo and so G = H @ E for some injective R-module E. But
ENH = 0and projdimE < oco. So E = 0 since M is a Gorenstein essential
submodule of G. Thus H = G.

(3) = (1). By Proposition 11.3.6, G(M) is a direct summand of G and so
G(M) =~ G by minimality.

(2) < (4) follows from the equivalence of (1) and (2) in Lemma 11.4.2. |

Exercises

1. Let A C B C C be modules and suppose A C C is Gorenstein essential. Prove
that A C B and B C C are also Gorenstein essential.

2. Prove the equivalence of parts (2) and (4) of Theorem 11.4.5.

3. Argue that if 4 is an essential submodule of B and B is a Gorenstein essential
submodule of C, then A is a Gorenstein essential submodule of C.

4. Let R be n-Gorenstein. Prove that if A C B is an essential Gorenstein extension,
then G(A4) = G(B).

11.5 Gorenstein Projective Precovers and Covers
We now consider the existence of Gorenstein projective precovers. We first note that

since projective modules are Gorenstein projective, such precovers are necessarily
surjective.
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Theorem 11.5.1. If R is n-Gorenstein, then every module M has a Gorenstein pro-
jective precover C — M such that if 0 - L — C — M — 0 is exact, then
projdim L <n — 1 whenever n > 1.

Proof. The proof is dual to the proof of Theorem 11.2.1. It begins with an appeal to
Theorem 10.2.14 and then follows by a dual argument. |

Remark 11.5.2. We note that if M is finitely generated, then a Gorenstein projective
precover constructed in the above may be chosen to be also finitely generated.

Corollary 11.5.3. If R is n-Gorenstein, then the following are equivalent for any
R-module M :

(1) M is Gorenstein projective.
(2) Ext'! (M, L) = 0 for all R-modules L with projdim L < oo and all i > 1.
(3) Ext'(M, L) = 0 for all R-modules L with projdim L < oo.

Furthermore, if M is finitely generated, then each of the above statements is
equivalent to

(4) Ext'(M, L) = 0 for all finitely generated R-modules L with projdim L < oo
andalli > 1.

(5) Ext'(M, L) = 0 for all finitely generated R-modules L with projdim L < oo.
(6) Ext'(M, P) = 0 for all projective R-modules P and all i > 1.

Proof. (1) = (2) by Remark 10.2.2 and (3) = (1) follows from the theorem above.
2)= (3);(2) = (4) = (5); and (2) = (6) are trivial.
(5) = (1) follows from the theorem choosing the precover to be finitely generated
and (6) = (1) follows from Theorem 10.2.16. |

Corollary 11.5.4. If R is a commutative local Gorenstein ring, then a finitely gener-
ated R-module is Gorenstein projective if and only if it is maximal Cohen—Macaulay.

Proof. This is left to the reader. m|

Remark 11.5.5. Dual to Corollary 11.2.4, we have that for a Gorenstein projective
precover C — M of Theorem 11.5.1, projdim M < oo if and only if C is projective
and if and only if C — M 1is a projective precover.

We are now in a position to prove a Gorenstein version of Theorem 10.2.8.

Theorem 11.5.6. Let R be n-Gorenstein and 0 — M' — M — M" — 0 be an
exact sequence of R-modules. If M', M" are Gorenstein projective, then so is M,
and if M, M"" are Gorenstein projective, then so is M'.



292 Chapter 11 Gorenstein Covers and Envelopes

Proof. We consider the following exact sequence
oo > Ext!(M", L) — Ext!(M, L) — Ext'(M', L) — Ext>’(M",L) — - --

with projdim L < oo. So if M’, M" are Gorenstein projective, then Ext! (M”, L) =
Ext!(M’, L) = 0 and hence Ext! (M, L) = 0. Thus M is Gorenstein projective by
Corollary 11.5.3. Similarly for M’. ]

The class of Gorenstein projective R-modules, denoted orProj, is precover-
ing over n-Gorenstein rings by Theorem 11.5.1 and hence every R-module has a
left §or Proj-resolution. This resolution is is exact and is usually called a Goren-
stein projective resolution. We now have the following result which is dual to Propo-
sition 11.2.5.

Proposition 11.5.7. Let R be n-Gorenstein and £ be the class of R-modules of finite
projective dimension. Then the following are equivalent for an R-module M and
integer r > 0:

(1) leftGorProj-dimM <r.

(2) There exists an exact sequence 0 - C, — Cp—_; — -+ —> C; > Cp > M —
0 with each C; Gorenstein projective.

(3) Ext'(M,L) =0 foralli >r + landall L € £.

4) Ext* TV (M, L) =0forall L € &.

(5) Every rth §orProj-syzygy of M is Gorenstein projective.

(6) Every rth Proj-syzygy of M is Gorenstein projective.
Furthermore, if M is finitely generated, then each of the above statements is
equivalent to

(7) Ext (M, P) = 0 for all projective R-modules P and alli > r + 1.

Proof. (1) = (2); (3) = (4) and (7); (5) = (1) and (6) are trivial.

(2) = (3). Ext'(M,L) = Ext'™"(C,,L) = Oforalli > randall L € £. So (3)
follows.

(4) = (5). Let K be an rth §or Proj-syzygy. Then Ext" (M, L) =~ Ext! (K, L)
forall L € . But Ext!(K, L) = 0 forall L € £ implies K is Gorenstein projective
by Corollary 11.5.3.

(6) = (3). Let--- — P; — Py — M — 0 be a projective resolution of M and
K = Ker(P,_; — P,_3). Then Ext'(M, L) = Ext'~" (K, L) for all L € £ and so
(3) now easily follows.

(7) = (6). If K is an rth Proj -syzygy of M, then Ext'"™" (K, P) = Ext'(M, P)
for all i > r and K is finitely generated. But Ext! " (K, P) = 0 forall i > r by
assumption. So K is Gorenstein projective by Corollary 11.5.3. m|
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Corollary 11.5.8. The following properties hold for any R-module M :
(1) leftSorProj-dimM < n.
(2) leftSorProj-dim M = projdim M if and only if projdim M < oo.

We can now prove a Gorenstein version of Proposition 10.2.17.

Proposition 11.5.9. Let R be n-Gorenstein. Then the following are equivalent for an
R-module N :

(1) Ext!(M, N) = 0 for all Gorenstein projective R-modules M.

(2) Ext' (M, N) = 0 for all Gorenstein projective R-modules M and all i > 1.
(3) N has finite projective dimension.

(4) N has finite flat dimension.

(5) Torj(M,N) = 0 foralli > 1 and all Gorenstein flat right R-modules M .
(6) Tory (M, N) = 0 for all Gorenstein flat right R-modules M.

Proof. (1) < (2). Assume (1). We consider the exact sequence 0 - M’ — P —
M — 0 with P projective. Then M’ is Gorenstein projective by Theorem 11.5.6. So
Ext?>(M, N) = Ext!(M’, N) = 0 and thus (2) follows by induction. The converse is
trivial.

(2) & (3). Assume (2). Let--- — P; — Py — N — 0 be a projective res-
olution of N and K = Ker(P,—; — Pn—3). Then K is Gorenstein projective by
Theorem 10.2.14. So Ext*(K, N) = 0 by assumption. Thus Hom(K, P,4+1) —
Hom(K, P,) — Hom(K, P,—1) is exact. So K is a summand of P, and thus
projdim N < n. The converse follows from Remark 10.2.2.

(1) < (4) by Theorem 9.1.10.

(5) & (4). Assume (5). Tor;(M,N) = 0 means Ext'(M,Nt) = 0. Thus
Ext! (M,N*) = 0foralli > I and all Gorenstein projective R-modules M since
Gorenstein projectives are Gorenstein flat. So flatdim N < oo by the above. Thus
injdim Nt < oo since R is n-Gorenstein. Therefore flatdim N < oo. The converse
follows from Theorem 10.3.8 and Theorem 9.1.10.

(6) < (5). Assume (6). We consider the sequence 0 — M’ — P — M — 0 with
P projective. Then M’ is Gorenstein flat by Theorem 10.3.14. So Torp(M, N) =
Tory (M’, N) = 0 and so (5) follows by induction. The converse is trivial. m|

Remark 11.5.10. By Proposition 11.5.9 above and Corollary 11.5.3, we see that
(orProj, L) is a cotorsion theory over any Iwanaga—Gorenstein ring R and has
enough injectives and projectives by Proposition 7.1.7 and Theorem 11.5.1.

In general, modules over n-Gorenstein rings do not have Gorenstein projective cov-
ers. This can be seen by considering the 1-Gorenstein ring Z where the Gorenstein
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projective modules are the free modules. When the ring R is local, all finitely gener-
ated left R-modules have projective covers by Theorem 5.3.3. So it is natural to raise
the analogous question in the Gorenstein situation.

If R is local, commutative and Gorenstein, Auslander announced that all finitely
generated R-modules have finitely generated Gorenstein projective covers. We will
defer a proof of this fact to the next section where we will prove a more general
result (concerning modules over a local Cohen—-Macaulay ring admitting a dualizing
module). In order to do this, we will need the following result.

Theorem 11.5.11. Let R be a local Cohen—Macaulay ring of Krull dimension d ad-
mitting a dualizing module. Then every R-module M € §y(R) has a Gorenstein
projective precover V¥ . C — M with projdimKery < d — 1.

Proof. The proof is like the proof of Theorem 11.5.1 above. We start by appealing to
Lemma 10.4.15 and follow the same argument. |

Corollary 11.5.12. An R-module M is Gorenstein projective if and only if M €
o(R) and Ext' (M, L) = 0 for all R-modules L of finite projective dimension.

Remark 11.5.13. Using Theorem 11.5.11 and Corollary 11.5.12 above, we get re-
sults corresponding to Remark 11.5.5 and Theorem 11.5.6 for R-modules M, M’,
M" € §y(R) with identical proofs.

Proposition 11.5.14. The following are equivalent for an R-module N € $o(R):
(1) Tor;(N,M) = 0 foralli > 1 and all Gorenstein flat R-modules M.
(2) Tori(N, M) = 0 for all Gorenstein flat R-modules M.

(3) N has finite injective dimension.

Proof. (1) < (2) follows as in Proposition 11.5.9.

(1) © (3). (1) means Ext' (M, NT) = Oforall i > 1 and all Gorenstein projective
R-modules M by Corollary 10.4.29. Thus flatdim N+t < oo by a result dual to
Proposition 11.2.8 above and so injdim N < oco. The converse by Theorem 10.4.28.

O

Proposition 11.5.15. An R-module K is cotorsion and has finite projective dimension
if and only if K € §9(R) and Ext' (M, K) = 0 for all Gorenstein flat R-modules M
and alli > 1.

Proof. If projdim K < oo, then K € §p(R). The second part follows from Corol-
lary 10.4.27. Conversely, Ext! (F, K) = 0 for all flat R-modules and so K is co-
torsion, and projdim K < oo by Corollary 10.4.29 and a result dual to Proposi-
tion 11.2.8. O
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Exercises

1. Prove Theorem 11.5.1.

2. Prove that if R is Iwanaga—Gorenstein, then every finitely generated R-module
M has an £-preenvelope M — K with K finitely generated. And moreover, if
0 > M — K —- C — 0is exact, then C is a finitely generated Gorenstein
projective R-module.

3. Prove Corollary 11.5.4.

Hint: Use Proposition 9.5.23.

Prove the second part of Theorem 11.5.6.

Prove Corollary 11.5.8.

Prove Theorem 11.5.11.

Prove Corollary 11.5.12.

Let R be a local Cohen—Macaulay ring of finite Krull dimension and £ be the

class of R-modules of finite projective dimension. State and prove a result corre-
sponding to Proposition 11.5.7.

®© N oA

9. Let R be as in Problem 7 above. State and prove a result corresponding to Propo-
sition 11.5.9.

11.6 Auslander’s Last Theorem
(Gorenstein Projective Covers)

In this section, we let R be a local Cohen—Macaulay ring of Krull dimension d ad-
mitting a dualizing module 2. We will prove that any finitely generated R-module M
with M € §p(R) (see Chapter 10, Section 4) has a Gorenstein projective cover. We
recall from Proposition 10.4.3 that if R is Gorenstein, then &y (R) is the class of all R-
modules. So in this case, all finitely generated R-modules have Gorenstein projective
covers. This result was first announced by Auslander.

We will now be concerned with the Matlis duals MY of modules M in the Foxby
classes G9(R) and go(R). So we start with the following result.

Proposition 11.6.1. If R is complete and M is finitely generated, then M € §y(R) if
and only if MV € $o(R).

Proof. Suppose M € §y(R). Then since Tor; (2, M) = 0, we get Ext' (2, M?) =
(Tor; (2, M))? = 0 fori > 1. To get Tor; (2, Hom(2, MV)) = 0 we only need to
establish that

(Tor; (2, Hom($2, M?)))¥ = Ext' (Q, Hom(Q, M?)?) = 0

fori > 1. But Hom(Q, M)’ = (R ® M)"’ =2 Q @ M and Ext! (2, Q ® M) =0
for i > 1 by hypothesis.
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Now we need to establish that 2 ® Hom(2, MV) — M7 is an isomorphism. We
have that M — Hom(2, R ® M) is an isomorphism and so Hom(2, QQM)? — MV
is an isomorphism. Also € ® Hom(Q2, M%) =~ Q ® (2 ® M)V and so we only
need establish that the natural map Q ® (2 ® M)? — Hom(2,Q2 ® M)? is an
isomorphism. But the two functors — ® (2 x M)¥ and Hom(—, 2 ® M)V are right
exact and the natural transformation — ® (2 ® M) — Hom(—, Q2 ® M)V is an
isomorphism when evaluated at R” for any n > 1. So a standard argument gives that
QROQRIM)Y — Hom(2, Q® M)V is an isomorphism. Thus we have MV € 4o(R).

Now let N = MYV and assume N € Zo(R). We want to show M = NV €
9o(R). We have Tor; (2, M)¥ = Ext' (Q, M?) = Ext'(Q2, N). Since N € Jo(R),
Ext' (2, N) = 0 and so Tor; (2, M) = 0. But also, Tor; (2, Hom(2, N)) = 0 for
i >1.S00=Tor; (2, Hom(, N))¥ = Ext' (2, Hom($2, N)?). But Hom(Q, N)¥ =
Hom(Q, MY)! = (QQ@ M)*’ 2 Q@ M. SoExt! (2, Q® M) =0fori > 1.

To establish that M — Hom(2, Q2 ® M) is an isomorphism, we note that Q ®
Hom(2, N) — N is an isomorphism, and so NV — (2 ® Hom(2,N))? =
Hom(2, Hom(2, N)Y) is an isomorphism. So we need that the natural map QM =
Q ® Hom(N, E(k)) — Hom(Hom(2, N), E(k)) is an isomorphism. This is the case
since the natural transformation

— ® Hom(N, E(k)) — Hom(Hom(—, N), E(k))
is an isomorphism on all R”, n > 1, and since both functors are right exact. O

Corollary 11.6.2. If C is a finitely generated module, then C is Gorenstein projective
if and only if CV is Gorenstein injective.

Proof. If C is Gorenstein projective, then there is an exact sequence 0 — C —
P;_y—-+— Py— M — 0with Py, ..., P;_; finitely generated projective mod-
ules. Hence by Proposition 10.4.17 M € §y(R). So MV € o(R) by the Proposition
above. But0 - M — Pj — .-+ — P — C" — Oisexactand Py,..., P]_,
are injective. So CV is Gorenstein injective by Proposition 10.4.23.

Conversely, suppose C" is Gorenstein injective. Since C is finitely generated, C
is Artinian. We claim that if £ — CV is an injective cover of C, then E is also
Artinian. That is, E is of the form E (k)" for some n > 0. To see this, recall that
C has a flat preenvelope C — F. Since C — F can be factored C — R" — F
for some n > 0, we can assume F = R". But then E(k)" = (R")" — CV is an
injective precover and E is isomorphic to a summand of E (k)" and thus is Artinian.
Hence we see thatif E;_; — --- = E; — E¢ — C?Y — 0 is a partial minimal
left dnj-resolution of CY, then it is exact with E4_q,..., Eg Artinian. So if 0 —
N —>E; 1 —> - —> E — Ey > C” — 0isexact, we get N € §(R) by
Proposition 10.4.23 and so by Proposition 11.6.1 above NV € §(R). But 0 — C(=
C") > Ey > E{ > —> Ej_ | - N" > Oisexactand Eg,..., E;_, are
free. So by Proposition 10.4.17 C is Gorenstein projective. m|
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Theorem 11.6.3. Let R be complete and M be a finitely generated R-module. If
M € §y(R), then M has a Gorenstein projective cover C — M. If C — M is such
a cover, then C is finitely generated and projdim Ker(C — M) < oo.

Proof. By Theorem 11.5.11 there is an exact sequence 0 - L — C — M — 0 with
C Gorenstein projective and with projdim L < co. By the proof of that result, we see
that we can assume C is finitely generated. But then 0 - MY — CV — LY — 0
is exact. By Corollary 11.6.2, CV is Gorenstein injective. Since projdim L < oo, we
have injdim L” < oco. Since Ext' (LY, G) = 0 whenever G is Gorenstein injective
(Proposition 10.1.3), we have that Hom(C?,G) — Hom(M",G) — 0 is exact.
That is, MV — CV is a Gorenstein injective preenvelope. By Proposition 11.6.1 and
Exercise 4 of Section 11.3, MV has a Gorenstein injective envelope ¢ : MV — G
and G is a retract of CV and so is Artinian. But then Coker ¢ is a retract of LY.
So injdim Coker ¢ < oo since injdim LY < oco. So with L = Coker ¢, we have
projdim L < oco. Thus with L = (G/M?)?, we have that 0 — L — G? — M — 0
is exact with projdim L < co. But GV is Gorenstein projective if and only if G =
G"? is Gorenstein injective by Corollary 11.6.2. So by Proposition 10.2.6, G* — M
is a Gorenstein projective precover. But M and G are Matlis reflexive (and MV and
GV are also) and MV — G is an envelope. So GY — M is a cover. This completes
the proof. m|

We now show that we can drop the hypothesis of completeness from the preceding
theorem.

Theorem 11.6.4. Let M be finitely generated such that M € Gy(R), and let ¢ :
C — M be a surjective linear map where C is Gorenstein projective. If M has a
Gorenstein projective cover, then ¢ : C — M is a Gorenstein projective cover if and
only if proj dim Ker ¢ < oo and Ker ¢ contains no nonzero projective summands of C .

Proof. M has a Gorenstein projective precover ¥ : C' — M by Theorem 11.5.11
where projdimKery < oco. If ¢ : C — M is a cover, then C — M is a retract of
C’ — M (over M) and so Ker ¢ is a retract of Ker . Hence projdimKerg < oco.
If Ker¢ contains a projective (so free) summand F of C, then there is easily an
f : C — C with ¢ o f = ¢ which is not an automorphism of C. Hence the two
conditions are necessary.

Now assume the conditions. Then if ¥ : C’ — M is a cover we have a commuta-

tive diagram
C /

I\

C — M

VS

C/
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Since C — M isacover, C' — C — C’is an automorphism of C. So Ker(C — C’)
is a summand of C containing Ker(C — M). So Ker(C — C’) is Gorenstein
projective. But Ker(C — C’) is also isomorphic to a summand of Ker¢ and so
projdim Ker(C — C’) < oco. Hence by Proposition 10.2.3, Ker(C — C’) is pro-
jective and so is zero by hypothesis. Hence C — C’ is an isomorphism and thus
C — M is also a cover. O

Proposition 11.6.5. For each finitely generated M with M € §y(R), there exists
a Gorenstein projective precover ¢ : C — M with C finitely generated and
projdimKer¢ < d — 1 such that C has a direct sum decomposition C = U & F
where U has no nonzero free summands and F — M /¢(U) is a projective cover.

Proof. By Theorem 11.5.11, there exists a Gorenstein projective precover { : C' —
M with projdimKery¥ < d — 1. From the proof of that theorem, it is easy to see
that if M is finitely generated, then C’ can be chosen to be finitely generated. Let
C' = U @ F where U has no nonzero free summands. Since ¥ is necessarily a
surjection, F e M/ (U) is a surjection. But then F has a direct sum decomposition
F =F@®F suchthat F > M /Y (U)is a prOJCCtIVC cover and such that the map
F — M/ (U) is zero. This implies the map F' — M has a lifting g : F' > U.
Now let C = U & F and ¢ = ¥|c. Then we see that there is a retraction of
C'=U®F®F — Mt C — M over M. In matrix notation, the retraction is
given by

idg 0 0
0 idr O
g 00

This gives that Ker ¢ is a retract of Kery and so projdimKergp < d — 1. Hence
¢:C =U@®F — M is the required precover. m|

Lemma 11.6.6. If ¢ : C — M is linear and C = U & F where U has no nonzero
free summands and F — M/o(U) is a projective cover, then Ker¢ contains no
nonzero free summands of C.

Proof. By contradiction. Suppose x = (x1,x2) € U @ F generates a free summand
of C contained in Ker ¢. Then ¢(x1) = ¢(—x2) € ¢(U). Since F — M/¢(U) is a
projective cover and maps —x» to 0, we have —x; € m(R) F. Since x € C generates
a free summand of C, we have 0 € C* = Hom(C, R) with (x) = 1. Then
o(x1) + o(xz) = 1. But xp € m(R)F and so 6 (x2) € m(R). Hence o(xy) is a unit
of R. This implies U has a rank one free summand, contradicting our hypothesis. O

Lemma 11.6.7. If ¢ : C — M is a Gorenstein projective precover of M with
projdimKer¢ < oo and if M has a cover, then C — M is a cover if and only if
Ker ¢ contains no nonzero free summand of C.
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Proof. If C’ — M is a cover, then we have a decomposition C = C’ @ F with
F C Kerg. Then projdim F' < oo and F is Gorenstein projective. So by Proposi-
tion 10.2.3, F is projective and thus free. So if ¢ : C — M satisfies the hypothesis,
F = 0and hence ¢ : C — M is acover.

If ¢ : C — M does not satisfy the hypothesis, there is clearly an f : C — C with
@ o f = ¢ and f not an isomorphism (we can choose f with F C Ker f). O

We now let R denote the completion of R. For a ﬁnitely generated module M,
we let M denote the completion of M. Then M =~ R ® RM If M and N are
finitely generated and f : M — N is linear, we have f M — N. Since R is
a faithfully flat R-module, f is an isomorphism if and only if f is an isomorphism.
Furthermore, Hom p (M N ) can be identified with the completion of Homg (M, N)
and the completion of M ® grN is M ®z N (see Theorems 3.2.5 and 2.1.11). Hence
we have the following result.

Lemma 11.6.8. Given finitely generated R-modules M and N, N is isomorphic to a
summand of M if and only if N is isomorphic (as an R-module) to a summand of M.

Proof. N 1is a isomorphic to a summand of M if and only if idy is in the image of
Hompg (N, M) x Homg(M, N) — Hompg(N, N) (with the map (f,g) +— g o f),
or equivalently, if and only if Homg(N, M) ® g Homg(M, N) — Hompg(N, N) is
surjective. Now apply the remarks above. m|

We note that this lemma says M has a nonzero free summand if and only if M
does.

Theorem 11.6.9. If M is a finitely generated R-module and M € §y(R), then M
has a Gorenstein projective cover ¢ : C — M. Furthermore C is finitely generated
and projdimKerp < d — 1.

Proof. By Proposition 11.6.5, there is a precover ¢ : C — M with C finitely gen-
erated and projdimKer¢ < d — 1 and such that C has a direct sum decomposition
C = U & F where U has no nonzero free summands and F — M/¢(U) is a projec-
tive cover. We want to show that in fact ¢ : C — M is a cover.

By our remarks above about completions and by Lemma 11.6.8, we see that ¢ :
C — M inherits all the properties of ¢. So F—>M / (Z)(U ) is a projective cover
since its kernel is contained in nYR)\F = m(R)F But then since we know by
Theorem 11.6.3 that M has a cover, we see that in fact ¢ : C — M is a cover
by Lemmas 11.6.6 and 11.6.7.

Now let f : C — C be such that ¢ of ¢@. Then ¢ o f ¢ and f is
an automorphism of C since ¢ C — M is a cover. This implies that f is an
automorphism of C and so ¢ : C — M is the desired Gorenstein projective cover. O



300 Chapter 11 Gorenstein Covers and Envelopes

Corollary 11.6.10. [fC — M is a Gorenstein projective cover, then projdim M < co
if and only if C — M is a projective cover.

Theorem 11.6.11. Let M be a finitely generated R-module and M € §y(R). Then
the minimal left Gorenstein projective resolution of M is of the form

v > Py —>P—>Co—>M—0

where Cy is Gorenstein projective and P; is projective for eachi > 1 and P; = 0 for
i>d.

Exercises
1. Prove that M € §y(R) if and only if MV € Fo(R).
2. Prove Corollary 11.6.10.
3. Prove Theorem 11.6.11.

11.7 Gorenstein Flat Covers

Our aim in this section is to prove that Gorenstein flat covers exist for all modules over

n-Gorenstein rings. The proof will follow from the following results. But first we note

that the class of Gorenstein flat modules is closed under direct limits and so to find a

Gorenstein flat cover it suffices to find a Gorenstein flat precover by Corollary 5.2.7.
The following lemma uses A-dimension defined in 8.6.11.

Lemma 11.7.1. Let R be n-Gorenstein and ¥ be the class of Gorenstein flat left
R-modules, then A ¢ (P) = oo for every pure injective left R-module P.

Proof. Let N be any right R-module and let N C G be a Gorenstein injective enve-
lope. Then we have the exact sequence 0 — (G/N)* — GT — NT — 0 where
G is a Gorenstein flat left R-module by Corollary 10.3.9.

Ext!(F,(G/N)T) = Tor{(F,G/N)t = 0if F is a Gorenstein flat left R-module
since Tor{ (F, G/N) = 0 by Theorems 11.3.2 and 10.3.8. Hence in the language of
Chapter 7, Section 1, Gt — N7 is a special Gorenstein flat precover (see Defini-
tion 7.1.6).

Now let P be a pure injective left R-module and set N = P*. Then we have a
special Gorenstein flat precover G — N* = P*T. Since P is pure injective, it
is a direct summand of P ™1 and so P has a Gorenstein flat precover. But then by
Corollary 10.3.12 and Corollary 5.2.7, P has a Gorenstein flat cover F — P. So
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there exists a commutative diagram

0 K F P 0
A

0 ——= (G/N)*t Gt pt+ 0
L

0 1l< F P 0

with exact rows and P — PT+ — P the identity on P. Since F — P is a
Gorenstein flat cover, we see that F is isomorphic to a direct summand of Gtand K
is isomorphic to a direct summand of (G/N)*. Since (G/N)™ is pure injective, so is
K. Since Ext!(F’,(G/N)*) = 0 for F’ Gorenstein flat, we have Ext! (F’, K) = 0
also. Hence 0 - K — F — P — 0is exact with F — P a special Gorenstein flat
cover and K pure injective. But then we can repeat the argument with K replacing P.
Proceeding in this manner we see that A ¢ (P) = oc. |

Corollary 11.7.2. For every R-module L of finite injective dimension, Ag (L) = 00
where F is the class of Gorenstein flat R-modules.

Proof. If L is injective then L is pure injective and so the result holds by the lemma.
If injdim L < oo, then we see that a repeated application of Theorem 8.6.16 gives the
result. O

Theorem 11.7.3. If R is n-Gorenstein, then every R-module M has a Gorenstein flat
cover F — M such that if0 - L — F — M — 0 is exact, then projdim L < oo.

Proof. We will argue that for every R-module M, (M) = oo with # the class
of Gorenstein flat R-modules. By Theorem 11.5.1, there is an exact sequence 0 —
L - C — M — 0 with C Gorenstein projective and with projdim L < oco. By
Theorem 9.1.10, we also have injdim L < oo. By Corollary 11.7.2, A¢(L) =
oo. By Corollary 10.3.10, C is Gorenstein flat and so easily )_kgr(C) = oo. Then
Theorem 8.6.13 says A #(M) = oo. So M has a special Gorenstein flat precover

F 4 M with Ext! (F’,Ker ) = 0 for all Gorenstein flat R-modules F’. But then

Ext! (C,Ker ¢) = 0 for all Gorenstein projective R-modules C. So proj dim Ker ¢ <
oo by Proposition 11.5.9. |

Corollary 11.7.4. If F — M is a Gorenstein flat cover, then flatdim M < oo if and
only if F — M is a flat cover.

We note that it follows from the above that the class of Gorenstein flat R-modules,
denoted §or Flat, over an n-Gorenstein ring is covering and hence every R-module
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has a minimal left §or ¥ lat-resolution. This resolution is exact and is usually called
a minimal Gorenstein flat resolution.

Proposition 11.7.5. Let R be n-Gorenstein and £ be the class of R-modules of finite
projective dimension. Then the following are equivalent for an R-module M and
integer r > 0:

(1) leftGorFlat-dim M < r.

(2) Tor;(L,M) =0foralli >r+ 1forall L € £.

(3) Tory41(L,M)=0forall L € £.

(4) Tor; (E, M) = 0 for all injective R-modules E and alli > r + 1.
(5) Tory1(E, M) = 0 for all injective R-modules E.

(6) Every rth §or Flat-syzygy is Gorenstein flat.

(7) Every rth Flat-syzygy is Gorenstein flat.

(8) right §ordnj-dimM+ < r.

Proof. (1) & (2). Let--- —> F1 — Fy - M — 0 be a left Yor Flat-resolution of
M and K = Ker(Fy,—; — Fy_3). Then Tor;4,(L, M) = Tor; (L, K) foralli > 1
and all L € £. So K is Gorenstein flat if and only if Tor;4,(L, M) = 0 forall i > 1
and all L € £ by Theorem 10.3.8.

The equivalence of (1), (3), (4), (5), (6) and (7) follows similarly from Theo-
rem 10.3.8.

(1) < (8). We consider the exact sequence 0 - K — F—y — -+ —> F| —
Fyp > M — 0Oabove. Then 0 > M+t — FO+ = > Frtl — Kt >0
is exact. So left§or Flat-dim M < r if and only if KT is Gorenstein injective by
Theorem 10.3.8, and if and only if right §ordnj-dim M+ < r by Proposition 11.2.5
since each Fi+ is Gorenstein injective by Theorem 10.3.8. |

Theorem 11.7.6. Let R be n-Gorenstein and M be an R-module. Then the minimal
left Gor Flat-resolution of M is of the form

O—-F,—-F_1—->---—>F—->Gy—M—0

where Gg is Gorenstein flat and F; is flat for each i = 1,...,n. In particular,
left Sor Flat-dim M < n.

We note that it follows from the above that if R is n-Gorenstein and ¥ : G — M
is a Gorenstein flat cover, then flatdimKer v <n — 1.

Lemma 11.7.7. Let R be left coherent. Then every R-module M has an embedding
M C G such that G is cotorsion and G/ M is flat.
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Proof. By Theorem 7.4.4,1et0 — K — F — M — 0 be exact where F — M is a
flat cover of M. Then we have the following pushout diagram

0 0

0—>K—> PE(F) —>G —0

0 0

But PE(F) and K are cotorsion by Lemmas 5.3.23 and 5.3.25. So G is cotorsion (see
Definition 5.3.22). Moreover, PE(F) is flat by Proposition 6.7.1 and so L is flat. O

Theorem 11.7.8. Let R be a local Cohen—Macaulay ring of Krull dimension d ad-
mitting a dualizing module. Then every R-module M € Gy(R) has a Gorenstein flat
cover. Moreover, if F — M is such a cover, then flatdimKery < d — 1.

Proof. By Theorem 11.5.11, there exists an exact sequence 0 - L — P - M — 0
where P — M is a Gorenstein projective precover and projdim L < d — 1. But
by the lemma above there is an exact sequence 0 - L — C — K — 0 such that
K is flat and C is cotorsion. But projdim C < oo. Hence Ext' (G, C) = 0 for all
Gorenstein flat G and all i > 1 by Corollary 10.4.27.

We now consider the following pushout diagram

0 0
0 L P M 0
0 C F M 0
K ——K
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where F is Gorenstein flat since P and K are. But then ' — M is a Gorenstein flat
precover since Ext! (G, C) = 0 for all Gorenstein flat G. Hence M has a Gorenstein
flat cover.

Now we note from the above that flatdim L < d — 1 and K is flat. So flatdim C <
d—1.Ify : F' — M is a Gorenstein flat cover, then Ker ¢ is a summand of C and
so flatdimKery < d — 1. O

Exercises

1. Complete the proof of Proposition 11.7.5.

2. Prove that if R is n-Gorenstein, then left $or Flat-dim M = flatdim M if and
only if flatdim M < oo.

3. Prove Theorem 11.7.6.

4. Prove thatif M € §y(R) and F — M is a Gorenstein flat cover, then flatdim M <
oo if and only if /' — M is a flat cover.

5. State and prove a result corresponding to Proposition 11.7.5 for Gorenstein flat
dimensions over Cohen—Macaulay rings admitting a dualizing module.

11.8 Gorenstein Flat and Projective Preenvelopes
We start with the following result.

Lemma 11.8.1. Let R be n-Gorenstein, {X}} be a representative set of indecom-
posable injective right R-modules, and N = @ Xg. If Ry is an infinite cardinal,
then there is an infinite cardinal Rg such that if M is a Gorenstein flat left R-module
and S C M is a submodule with Card S < Ry, then there is an R-module T with
S CT CM andCardT < Rg such that S C T induces the zero map

Tor; (N, S) — Tor; (N, T) foralli > 1.

Proof. We first note that M is Gorenstein flat if and only if Tor; (N, M) = 0 for all
i > 1 by Theorem 10.3.8.
Let--- — Py — Py — N — 0 be a projective resolution of N. Then

Card Tor; (N, S) <Card P; ® S.

Hence given Ry, there exists an infinite cardinal X5 > R, such that if Card § < R,
then Card Tor; (N, S) < Rg forall i > 1.

Now note that 0 = Tor; (N, M) =~ 1i_r>nTor,~ (N, S’) where the limit is over all S’
with § € S’ € M and S’/S finitely generated. Hence for z € Tor; (N, S), there
is an S’ such that Tor; (N, S) — Tor; (N, S’) maps z to zero. Choosing one such S’
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for each z and letting 7' be the sum of all the chosen S”’s, we see that Tor; (N, S) —
Tor; (N, T) is the zero map for all i > 1. It is now easy to see that we can choose
Nﬂ > Ry sothat Card T < R 8 whenever Card S < R, no matter what choice of S”’s
we make. i

Theorem 11.8.2. Let R be n-Gorenstein. Then every R-module has a Gorenstein flat
preenvelope.

Proof. Let M be a Gorenstein flat left R-module. We use the notation in Lemma
11.8.1 above. Let @9 = « and @y = B. Let o1 play the role of « and a, be the
new f guaranteed by the lemma. Repeating the procedure, we get Ry, Rg,, ... with
obvious properties. Then given a submodule § C M with Card S < Ry = Ry, let
So = § and find Sy, S2,... with §; C S2 C M such that Card S; < Ry, and such
that §; C S;+1 induces the zero map Tor; (N, S;) — Tor; (N, S;j41) foralli > 1. So
let T = U;’;l S;. Then Tor; (N, T) = lim—j Tor; (N, S;) = Oforalli > 1. Thus T
is Gorenstein flat. Furthermore, if we set 8 B = sup; Ny I then Card T < xﬂ.

So for each infinite cardinal Ry, there exists an infinite cardinal Nﬂ such that if
M is Gorenstein flat and S C M is a submodule, then there is a Gorenstein flat R-
submodule 7" of M containing S such that Card 7" < Rg. Hence every R-module has
a Gorenstein flat preenvelope by Corollary 6.2.2. m|

Corollary 11.8.3. Every finitely generated R-module has a Gorenstein projective
preenvelope which is also finitely generated.

Proof. This follows from Theorem 11.8.2 and Corollary 10.3.10 since if M is finitely
generated, then every Gorenstein flat preenvelope M — G can be factored M —
C — G where C is a finitely generated Gorenstein projective R-module by Theorem
10.3.8. O

Exercises

1. Let R be a local Cohen—Macaulay ring admitting a dualizing module. Prove
that any finitely generated R-module M has a Gorenstein projective preenvelope
M — C with C finitely generated such that Hom(C, F) — Hom(M, F) — 0 is
exact for all Gorenstein flat R-modules F.

2. Prove that every R-module in §y(R) has a Gorenstein flat preenvelope.

11.9 Kaplansky Classes

We now introduce Kaplansky Classes and show the existence of Gorenstein covers
and envelopes in a more general setting.
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Definition 11.9.1. A class ¥ of R-modules is said to be a Kaplansky class if there is
a cardinal R such that for every M € ¥ and for each x € M, there exists a submodule
F of M containing x such that F, M/F € ¥ and Card F < X.

Remark 11.9.2. The definition above is based on a result of Kaplansky which states
that if P is a projective R-module and x € P, then there is a countably generated
submodule S of P containing x with S and P /S projective (or equivalently, with S a
summand of P). So the class of projective modules is Kaplansky. Moreover, the class
of flat modules is Kaplansky by Lemma 5.3.12, and one can easily show that the class
of injective modules is also Kaplansky.

Lemma 11.9.3. Let ¥ be a class of R-modules closed under direct limits. Then the
class of R-modules M such that i3 (M) = o0 is also closed under direct limits.

Proof. 1t suffices to show that the class of R-modules such that (M) = oo is
closed under well ordered direct limits. For assume ¥ is closed under well ordered
direct limits and consider a direct system ((M;), (fij))ier. We want to show that ¥
is closed under arbitrary direct limits. We do this by transfinite induction on Card(7).

If Card(/) = n < Ry, there is nothing to prove.

If Card(/) = Ry, then there is a cofinal set J/ C [ with I = {jo, j1,...,} where
jo < j1 < ---.In this case, H_r)nieIMi = h_r)njEJMj by assumption.

Now suppose Card(/) > Ro. Then there exists

JoC 1 CHhC---C Uy CIpy+1 S C Uy C

with @ < A for A an ordinal such that | J, ., Jo = I where each J, is a right
directed set and Card(Jy) < Card(/). So ﬁ_r)nieIM,- = lim (lim,_~ M;). But

<A —>iely

lim, € ¥ by induction hypothesis and so l_ir_)niGIM,- F by hypothesis. Thus

—i€JyM;
F is closed under arbitrary direct limits.

Now let # be the class of R-modules such that g (M) = oo, and assume that
((Mg). (fga))a<a is a directed system in . If A = n > w, then 11m My = My,
and so we are done.

If A = w, we first show thatli)n o M, € J. Note thatif ¢ : M — F is an

F -preenvelope, then so is ¢(M) — F. Thus we may assume that the ¥ -preenvelope
of each M,, is one-to-one. So if My — F is an ¥ -preenvelope, we consider the
following pushout diagram

0 My FO Fo/My —— 0

L

0 M, P P/My —— 0
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But P/M; = F°/My and so it has an F -preenvelope, say P/M; — F. Fur-
thermore, M; has an ¥ -preenvelope, say M; — F’. Then we construct an ¥ -
preenvelope P — F! = F @ F’. But then M; — F! is also an ¥ -preenvelope.
Thus we have a commutative diagram

)]

My —— F°

|

M, ——> F!

with the property that if

(2)
My —— F°

|

M1*>G

i~

is a commutative diagram with G € ¥, then there exists a morphism of dia-
grams from (1) to (2) which is the identity on Mg, M and F°. We now continue
with this process to get a commutative diagram

My M, M
FO° F! F?

whereby each square has the preceding property. Hence we see that hm M, —
hm F™ is an ¥ -preenvelope.

Then by the dual of the work in Section 8.6, C" = Coker(M, — F") has an ¥ -
preenvelope for all n > 0 since ;g (M) = oo. So the by above, we get that the system
C’— C!' - C? - ... givesthat C = limC" = Coker(hmM" — lim F") has
an ¥ -preenvelope. Repeat to get that f(h_r>nn<wM )=

Now reindex My, My, ..., My, My+1, ..., such that Mw = lim M,, and M+ is

—. .
the old M, and so on. So we may assume that the system (M), < is continuous, that
is, Mg = li_r>n0l< 5 My if B is a limit ordinal with 8 < A. Then using transfinite induc-

tion, we see that the above argument generalizes and we get that 11_1’)1’1 _ )LM"‘ eH. O
o
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Theorem 11.9.4. Let R be a ring and ¥ be a Kaplansky class of R-modules closed
under direct limits. Then the following are equivalent:

(1) pug (M) = oo for every finitely presented R-module M.
(2) ug (M) = oo for every R-module M.

(3) Every R-module has an ¥ -preenvelope.

(4) ¥ is closed under products.

Proof. (1) = (2) follows from Theorem.

(2) = (3) by definition of g -dimension.

(3) = (4). Let (Fj)ijes be a family of R-modules in  and ¢ : Il;e; F; — F be
an F -preenvelope. Then there exists a morphism f : F' — Il;jey Fj such that f o ¢
is the identity map and so [1;¢; F; € F.

(4) = (1). Let M be a finitely presented R-module in . Then since ¥ is

Kaplansky, for every morphism M L F thereisa F’ € ¥ and a cardinal R such that
Card(F’) < N and a factorization M — F’ — F of f. Now get any two morphisms
M — F and M — F’ with F, F’ € ¥ and Card(¥), Card ¥’ < R to be equivalent
if any diagram

M —— F

l 7
e
7
+~
F/
can be completed by an isomorphism, and let X be a set of representatives of such

morphisms M — F. Then M — TlyF is an ¥ -preenvelope. Then repeat the
process on cokernels of such ¥ -preenvelopes to get (1). m|

Remark 11.9.5. We say that a ring R is F -coherent if the class ¥ of R-modules is
closed under direct products. It is clear that every ring R is # -coherent. And if ¥ is
a class of flat modules, then J -coherent coincides with the usual coherency.

Theorem 11.9.6. If R is left Noetherian and ¥ is the class of Gorenstein injective
left R-modules, then ¥ is Kaplansky.

Proof. Let M € ¥ and x € M. We want to show that there is a Gorenstein injective
submodule S of M containing x such that S and M/S are Gorenstein injective.
We first recall that M € ¥ means that there exists an exact sequence
d 0 a° ol
> B 3 EgSE*S ETS L
of injective modules with M = Ker(E® — EU') such that Hom(E, —) leaves the

sequence exact whenever E is an injective R-module. Now since £9 — M is sur-
jective and x € M, there is a y € Ej such that do(y) = x. Then since injectives



Section 11.9 Kaplansky Classes 309

are Kaplansky, there is a cardinal Xo and a pure submodule Sy of E¢ containing y
such that Card(Sg) < Ro. Now consider d9(Sg) C E°. Then there is a cardinal
R; and a pure submodule S® of E° containing d¢(Sp) such that Card(Sy) < Ni.
But $°/99(Sg) C E'. So there is a cardinal X, and a pure submodule S! of E!
containing S°/d0(So) such that Card(S!) < ;.

Now we reverse the process and consider SN (E®/M). Then there is a submodule
DY of E® whose image is S' N (E®/M). Now let T° be a pure submodule of E°
containing D® and X3 be a cardinal such that Card(7°) < R3. Thenlet 7' C E! be
a pure submodule containing 9°(7°°) and R4 be a cardinal such that Card 71 < Ry.
Now consider TN M C E°. Then let D¢ be a submodule of Eq such that do(Dg) =
TONM.Let D; C Eqbesuchthat 3;(D1) = Dy. So there are submodules Ty C Eg
and 71 C Ej containing Do and D1, respectively, and cardinal numbers 85, Xg such
that Card Ty < N5 and Card 77 < Ng.

Now start the process going forward by considering d1(77) € Ep and proceed as
before going n steps forward, n 4 1 steps backwards, and n + 2 steps forward again.
Then take the union of all the complexes constructed using this “zig-zag” process to
get a complex

H*:-..> H — Hy—> H°—> H! —>....

Let N = Ker(H® — H?'). Then N is a submodule of M containing x and by
construction, there is a cardinal ® such that Card < X. Moreover, the complex H* is
an exact sequence of injectives since pure submodules of injective modules are again
injective.

Our goal now is to use the complex H* above to construct a new exact sequence
of injectives for a submodule of M that remains exact when Hom(E, —) is applied to
it whenever FE is injective. But first we note that since R is Noetherian, there exists a
set X of injective R-modules such that every injective R-module E is a direct sum of
copies of modules in X. Now let / = Dg _cx Ex. Then we note that if Hom(/, —)
leaves the exact sequence exact, then Hom(E, —) leaves the sequence exact whenever
E is injective.

But note that the complex

0
- B Hom(1, Hy) & Hom(1, Ho) & Hom(1, H®) & Hom(1, H') & ...

is a subcomplex of the exact complex

0 1
- B Hom (1, Evy) 22 Hom(1, Eg) 22 Hom(1, E%) > Hom(1, EY) > -

Soif Im g1 # Ker gy, then there is a pure submodule C; of E; and a cardinal number
Ry such that Hy € Cy, Ker go € Im fj|pom(z,c,) and Card C; < Ry. Now let C’ be
the image of C; under the morphism E; — FE( and let Cy C Eq be pure and 8, be
such that C” € Co, Im( f1|om(z,c;)) € Hom(Z, Cp) and Card Co < N;. Then let C”
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be the image of Co under the morphism Eg — M. Then enlarge C” to C° C E° pure
and find R3 such that Im( fo| Hom(z,c,)) S Hom(Z, C?) and Card C° < R3. Then we
start another zig-zag process with Ker( f O|Hom( 1,¢0)) and Im( /o Hom(z,c0))-
Now take the union of these complexes formed in the zig-zag process above to get
a complex
T oo 5Ty > Ty > T > T > ...

which becomes exact when Hom(E, —) is applied to it for each injective R-module
E. But T* may not be exact. So we apply the zig-zag process used to get S* to get
another exact sequence S** which may not remain exact when Hom(E, —) is applied
to it with E injective. So we apply the zig-zag process we used to get T* to the
exact sequence S** to get a new T** that may not be exact but remains exact when
Hom(E, —) is applied to it. The limit over these two procedures gives us a module S,
a cardinal 8, and a complex S* as desired.

Finally note that M/S is also Gorenstein injective since the quotient complex
E*/S* is exact and remains exact when Hom(E, —) is applied to it whenever E
is an injective R-module. m|

Corollary 11.9.7. Every R-module over a Noetherian ring R has a Gorenstein injec-
tive preenvelope.

Exercises
1. Prove that if ¥ is a Kaplansky class that is closed under extensions and direct
limits, then every module has an F *-envelope.

2. Prove thatif ¥ is a Kaplansky class that contains projective modules and is closed
under extensions and direct limits, then (¥, & J-) is a perfect cotorsion theory in
R-mod.

3. Prove that for any ring R, the class of Gorenstein flat R-modules is Kaplansky.



Chapter 12

Balance over Gorenstein and Cohen—Macaulay
Rings

In Chapter 11, we studied the existence of Gorenstein precovers and preenvelopes. We
can therefore apply methods of relative homological algebra of Chapter 8 and compute
derived functors. In particular, we can study the question of balance of Hom(—, —)
and tensor.

We will again let Sordnj, GorProj, §or Flat denote the classes of Gorenstein
injective, Gorenstein projective, and Gorenstein flat modules, respectively. As usual,
we will let .M and Mg denote the classes of left and right R-modules, respectively.
For a class ¥, we will again let Tffg denote the class of finitely generated modules in
F . These terms will also be used to denote the corresponding full subcategories.

12.1 Balance of Hom(—, —)

It was shown in Chapter 11 that if R is Gorenstein, then Sordnj and Sor Flat are
precovering and preenveloping classes, and §orProj is precovering by Theorems
11.1.1, 11.2.1, 11.5.1, 11.7.3, and 11.8.2, while ﬁor?rojfg is preenveloping for ‘M.fg
by Corollary 11.8.3. Thus we have the following result.

Theorem 12.1.1. Let R be Gorenstein. Then Hom(—, —) is left balanced on g M %
RM by §ordnjx Gordnj and Gor Flat x §or ¥ lat, on Rerg X RM by ﬁorﬂ’rojfg X
SorFlat and ﬁor?rojfg x GorProj, and on Mfg X Mfg by ﬁorﬂ’rojfg X ﬁorﬂ’m]}g.

Proof. This follows from the remarks above, Proposition 8.1.3, Corollary 10.3.10,
and Remark 11.5.2. O

Lemma 12.1.2. If R is n-Gorenstein, then every right §ordnj-resolution is
Hom(SorProj,—) exact.

Proof. By Theorem 11.2.1 there exists a Gorenstein injective preenvelope N — G of
N with L = Coker (N — G) of finite injective dimension. Solet0 — L — E° —
E' — ... — E™ — 0 be an injective resolution of L.

Since C is Gorenstein projective, there exists an exact sequence 0 — C — P9 —
P! - ... - pr~l - pn _ ... with each P! projective. Now set D =
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Ker(P"~! — P™). Then given a linear map C — L, there is a commutative di-
agram

0 C PO Pl pn—2 D 0
0 L E° El En—2 En—1 0

But D is Gorenstein projective and so Ext!(D,L) = 0 for all i > 1 by Remark
10.2.2 since projdim L < oo. Hence the map D — E™~! has a factorization D —
E"2 — E"1. Then as usual, this gives an extension P® — L which can be
lifted to a map P° — G whose restriction gives a required lifting C — G. So
0 — Hom(C,N) — Hom(C,G) — Hom(C, L) — 0 is exact for all Gorenstein
projective R-modules C.

Now if 0 - N — G’ — L’ — 0is any exact sequence with N — G’ a Gorenstein
injective preenvelope of N, then there exists a commutative diagram

0 N G’ L' 0
0 N G L 0

0 G’ L 0
0 G L 0

gives an equivalence of complexes (the two rows). This in turn gives the equivalence
of complexes

0 —— Hom(C,G’) —— Hom(C,G') ——= 0

| |

0 —— Hom(C,G) —— Hom(C,L) ——= 0

So if Hom(C,G) — Hom(C,L) — 0 is exact, then so is Hom(C,G') —
Hom(C, L') — 0. Thus 0 — Hom(C, N) — Hom(C,G’) — Hom(C,L’) — 0
is exact for all Gorenstein projective R-modules C. Hence the result follows. m|
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Dually, we have the following result.

Lemma 12.1.3. If R is n-Gorenstein, then every left §or Proj-resolution and left
Sor Flat-resolution is Hom(—, §or dnj) exact.

The two lemmas above give the following result.

Theorem 12.1.4. Let R be Gorenstein, then Hom(—, —) is right balanced on g M x
RM by SorProj x Gordnj.

By Theorem 12.1.4, we can compute right derived functors of Hom(M, N') using
aleft Yor Proj -resolution of M or a right §orJnj-resolution of N. We will denote
these derived functors by Gext' (M, N). It is easy to check that

(1) Gext’(—, —) = Hom(—, —).
(2) Gext'(C,—) =O0foralli > 1 andall C € §orProj.
(3) Gext'(—,G) =O0foralli > landall G € ordnj.

(4) If the exact sequence 0 — M’ — M — M"” — 0 of R-modules is
Hom(SorProj,—) exact, then by part (2) of Theorem 8.2.3 there is a long
exact sequence

oo = Gext! (M, —) — Gext! (M, =) — Gext! PI{(M", =) — ...

(5) If the exact sequence 0 — N’ — N — N” — 0 of R-modules is
Hom(—, $ordnj) exact, then by part (1) of Theorem 8.2.5 there is a long ex-
act sequence

oo = Gext! (—, N) — Gext' (=, N") = Gext! T1 (=, N') — -+ .
(6) There are natural transformations
Gext' (—, —) — Ext' (—, —)

which are also natural in the long exact sequences as in (4) and (5) above.

Now by Theorem 12.1.1, let Gext;(M, N) denote the left derived functors of
Hom(M, N) computed using a right §ordnj-resolution of M or a left Gordnj-res-
olution of N. Then again it is easy to check the following properties:

(1) There is a natural map Gexto(M, N) % Hom(M, N). If we let Kero =
Gextg(M, N) and Cokero = GextO(M , ), then we have an exact sequence

0 — Gexto(M, N) — Gexto(M, N) - Hom(M, N) — GextO(M, N)— 0.
(2) If M or N are Gorenstein injective, then

Gexto(M, N) = Hom(M, N) and Gexto(M, N) = Gext (M, N) = 0.
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(3) Gext;(M,N) =0foralli > 1andforall N € Gordnj.
(4) Gextj(M,N) =0foralli > 1and forall M € Gordnj.

(5) There are natural transformations
Ext; (—, —) — Gext; (—, —)

where Ext; (M, N) denote left derived functors obtained using a right dnj-reso-
lution of M or a left dnj-resolution of N (see Example 8.3.5). These transfor-
mations are also natural in the corresponding long exact sequences below.

(6) If the exact sequence 0 - M’ — M — M"” — 0 is Hom(—, §ordnj) exact,
then by part (2) of Theorem 8.2.5 there is a long exact sequence

oo — Gext; (M, —) — Gext;(M', ) — Gexti_{(M", =) — -+

(7) If the exact sequence 0 — N’ — N — N’ — 01is Hom(§ordnj, —) exact,
then by part (1) of Theorem 8.2.3 there is a long exact sequence

.-+ — Gextj(—, N) — Gext;(—, N”) — Gextj—1(—, N') — --- .

Likewise, we can compute left derived functors of Hom(M, N) using a right
Sor Flat-resolution of M and a left §or Flat-resolution of N by Theorem 12.1.1.
These functors are again denoted Gfext; (M, N ) and have the same properties as above
noting that we now get natural transformations

Ext; (—, —) — Gfext; (—, —)

where Ext; (—, —) denote the left derived functors obtained by using a right ¥lat-
resolution of M or a left ¥lat-resolution of N of Example 8.3.6. The other cases in
Theorem 12.1.1 are similar and correspond to Example 8.3.11.

If R is a local Cohen—Macaulay ring admitting a dualizing module, then every
M € §y(R) has a Gorenstein projective and Gorenstein flat precover and Gorenstein
flat preenvelope by Theorems 11.5.11, 11.7.8, and Exercise 2 of Section 11.8, re-
spectively, and each M € o(R) has a Gorenstein injective preenvelope by Theorem
11.2.6. Thus we have the following result.

Theorem 12.1.5. Hom(—, —) is left balanced on §o(R) x Go(R) by GorFlat x
Sor Flat, on ﬁO(R)fg x Go(R) by ﬁor:?rojfg x Gor Flat and ﬁorf‘rojfg xGorProj,
and on §o(R)y, x G0(R)y, by ﬁorﬂ’rojfg X ﬁorﬂ’rojfg.

Lemma 12.1.6. Let M € Jo(R). Then every right Sordnj-resolution of M is
Hom(ﬁor?rojfg, —) exact.
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Proof. Let C be a finitely generated Gorenstein projective R-module. Then there
exists an exact sequence 0 - C — P® — P! — ... with each P! finitely gen-
erated and projective. So if C’ = Ker(P4~—! — Pd), then C’ is finitely generated
Gorenstein projective and so Ext! (C',L) = Oforalli > 1 and all R-modules L of
finite injective dimension by Proposition 10.2.6. Thus the result now follows as in
Lemma 12.1.2. |

Remark 12.1.7. This Lemma together with Exercise 3 and Remark 11.5.2 give the
following result which corresponds to Theorem 12.1.4 above.

Theorem 12.1.8. Hom(—, —) is right balanced on ﬁO(R)fg x Jo(R) by ﬁorﬂ’rojﬁg X
Sordnj.

Remark 12.1.9. Using Theorems 12.1.5 and 12.1.8, we can compute derived func-
tors Gfext; (M, N) (which have the same properties as those of Example 8.3.6) and
Gext' (M, N), respectively.

Exercises

1. Prove Theorem 12.1.1.
2. Prove Lemma 12.1.3 and Theorem 12.1.4.

3. Prove that if M € §y(R) then every left §or Flat-resolution or left or Proj -
resolution of M is Hom(—, §ordnj) exact.

4. Prove Theorem 12.1.8.
5. Prove Remark 12.1.9.

6. Let R be a Cohen—Macaulay ring of Krull dimension d with a dualizing mod-
ule, and C be the full subcategory of R-modules whose dth Jnj-syzygies are in
Jo(R). Prove that Hom(—, —) is left balanced on $o(R)xC by GordnjxGordnj.
Conclude that in this case derived functors Gext; (M, N') can be computed.

Hint: Use Exercise 2 of Section 11.1.

12.2 Balance of — ® —
We start with the following result.

Lemma 12.2.1. If R is n-Gorenstein, then every left SorProj-resolution or left
Gor Flat-resolution is Sor Flat ® — exact.

Proof. If --- - C; - Cy - M — Ois aleft SorProj (or Gor Flat)-resolution
of an R-module M, then--- > F® Cy - F ® Co > F ® M — 0 is exact if
and only if 0 - (F ® M)™ — (F ® Co)t — (F ® C;)™ — --- is exact. But
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the latter is equivalent to the sequence 0 — Hom(M, F*) — Hom(Cy, FT) —
Hom(Cy, F*) — --- which is exact by Proposition 10.3.3 and Lemma 12.1.3. m|

This gives the following result.

Theorem 12.2.2. Let R be n-Gorenstein. Then — ® — is left balanced on Mg X pM
by SorProj x GorProj and Gor Flat x Gor Flat.

Lemma 12.2.3. If R is n-Gorenstein, then every right §or ¥ lat-resolution is
Sordnj ® — exact and every right §ordnj-resolution is §or Flat @ — exact.

Theorem 12.2.4. Let R be n-Gorenstein. Then —® — is right balanced on Mg x g:M
by SorFlat x Gordnj and on Mng X RM by ﬁor?rojfg x Gordnj.

Proof. Follows easily from the lemmas above. O

Using Theorem 12.2.2, we can compute the left derived functors of M ® N using
Gorenstein projective modules. These functors will be denoted by Gtor; (M, N). We
then have the following easy properties:

(1) Gtorg(—,—) = — ® —.
(2) Gtor;(C,—) = 0foralli > 1 and all Gorenstein projective right R-modules C'.
(3) Gtorj(—, D) = 0foralli > 1 and all Gorenstein projective left R-modules D.

(4) If the exact sequence 0 — M’ — M — M" — 0 of right R-modules is
Hom(SorProj,—) exact, then by part (1) of Theorem 8.2.3 there is a long
exact sequence

v+ — Gtorj41(M",—) — Gtor;(M’,—) — Gtor; (M, —) — -~ .

(5) Same as (4) for an exact sequence 0 — N’ — N — N” — 0 of left R-mod-
ules.

(6) There are natural transformations
Tor; (—, —) — Gtor; (—, —)

which are natural in the long exact sequences as in (4) and (5) above.

By Theorem 12.2.2, we also have left derived functors Gtor; (M, N) that can be
obtained using Gorenstein flat modules. These functors have the same properties as
above. Again by Theorem 12.2.2, we can compute left derived functors gtor; (M, N)
using left §or Flat-resolutions with similar properties as above. But gtor; (M, F') =
Gtor; (M, F) = 0 for all i > 1 and for all Gorenstein flat R-modules F by Lem-
ma 12.2.1. Hence gtor; (—, —) = Gtor;(—, —) since {gtor;} and {Gtor; } are covari-
antly left strongly connected sequences (see Definition 8.2.10).
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We can also compute right derived functors Gtor’ (M, N) using a right §or Flat-
resolution of M or a right §or dnj-resolution of N by Theorem 12.2.4. We have the
following properties

(1) There is a natural transformation
9 0
M ® N — Gtor” (M, N).

Again, we can let Ker o = Gtorg(M, N) and Coker o = Gtor’(M, N), then we
have an exact sequence

0 — Gtorg(M,N) - M @ N — Gtor®(M, N) — Gtor®(M, N) — 0.
(2) If M or N are Gorenstein flat, then
M ® N = Gtor’(M, N) and Gtorg(M, N) = Gtor’(M, N) = 0.

3) Gtori(M, N)=0foralli > 1and forall M € GorFlat
(4) Gtor' (M, N)=0foralli > 1andforall N € §orFlat.

(5) There are natural transformations
Gtor' (M, N) — Tor' (M, N)

where Tor' (M, N) denote right derived functors obtained using a right % lat-
resolution of M or a right dnj-resolution of N (see Example 8.3.9). These
transformations are again natural in the long exact sequences that follow below.

(6) If the exact sequence 0 —- M’ — M — M” — 0 is Hom(—, §or Flat) exact,
then by part (1) of Theorem 8.2.5 there is a long exact sequence

.+ — Gtor' (M, —) — Gtor' (M",—) — Gtor' TV (M, =) — ---

(7) Same as (6) for an exact sequence 0 — N’ — N — N” — 0 of left R-mod-
ules.

Exercises

1. Prove Lemma 12.2.3 and Theorem 12.2.4.

2. State and prove a result corresponding to Lemma 12.2.1 for Cohen—Macaulay
rings admitting a dualizing module.

3. Prove that — ® — is left balanced on §y(R) X Go(R) by GorProj x GorProj
and Gor Flat x Gor Flat.

4. Prove that — ® — is right balanced on §y(R) X Jo(R) by Sor Flat x §ordnj and
on §(R), x do(R) by ﬁorﬂ’rojfg x Gordnj.



318 Chapter 12 Balance over Gorenstein and Cohen—Macaulay Rings

12.3 Dimensions over n-Gorenstein Rings

Theorem 12.3.1. Let R be left and right Noetherian. Then the following are equiva-
lent:

(1) R is n-Gorenstein.

(2) Every nth dnj-cosyzygy of an R-module (left or right) is Gorenstein injective.
(3) Every nth Proj-syzygy of an R-module (left or right) is Gorenstein projective.
(4) Every nth ¥lat-syzygy of an R-module (left or right) is Gorenstein flat.

(5) Everynth ff"m]}g-syzygy of a finitely generated R-module (left or right) is Goren-
Stein projective.

Proof. (1) = (2) follows from Exercise 2 of Section 11.2 and Proposition 11.2.5.

(2) = (1). Let E be an injective module, N be an R-module and G be an nth
dnj-cosyzygy of N. Then Ext"T1(E, N) = Ext'(E, G). But Ext!(E, G) = 0 since
G is Gorenstein injective by assumption. Hence projdim £ < n for all injective R-
modules E. Similarly for right R-modules. So R is n-Gorenstein by Theorem 9.1.11.

The proofs of the equivalence of (1), (3), (5) are by arguments dual to the above.

(1) = (4) by and Proposition 11.7.5 and Theorem 11.7.6.

(4) = (1). If an nth Flat-syzygy of any right R-module M is Gorenstein flat,
then Tor,+1 (M, E) = 0 for all right R-modules M and all injective R-modules E.
Hence projdim g £ < n for all such E. Similarly for R-modules M. Thus R is
n-Gorenstein. O

Corollary 12.3.2. If R is Iwanaga—Gorenstein and injdim g R = n, then

glright §ordnj-dim g M = glleft or Proj-dim gM = glleft Gor Flat- dim g M
= glleftﬁorﬂ’rojfg-dim RMfg =n.

Proposition 12.3.3. If R is n-Gorenstein, then the following are equivalent for a right
R-module L:

(1) projdim L < oo (and so < n).

(2) The natural transformation Gext' (L, —) — Ext'(L, —) is an isomorphism for
i >0.

(3) Tor;(L,—) — Gtor; (L, —) is an isomorphism for i > 0.

Proof. (1) = (2). (1) means that Ext' (L, G) = 0 for i > 1 and for all Gorenstein
injective right R-modules G by Proposition 10.1.15. Now let N — G be a Gorenstein
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injective preenvelope of N and H = G/N. Then we have a commutative diagram

Gext' (L,G) — Gext' (L, H) —> Gext'T1(L,N) —= 0

| | |

Ext'(L,G) — Ext!(L,H) — Ext'/TY(L,N) —— 0

If i = 0, then Gext®(—, —) = Ext’(—, —) = Hom(—, —) and so the first two maps
are isomorphisms. Hence Gext! (L, N) — Ext' (L, N) is an isomorphism. The result
now follows by induction on i.

(2) = (1). right §ordnj-dim N < n and so Gext"T!(L, N) = 0 for all right
R-modules N. But then Ext"t!(L, N) = 0 for all N and so projdim L < oo.

(1) = (3). We consider the exact sequence 0 - H — C — N — 0 where
C — N is a Gorenstein projective precover. If projdim L. < oo, then we have a
commutative diagram

0 —— Torjy1(L,N) — Tor;(L, H) — Tor;(L,C) —— Tor; (L, N)

| | l l

0 — Gtorj+1(L, N) — Gtor; (L, H) — Gtor;(L,C) — Gtor; (L, N)

by Theorem 10.3.8 and Corollary 10.3.10. But Torg(—, —) = Gtorg(—, —) = — ® —
and the result follows as in the above.

(3) = (1). Gtorp4+1 (L, N) =0 for all R-modules N since left Gor Proj-dim N <
n. So the result follows. |

We also have the following result.

Proposition 12.3.4. Let R be n-Gorenstein and N be an R-module. Then
(1) If M is an R-module, then Gext' (M, N) — Ext' (M, N) is an injection.
(2) If M is a right R-module, then Tory (M, N) — Gtory (M, N) is a surjection.

Proof. (1) Let N — G be a Gorenstein injective preenvelope and H = Coker(N —
G). Then we have the following commutative diagram

Hom(M,G) —— Hom(M, H) — Gext!(M,N) —— Gext!(M,G) =0

|

Hom(M,G) —> Hom(M, H) — Ext!(M, N)

with exact rows. So (1) follows.
(2) Follows similarly. O
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Corollary 12.3.5. Let R be n-Gorenstein. Then the following are equivalent for an
exact sequence 0 - N — L — M — 0 of R-modules:

(1) The sequence 0 — N — L — M — 0 corresponds to an element of
Gext! (M, N) C Ext!(M, N).

(2) Hom(L,G) — Hom(N, G) — 0 is exact for all Gorenstein injective R-mod-
ules G.

(3) Hom(C, L) — Hom(C, M) — 0 is exact for all Gorenstein projective R-mod-
ules C.

Proof. (1) = (2). If0 - N — L — M — 0 corresponds to an element of
Gext! (M, N), then there is a commutative diagram

0 N L M 0
0 N G H 0

with exact rows such that N — G is a Gorenstein injective preenvelope. But if
N — G’ is a map with G’ Gorenstein injective, then N — G’ can be lifted to G. But
then N — G’ can be lifted to L and the result follows.

(2) = (1). Hom(L,G) — Hom(N, G) — 0 exact for all Gorenstein injective
R-modules G implies that we have a commutative diagram

0 N L M 0
0 N G H 0

with exact rows where N — G is a Gorenstein injective preenvelope. This shows that
0 - N — L — M — 0 corresponds to an element of Gext! (M, N).
(1) < (3) follows by a dual argument. m|

Theorem 12.3.6. The following are equivalent for a Noetherian ring R and integer
n>2:

(1) R is n-Gorenstein.

(2) Every left and right R-module has a §ordnj-precover and preenvelope and
left §or dnj-dimension at most n — 2.

(3) Every left and right R-module M has a G or ¥ lat-precover and preenvelope and
right §or Flat-dimension at most n — 2.

(4) Every left and right finitely generated R-module M has a ﬁor?rojfg—precover
and preenvelope and rightﬁorﬂ’rojfg -dimension at most n — 2.
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Proof. (1) & (2). If R is n-Gorenstein, then a right §or dnj-resolution of M is of
the fom0 - M — G° - G! - ... - G" — 0. So Gext;(M,N) = 0 for
i >n—1forall R-modules N. Let--- — G; — Gg — N — 0 be a minimal left
Sordnj-resolution of N and K,, = Ker(G,,—1 — G,—3). Then Gext,_1(M,N) =0
implies that K, C Gj,—; has a factorization K,, — G, — Gp—1 and thus K}, is a
direct summand of G, and hence is Gorenstein injective. So K, = G,. But if we
set M = R in the above, we get that 0 - G, — G,—; — K,—1 — 0is an exact
sequence. So K, is Gorenstein injective by Theorem 10.1.4 and thus G, = 0 by
minimality. But then again G, —»/Gp—; is Gorenstein injective. It is now easy to see
that G,—2/G,—1 < Kp—» is a Gorenstein injective precover and so G,—; = 0. Thus
(2) follows. Conversely, left Sordnj-dim N < n — 2 means Gext,—; (M, N) = 0 for
all modules M. But then right §ordnj- dim M < n for all M and so the result follows
from Theorem 12.3.1.

(1) = (3) If R is n-Gorenstein, then Gtor" (M, N) = Gtor" "1 (M, N) = 0 for all
modules M and N. Soif 0 > M — F® — F! — ... is aright or Flat-resolution
of M, then F" 2@ N - F" 1@ N - F' @ N — F"t1 @ N is exact for
all finitely generated R-modules N. So K = Ker(F" — F"*1) is pure in F" by
Lemma 8.4.23. But then Tor; (L, F"/K) = 0 for all modules L of finite injective
dimension. So F"/K is Gorenstein flat by Theorem 10.3.8 since R is Gorenstein.
Hence K is Gorenstein flat by Theorem 10.3.14. But F"~2 — F"" ! - K — 0is
exact by taking N = R in the above. So F = Ker(F"~2 — F"~1)is also Gorenstein
flat. Hence 0 - M — F® — ... - F"73  F — 0is aright §or Flat-resolution
of M.

(3) = (4) is trivial.

(4) = (1). right ﬁor?rojfg— dimM < n — 2 means Gfext,—; (M, N) = 0 for
all modules N € 'Mfg' Soif --- - F; — Fp — N — Ois a left ﬁorﬂ’rojfg-
resolution and K = Ker(F,—; — Fy—3). Then K is a summand of F,,. So left
gor?rojfg— dim N < n. Thus the result follows from Theorem 12.3.1 above. O

Corollary 12.3.7. If R is Iwanaga—Gorenstein and injdim g R = n, then
glleft Gordnj-dim g M = glright Yor Flat- dim g M
= glrightﬁor!PmJ}g— dim g My, = n —2,

oriszeroifn < 1.

Proof. The case n > 2 follows from the theorem above. The case n = 1 follows
using the same arguments. If n = 0, then every R-module is Gorenstein injective,
Gorenstein flat, and Gorenstein projective. |
Exercises

1. Prove the equivalence of parts 1, 3, 5 of Theorem 12.3.1.
2. Prove Corollary 12.3.2.
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3. Prove part 2 of Proposition 12.3.4.
4. Complete the proof of Corollary 12.3.5.

5. Let R be a left and right Noetherian and suppose §ordnj is preenveloping, and
SorFlat, Sor Proj are precovering over R. Prove that the following are equiv-
alent for an integer n > 0.

(a) R is n-Gorenstein.

(b) Gext" +k (M, N) = 0 for all R-modules (left and right) M, N and k > 1.
(c) Gext" +1(M ,N) = 0 for all R-modules (left and right) M, N.

(d) Gtory,x(M,N) = 0 for all R-modules (left and right) M, N and all k > 1.
(e) Gtory41(M, N) = 0 for all R-modules (left and right) M, N.

6. Let R be left and right Noetherian and suppose §ordnj, §or F lat are precovering
and preenveloping. Then the following are equivalent for an integer n > 2.

(a) R is n-Gorenstein.
(b) Gext,—1(M, N) = 0 for all R-modules (left and right) M, N.

(c) Gtor* (M, N) = Gtor" " }(M,N) = 0 for all finitely generated modules M
and all modules N.

(d) Gfexty—1(M, N) = 0 for all R-modules (left and right) M, N.
7. Let R be Iwanaga—Gorenstein. Prove that the following are equivalent

(a) R is 1-Gorenstein.

(b) glleft&ordnj-dim gM = 0.

(c) glright ¥Flat-dim gM = 0.

(d) glrightorProj-dim gMy = 0.

8. (Enochs—Jenda [62]). Let R be a commutative Gorenstein ring. Then the follow-
ing are equivalent for an integer n > 2.

(a) R is n-Gorenstein.

(b) left §or Flat-dimHom(E, M) < n—2 for all R-modules M and all injectives
E.

(c) rightGordnj-dimM Q@ E <n —2

(d) left§orProj-dimHom(M, R) < n — 2 for all finitely generated R-mod-
ules M.
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12.4 Dimensions over Cohen—Macaulay Rings
In this section, we consider Gorenstein dimensions over Cohen—Macaulay rings.

Theorem 12.4.1. Let R be a Cohen—Macaulay local ring of Krull dimension d admit-
ting a dualizing module 2, and let CM denote the class of maximal Cohen—Macaulay
R-modules. Then the following are equivalent for an integer n > 0:

(1) injdim Q < n.

(2) glright §ordnj-dim o(R) < n.

(3) Every nth dnj-cosyzygy of an R-module in $o(R) is Gorenstein injective.
4) glleft§orProj-dimGy(R) < n.

(5) Every nth Proj-syzygy of an R-module in §y(R) is Gorenstein projective.
(6) glleft&or Flat-dim Gy(R) < n.

(7) Every nth ¥lat-syzygy of an R-module in §y(R) is Gorenstein flat.

(8) glleft CM-dim Mfg <n.

(9) Every nth IProjfg-syzygy of a finitely generated R-module is maximal Cohen—
Macaulay.

Proof. (1) = (2). If injdim Q = m, then dim R = m and so by Theorem 11.2.6 and
Exercise 4 of Section 11.2 glright §ordnj- dim Jo(R) < m.

2 = (B). Let M € go(R)and0 - M — G° - ... - G" — Obea
right §ordnj-resolution of M. If L is an R-module of finite injective dimension, then
Ext" T/ (L, M) = Ext'(L,G") = 0 forall i > 1 by Theorem 10.4.24. Now let 0 —
M — E° — E' — ... be aright Jnj-resolution of M and G = Coker(E" 2 —
E™™1). Then Ext'(L,G) = 0 for all i > 1 and all R-modules L of finite injective
dimension. So G is Gorenstein injective again by Theorem 10.4.24.

(3) = (1). Since R is Cohen—Macaulay, 2 is the dualizing module and so
injdim = dim R and thus Q € Jo(R). But then the nth Jnj-cosyzygy of 2 is
Gorenstein injective by assumption and so inj dim 2 < n since inj dim Q2 < oo.

The proof of (1) = (4) = (5) is dual to the above using Theorems 11.5.11 and
10.4.18.

(5) = (1). injdim Q = projdim Ht‘fl(R) = d by Proposition 9.5.22. So Hgt(R) €
5o(R) and so the nth Proj -syzygy of Hr‘f[ (R) is Gorenstein projective and hence pro-
jective since proj dim Hr‘fl (R) < 00. So proj dim Hr‘fl (R) < n and thus injdim Q < n.
(7) = (1) is similar.

(1) = (6) follows from Theorem 11.7.8.

6) = (7). Let M € §(R) and0 — F,, — --- —> F; — Fy — M — 0 be a left
Gor Flat-resolution of M. If injdim L < oo, then Tor,; (L, M) = Tor; (L, F,) =
0 for all i > 1 by Theorem 10.4.28. So if C is an nth Flat-syzygy of an R-mod-
ule M € §y(R), then Tor;(L,C) = 0 for all i > 1 and for all R-modules L of
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finite injective dimension. So C is Gorenstein flat again by Theorem 10.4.28 since
C € 5(R).

(1) = (8). Let M € M, and C be the nth CM-syzygy of M. Then Ext" T (M, Q) =~
Ext (C, Q) foreachi > 1. Butthen Ext' (C, Q) = Oforalli > 1 since injdim Q < n.
So C is maximal Cohen—Macaulay by Proposition 9.5.23.

(8) = (9). This follows as in the above since if C is the nth JProj 1 SYZYEY, then

Ext'(C. Q) = Ext"*/(M, Q) forall i > 1.
(9) = (1). (9) means that Ext" ™" (M, Q) = Oforalli > 1 and all M € M. But
then injdim Q < n. O

Corollary 12.4.2.
glright Gordnj-dim go(R) = glleft Gor Flat- dim Gy (R)
= glleftGor Proj-dimGy(R)
= glleftCM- dim M;, = dim R.

Exercises

1. Prove 1 = 4 = 5in Theorem 12.4.1.

2. Letdim R = d and let go(R) be closed under taking dth §or dnj-syzygies. Then
prove that the following are equivalent for an integer n > 2.

(a) injdim Q2 < n.
(b) Gextyyx(M,N)=0forall M, N € Jo(R) and k > —1.

(c) Every nth §ordnj-syzygy of an R- module N € Jo(R) is Gorenstein injec-
tive.

(d) glleft§ordnj-dim Jo(R) <n —2.
Hint: Use Exercise 6 of Section 12.1.

3. Let dim R = d and let §y(R) be closed under taking dth §or Flat-cosyzygies.
Then prove that the following are equivalent for an integer n > 2.

(a) injdim Q2 < n.
(b) right or Flat-dim§y(R) <n — 2.
(c) rightGorProj-dim&o(R), <n —2.

4. Under the assumptions of Exercises 2 and 3 above, prove that

glleft Gordnj-dim $o(R) = glright Gor Flat- dim §p(R)
= glright§orProj-dim$y(R),, =d -2,

oriszeroifd < 1.
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12.5 Q-Gorenstein Modules

We conclude this chapter by introducing new classes of modules over Cohen—Macau-
lay rings admitting a dualizing module which generalize Gorenstein modules. We
will again let R denote a Cohen—Macaulay ring of Krull dimension d admitting a
dualizing module €2.

We recall that ‘W denotes the class of all modules W such that W =~ Q ® P for
some projective R-module P and 'V denotes the class of all modules V' such that
V =~ Hom(£2, E) for some injective R-module E. In Proposition 10.4.8, we showed
that ‘W is precovering and 'V is preenveloping. If M € §y(R) and --- — E; —
Eo > Q® M — 0 is a left dnj-resolution of & ® M, then we have a com-
plex --- - Vi - Vo - M — 0 where V; = Hom(£2, E;) for each i since
M =~ Hom(2,Q2 ® M). Butif E is an injective R-module, then the complex --- —
Hom(Hom($2, E), V1) — Hom(Hom(f2, E), Vo) — Hom(Hom(2, E), M) — 0
is equivalent to the exact sequence --- — Hom(E, E1) — Hom(FE, Ey) — Hom(E,
Q®M) — 0for Hom(Hom(S2, E), V;) = Hom(E, E;) and Hom(Hom($2, E), M) =
Hom(Hom(€2, E), Hom(2, 2 ® M)) = Hom(E, 2 ® M) by Remark 10.4.2 since
QM € $o(R). Thus the complex --- — V] — Vg — M — Ois aleft V-resolution
of M. In fact, we have the following result.

Lemma 12.5.1. 'V is closed under inductive limits.

Proof. This follows from Lemma 10.2.4. m|

Theorem 12.5.2. Every R-module has a 'V-cover.

Proof. Let {E}} be a representative set of indecomposable injective R-modules and
set Vi = Hom(S2, Ey). Then {V}} is a representative set for V. For if V' € V, then
V =~ Hom(R2, E) = Hom(2, P Ey) = GVj. So for an R-module M, set S(M) =
Bres Vk(Hom(Vk’M)). Then S(M) € 'V by the Lemma above and so the evaluation
map S(M) — M is a V-precover. But then M has a 'V-cover by Lemma 12.5.1 and
Corollary 5.2.7. m|

Let X be the class of all R-modules X such that X = Q ® F for some flat R-
module F. Suppose N € Jo(R). If 0 - Hom(Q,N) - F* - Fl — ... isa
right Flat-resolution of Hom($2, N), then we have a complex 0 - N — X% —
X! — ... where X! =~ Q ® F' for each i since @ ® Hom(Q2, N) = N. Now if
X € X, then the complex - -+ — Hom(Xl,X) — Hom(XO, X) - Hom(N, X) —
0 is equivalent to the exact sequence --- — Hom(F!,F) — Hom(F° F) —
Hom(Hom(2, N), F) — 0 where X =~ Q ® F with F flat since F, F! € §y(R)
and so Hom(Q ® F!,Q ® F) =~ Hom(F!, F) and Hom(N, Q2 ® F) =~ Hom(Q ®
Hom(2,N),Q ® F) =~ Hom(Hom($2, N), F) since Hom(2, N) € §p(R). Thus
the complex 0 - N — X% — X! — ... is a right X-resolution of N. Flat



326 Chapter 12 Balance over Gorenstein and Cohen—Macaulay Rings

is covering by Theorem 7.4.4. Thus we have a left ¥lat-resolution --- — F; —
Fo — Hom(2, N) — 0 of Hom(2, N) and consequently a complex --- — X; —
Xo - N — 0 where X; = Q ® F; for each i. But then this complex is an ex-
act left X -resolution since Hom(2 ® F, N) =~ Hom(2 ® F,Q2 ® Hom(2, N)) =
Hom(F,Hom(2, N)) and Tor; (2, Hom(2, N)) = O for all i > 1. So we have the
following result.

Proposition 12.5.3. Every N € Jo(R) has a right X -resolution and an exact left
X -resolution. In particular, X is precovering and preenveloping on $o(R).

Remark 12.5.4. We note thatif N € $o(R)y,, then a similar argument shows that N
has a right Wy, -resolution and so in particular Wy, is preenveloping on &o(R),, where
ng denotes the class of modules 2 ® P with P finitely generated and projective.

Theorem 12.5.5. Hom(—, —) is left balanced on M x M by V xV, on $o(R)x Fo(R)
by X x X, and on §o(R)z, % Fo(R)s, by Wy, x W,

Proof. The result follows from Proposition 10.4.7, Theorem 12.5.2, Proposition 12.5.3
and Remark 12.5.4 above. O

Theorem 12.5.6. Hom(—, —) is right balanced on §y(R) x §y(R) by Proj x 'V and
on o(R) x o(R) by W x dnj.

Proof. Let M € §y(R) and --- — Py — Py — M — 0 be a projective resolution
of M. Then--- - Q® P > Q® Pp > 2 ® M — 0 is exact and so easily
0 — Hom(M,V) — Hom(Py, V) — Hom(Py,V) — --- isexactforall V € V.
Now the first part of the theorem easily follows since each module in §y(R) has an
exact right V-resolution by Proposition 10.4.8. The second part follows dually. |

Theorem 12.5.7. —®— is left balanced on §o(R)x o (R) by Proj x W and Flarx X.

Proof. We simply note that if M € §p(R), then Tor; (2, M) = 0 for alli > 1 and
each N € Jo(R) has an exact left W-resolution and an exact left X -resolution by
Proposition 10.4.8 and 12.5.3. O

Lemma 12.58. Let M € Jo(R) and 0 — M — X° — X! — ... be a right
X-resolution of M. Then the complex0 -V @M - VX >V @ X! - ...
is exact forall V € V.

Proof. We first note that the sequence 0 > VM - VR X° > VX! - ...
is equivalent to the sequence 0 - E ® Hom(Q2, M) - EQ F* - EQ F! — ...
where V' =~ Hom(Q.E) and X! =~ Q ® F' with E injective and F’ flat. But
0 — Hom(Q,M) - F°® — F! — ... is a right Flat-resolution of Hom(Q, M)
and so we are done. O
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Theorem 12.5.9. — ® — is right balanced on §y(R) X Jo(R) by V x X.

Proof. Let M € §y(R) and0 — M — V° — V1 — ... be aright 'V-resolution of
M.Then0 —» QM - QRV? > QV! — ... isexactandso0 > X @ M —
XQV? 5 X®V! - ...isexact for all X € X. The result now follows from the
lemma above. O

Lemma 12.5.10. M € V ifand only if M € X.

Proof. If M € 'V, then M =~ Hom(£2, E) for some injective £ and so M € §y(R)
by Remark 10.4.2. Furthermore, M+ =~ Q® E™ € X. Conversely,if MT = Q® F
with F flat, then M+ =~ Hom(Q2, F™) € V. But Q ® M is a pure submodule of
Q® M™TT =~ FT. So Q ® M is injective by Proposition 5.3.8. But M € Jo(R).
It is now easy to check that M € §p(R) andso M =~ Hom(Q2,Q Q@ M) € V. O

A dual argument gives the following result.
Lemma 12.5.11. M € X ifand only if M+ € V.

Lemma 12.5.12. Let G € §9(R). Then right V-dim G < n if and only if for any
left V-resolution --- — Vi — Vo - M — 0 of each M € grM, Hom(G, V,) —
Hom(G, Ker(V,—1 — Vy—2)) is exact where V_y = M.

Proof. The proof is as in Lemma 8.4.34 noting that V-preenvelopes of modules in
%o (R) are injections. O

Theorem 12.5.13. The following are equivalent for an integer n > 0:

(1) injdim Q < n.

(2) right' V-dim R < n.

B3) If--- > Ey > Eo > M — 0is a left dnj-resolution of an R-module M,
then the complex - -+ — Hom($2, E1) — Hom(2, Eg) — Hom(2, M) — 0 is
exact at Hom(2, E;) foralli > n — 1 where E_; = M.

4) If0 > M — F° - F! — ... is a right Flat-resolution of an R-module M,

then the complex0) — QM — QR F° - QR F! — -+ isexactat Q@ F*
foralli > n — 1 where F~l=M.

5)If0 > M — F° - F' — ... is a right Flat-resolution of an R-module
M € 99(R), then the complex0 - QM - QQF* > Q® F! — ... is
exactat Q ® F foralli > n —1where F~1 = M.

6) If0 - M — P° - P! — ... isaright J)rOJ}g-resolution of a finitely
generated R-module M, then the complex0 - Q@M — QQ P? - Q ®
Pl — ... isexactat Q ® P! foralli > n — 1 where P~1 = M.
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D If0 - M — E° - E' — ... is a right dnj-resolution of an R-module
M, then for each V € 'V the complex 0 — Hom(V, M) — Hom(V, E®) —
Hom(V, E') — -+ is exact at Hom(V, EV) for all i > n.

®) If0 > M — E° — E' — ... is a right dnj-resolution of an R-module M &
%0(R), then for each V € 'V the complex 0 — Hom(V, M) — Hom(V, E®) —
Hom(V, E') — --- is exact at Hom(V, EV) for all i > n.

(9) Every left V-resolution --- — Vi — Vo — M — 0 of M is exact at V; for all
i >n—1whereV_1 =M.

(10) Each M € §y(R) has an exact right V-resolution0 — M — V0 - V1 — ...
such that for each V. € 'V the complex 0 — Hom(V, M) — Hom(V,V°) —
Hom(V, V') — --- is exact at Hom(V, V?) for all i > n.

an if--- - P - Pp > M — 0 is a left Proj-resolution of an R-module
M, then for each X € X the complex 0 — Hom(M, X) — Hom(Py, X) —
Hom(Py, X) — --- is exact at Hom(P;, X) for all i > n.

(12) Each M € $o(R) has an exact left 'W-resolution --- — W1 — W - M — 0
such that for each W € ‘W the complex 0 — Hom(M, W) — Hom(Wy, W) —
Hom(Wy, W) — --- is exact at Hom(W;, W) for all i > n.

(13) Every right X-resolution0 — M — X% — X! — ... of M € Jo(R) is exact
at X' foralli > n —1where X~! = M.

14) If--- - F1 — Fo - M — 0is a left Flat-resolution of an R-module M,
then for each V€ 'V the complex --- -V Q F1 >V Fp > VM — 0
isexactatV ® F; foralli > n.

(15) Each M € $o(R) has an exact left X -resolution --- — X1 — Xo > M — 0
such that for each V- € 'V the complex--- —> VX1 > V®Xg > VM — 0
is exactat V ® X; foralli > n.

(16) Every right ng-resolution 0->M—->Wo S Wl ... of M € go(R)fg is
exact at Wifor alli >n—1where W=l = M.

Proof. (1) & (2). Let0 - Q — E® - E! — ... - E™ — 0 be an injective
resolution of Q. Then 0 — Hom(Q, Q) — Hom(2, E°) — --- — Hom(R2, E") —
0 is exact since Ext' (Q,Q) = 0 for all i > 1. But Hom(, Q) = R and it is easy
to check that this sequence is a right V-resolution. So (2) follows. Conversely, let
0— R — V% > V! 5 V" — 0 be aright V-resolution of R (see Proposition
104.8). Then0) > Q@ > QR V2 5 ... 5> Q@ V" ! - Q® V" — 0is exact
since V C §o(R) and so Tor; (2,V) = 0foralli > landall V € V. But Q ® V' is
injective for each i. Thus (1) follows.

(1) < (3) follows as in Theorem 8.4.36 and (1) < (4) < (6) follows as in
Theorem 8.4.31.
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(1) < (7). It follows from Proposition 8.4.3 that projdim V' < n if and only if (7)
holds. But then the result follows since proj dim Hom(€2, E) < n for all injective E
if and only if injdim Q2 < n.

4) = (5), (7) = (8) are trivial.

(2) < (9). This follows as in Theorem 8.4.36 using Lemma 12.5.12 and Theorem
12.5.5.

(5) = (1). Let K be the nth Flat-syzygy of Hom(2, E) with E an injec-
tive R-module. Then K € ﬁo(R) Soif 0 » K - F° - Fl — ... is
a right Flat-resolution, then --- — Hom(Q ® F!,E) - Hom(Q ® F° E) —
Hom(Q ® K, E) — 0 is exact at Hom(Q ® F',E) fori > n — 1 by assump-
tion. Therefore, Ext; (K,Hom(2, E)) = 0 for all i > n — 1. Now computing
Ext; (—, —) using a left #lat-resolution --- — F, — F,_y — --- > F; — Fy —
Hom(R2, E) — 0, we see that K = Ker(F,—1 — F,—) is a direct summand of Fj,
and thus flatdim Hom($2, E£') < n. But then (1) follows.

(1) = (10). The existence of such a resolution follows from Proposition 10.4.8.
We now simply note that if V'’ € V, then

Ext' (V, V') = Ext' (Hom(2, E), Hom($2, E’))
=~ Hom(Tor; (Hom(2, E), Q), E’)
=0

foralli > 1since E € $o(R). So injdim Q2 < n if and only if projdim V' < n for all
V € 'V and thus Ext! (V, M) = O forall i > n and all V € V. Hence (10) follows.

(8),(10) = (1). V € §y(R) and so its nth Proj-syzygy is in §y(R). Hence
Ext! (V, M) = Oforalli > n and all M € §y(R) means projdim V < oo.

(1) < (11) follows similarly since injdim 2 < #n if and only if injdim X < n for
all X € X.

(1) < (12). We note that injdim Q2 < n if and only if injdim W < n forall W €
W, andif W, W' € ‘W, then Ext'(W’, W) = O forall i > 1 since Ext' (22, Q) = 0 for
all i > 1. Moreover, the nth dnj-cosyzygy of W is in $o(R). Thus the result follows
from Proposition 10.4.9 and an argument dual to the one in (1) < (10).

4) = (13). Let M € Jo(R) and 0 - M — X° — X! — ... bea
right X-resolution of M. Then 0 — Hom(Q,M) — F° — F! — ... isa
right Flat-resolution of Hom($2, M) where X’ =~ Q ® F'. But the complex 0 —
Q ® Hm(Q. M) - Q® F* - Q ® F! — ... is equivalent to the complex
0>M—>X0> X! ... So (13) easily follows.

(13) = (5). Let M € Jo(R) and0 - M — F° — F! — ... be aright Flat-
resolution. Then0) - QM — Q@ — F? - Q® F! — ... is aright X-resolution
of Q@ M.ButQ @ M € o(R). So (5) follows from (13).

(1) < (14) is trivial since flatdim V' < n if and only if Tor; (V, M) = 0 for all
i >n+ 1andall R-modules M.
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(1) < (15). We simply note that Hom(Tor; (V, X), Q/Z) = Ext'(V, X ) = 0 for
alli > 1since X € V by Lemma 12.5.11. Thus Tor; (V, X) = Oforall V € V and
XeX.

(1) & (16) is left to the reader. O

Definition 12.5.14. An R-module M is said to be 2-Gorenstein injective if there
exists a Hom(V, —) exact exact sequence

PN TS /Y VAL /g RN

of modules in 'V such that M = Ker(V° — V1).

Dually, an R-module M is said to be $2-Gorenstein projective if there exists a
Hom(—, W) exact exact sequence

e W > Wy > WO W .

of modules in ‘W such that M = Ker(W°? — W),
A module M is said to be Q2-Gorenstein flat if there exists a V ® — exact exact
sequence
---—>X1—>X0—>X0—>X1—>---

of modules in X such that M = Ker(X? — X1).
We note that every V € V is Q-Gorenstein injective, W € W is Q-Gorenstein
projective, and X € X is 2-Gorenstein flat.

Proposition 12.5.15. Classes V, W, and X are closed under direct summands.

Proof. LetV € V and G be a direct summand of V. Set V =~ Hom(Q2, E) =~ G® G’
for some R-module G’ and injective R-module E. But then Q2 ® G is an injective
R-module. Furthermore, G € §y(R) since V € §y(R). So G =~ Hom(R2, 2 ® G).
Thatis, G € V. The proofs for W and X are similar. O

Lemma 12.5.16. If M is Q-Gorenstein injective, then Ext' (V, M) = 0 forall V € 'V
and alli > 1.

Proof. This is trivial since Ext'(V,V’) =0forall V, V' € Vandalli > 1. m|

Remark 12.5.17. It follows from the above that the right V-dimension of an -
Gorenstein injective module and the left ‘W-dimension of an 2-Gorenstein projective
module are either zero or infinite.

We now show that there is an abundant supply of 2-Gorenstein modules.
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Theorem 12.5.18. Let M be an R-module. Then

L Ifo > M — VO_—> Vvl - -+ is an exact right V-resolution of M and
C' = Ker(V! — VIt then C' is Q-Gorenstein injective fori > d.

QD If--- -V - Vo - M — 0is a left V-resolution of M and C; =
Coker(Vi+1 — V;), then C; is Q-Gorenstein injective fori > d — 1.

Proof. This follows as in the proof of Theorem 10.1.13 using Theorem 12.5.13 above.
O

Theorem 12.5.19. Let M be a finitely generated R-module and suppose M € $o(R).
Then

M If--- > W > Wy > M — 0 is an exact left 'W-resolution of M and
C; = Coker(W;+1 — W;), then C; is Q-Gorenstein projective fori > d.

Q) If0 - M - W° - Wl — ... isa right ng—resolution and C' =
Ker(W! — With) then C' is Q-Gorenstein projective fori > d — 1.

Proof. This follows as in the proof of Theorem 10.2.16 using Theorem 12.5.13 and
Remark 12.5.4. i

Remark 12.5.20. If M is Q-Gorenstein flat, then M T is Q-Gorenstein injective. For
if X € X, then XT € V by Lemma 12.5.11. Thus if --- - X; — X9 — X? —
X1 — ... is the exact sequence in the definition, then - -- — X!T — X0 — xF —
X 1‘" — --- is an exact sequence of modules in V. Moreover, applying Hom(V, —)
gives the sequence --- — Hom(V,Hom(2, F!T) — Hom(V,Hom(2, F°T)) —
Hom(V, Hom($2, Fy")) — -+ where X =~ Q ® F with F flat. This is equivalent to
the complex - > (EQ F)T - (E® FO)T - (E® Fo)T = (EQ F))T — -
where V =~ Hom($2, E) with E injective. But the exact sequence --- — V ® X1 —
VRXo—= VX VX! > .. isequivalentto--- - EQ F| - E® Fy —
E® F* > E® F! — --- and thus M = Ker(X; — X;") is Q-Gorenstein
injective. We will show in Theorem 12.5.25 below that the converse holds if M €

Fo(R).

Proposition 12.5.21. The left X -dimension of an Q-Gorenstein flat module is either
zero or infinite.

Proof. Let M be Q2-Gorenstein flat. If the left X'-dimension of M is finite, then the
right 'V-dimension of M 7 is finite. But M is Q-Gorenstein injective by Remark
12.5.20 above. So M+ € V by Remark 12.5.17. Thus M € X by Lemma 12.5.11.

O

Proposition 12.5.22. Let M € §y(R). Then M is Q2-Gorenstein injective if and only
if Q ® M is Gorenstein injective.
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Proof. Suppose --- — Vi — Vo — V% — V1 — ... is an exact sequence of
modules in 'V with M = Ker(V? — V1) such that the sequence remains exact when
Hom(V, —) is applied to it whenever V' € V. Now applying Q2 ® — to the complex
gives the complex --- — E; — Eog — E° — E! — ... of injective modules
where V; =~ Hom(RQ2, E;), V! =~ Hom(2, E?), and Q ® M = Ker(E® — E).
But Tor; (2,V) = Oforalli > 1 and all V € V since V € §y(R). Furthermore,
M € §y(R) by assumption. So the complex --- — Ey — Eg - E® - El — ...
is exact by Theorem 10.4.10. But if V, V/ € 'V, then Hom(V, V') =~ Hom(E, E’)
where V =~ Hom(Q2, E), V' =~ Hom(2, E’) with E, E’ injective. Thus Hom(E, —)
leaves the complex --- — E; — Ey — E% — E! — ... exact. Thatis, Q ® M is
Gorenstein injective.

Conversely, if 2 ® M is Gorenstein injective and --- — E; — Eg — E LN
El — ... is the exact sequence of injective modules for Q ® M, then Hom($2, —)
leaves the sequence exact since injdim 2 < oo. Thus we get an exact sequence

=V = Vo - V® = V! — ... of modules in V. It is now easy to check
that this sequence remains exact if Hom(V, —) is applied to it whenever V' € V. Thus
M =~ Hom($2, 2 ® M) is 2-Gorenstein injective. |

Proposition 12.5.23. Let M € $o(R). Then M is Q2-Gorenstein projective if and
only if Hom($2, M) is Gorenstein projective.

Proof.  The proof is dual to the proof of the proposition above noting that
Hom(W’,W) =~ Hom(P', P) where W' =~ Q ® P/, W =~ Q ® P with P, P’
projective and Ext' (Q, M) = Ext'/(Q, W) = Oforalli > 1and all W € ‘W since
W e Jo(R). m|

Lemma 12.5.24. Let M € Jo(R) and - — X1 — Xo — X - X! — ... bea
complete X -resolution of M. Then Tor; (L, M) = 0 for all i > 1 and all R-modules
L of finite 'V-dimension if and only if the sequence --- - L ® X1 - L ® Xo —
L®X?—> L®X"— - isexact for all such L.

Proof. We recall from the proof of Theorem 12.5.13 that Tor;(V, X) = 0 for all
i>1,VeV,and X € X.Sothecomplex--- > VX > VX > VX’ >
V ® X! — ... is exact for all V € V by assumption and Lemma 12.5.8 above.
One then proceeds by induction on right 'V-dimension of L as in the proof of Lemma
10.3.7. The converse is trivial. |

Theorem 12.5.25. The following are equivalent for an R-module M € $o(R):
(1) M is Q-Gorenstein flat.
(2) Hom(2, M) is Gorenstein flat.
(3) M is Q-Gorenstein injective.
4) Tor;(V,M) =0foralli > 1andallV € V.
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(5) Tor;(L,M) = 0foralli > 1and all L of finite right V-dimension.
(6) Tori (L, M) = 0 for all L of finite right 'V-dimension.

Proof. (1) & (2). Let--- - X; — Xo — X% — X! — ... be as in Definition
12.5.14. Then we have an exact sequence - — F; — Fg — F® — F! — ... of
flat modules where X; =~ Q®F;, X! ~ Q® F!, and Hom(2, M) = Ker(F0 — Fl)
since Ext! (2, M) = Ext/(2,X) = Oforalli > 1,all X € X and Hom(Q,Q ®
F)z Fforallflat F.But--- > VX - VX > VX' > VeX! -...
isexact forall V € V by assumptionand V@ X =~ Hom(Q, E)QQLQF = EQ F
where V' = Hom(2, E). Thus the complex --- - EQ F] - EQ Fy - EQ F* —
E ® F! — --. is exact for all injective R-modules E. So Hom(Q2, M) is Gorenstein
flat. The converse is now standard.

(2) ¢ (3). Hom(R2, M) is Gorenstein flat if and only if Hom(2, M) is Goren-
stein injective if and only if @ ® M ™ is Gorenstein injective. But M+ € §y(R). So
the result follows by Proposition 12.5.22 above.

(1) = (4) is trivial since Tor;(V,X) = Oforall V € Vand X € X, (4) = (5)
follows by dimension shifting, and (5) = (6) is trivial.

(6) = (5) Suppose L has finite right V-dimension and consider the exact sequence
0~ L' — P — L — 0 with P projective. Then P has a finite 'V-dimension. Thus
L’ also has finite 'V-dimension and so the result follows by dimension shifting.

(5) = (1). Setting R = L in Lemma 12.5.24, we get that the complete X -
resolution --- — X1 — Xo — X% > X! — ... isexact and so M is Q-Gorenstein
flat. O

Theorem 12.5.26. Let M € $o(R). Then

(1) If--- = X1 —» Xo > M — 0is an exact left X -resolution of M and C; =
Coker(Xj4+1 — X;), then C; is Q-Gorenstein flat for all i > d.

) If0 - M — X° > X! — ... is a right X-resolution and C' = Ker(X' —
X't then CVis Q-Gorenstein flat fori > d — 1.

Proof. (1)If V € 'V, then Tor;(V, M) = O forall j > d + 1. Butif C; is the ith
X-syzygy of M, then Tor; (V, C;) = Tor;;(V,M) = Oforalli >d,j >1,V eV
since Tor; (V,X) = Oforalli > 1,V € V, X € X. So the result follows from
Theorem 12.5.25 above.

(2) This follows from Theorem 12.5.13 as in Corollary 10.3.13. O

Theorem 12.5.27. Every R-module has an Q2-Gorenstein injective precover.

Proof. If --- — Vi — Vo — M — 0is a left V-resolution of M, then K =
Ker(Vy_1 — V;_5) is Q2-Gorenstein injective by Theorem 12.5.18 above. So K has
an exact sequence --- — V; — Vo — V0 — VI — ... such that each V! € V and
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Hom(V, —) leaves the sequence exact whenever V' € V. But then it is easy to see that
each cosyzygy in the sequence is also €2-Gorenstein injective. Thus the result follows
as in Theorem 11.1.1. i

Theorem 12.5.28. Every R-module has an Q2-Gorenstein injective cover.

Proof. This is now standard. m|

Theorem 12.5.29. Every R-module M € §y(R) has an Q2-Gorenstein injective pre-
envelope M — G such that if 0 - M — G — L — 0 is exact, then right V-
dimL < d — 1 whenever d > 1.

Proof. The proof is similar to the proof of Theorem 11.2.1 using Theorem 12.5.18
and Lemma 12.5.16. i

Corollary 12.5.30. The following are equivalent for an R-module M € §y(R):
(1) M is Q-Gorenstein injective.
(2) Ext!(V,M) = 0forall V €V and forall i > 1.
(3) Ext' (L, M) = 0 for all R-modules L such that right V-dim L < oo and for all
i>1.

(4) Ext'(L, M) = 0 for all R-modules L such that right V-dim L < oo.

Proof. (1) = (2) is Lemma 12.5.16 above, (2) = (3) follows by dimension shifting,
and (3) = (4) is trivial.

(4) = (1) follows from the theorem above as in Corollary 11.2.2 since by Theorem
12.5.18 a direct summand of an 2-Gorenstein injective in y(R) is also such. m|

Corollary 12.5.31. Let M € §y(R). Then the following are equivalent for a S2-
Gorenstein injective preenvelope M — G with right V-dim G/ M < oo:

(1) right V-dim M < oo.

2) GeV.

(3) M — G is aright V-preenvelope.

Proof. (1) & (2) Let0 > M — G — L — 0 be exact. Then right V-dim L < oo
by Theorem 12.5.29. So if right V-dim M < oo, then right V-dim G < oo and thus
G € 'V by Remark 12.5.17. The converse is now trivial.

(2) & (3) is trivial. |

Proposition 12.5.32. Let £ be the class of R-modules of finite right 'V-dimension and
QE&ordnj denote the class of Q2-Gorenstein injective R-modules. Then the following
are equivalent for an R-module M € §y(R) and integer r > 0:
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(1) right Gordnj-dimM <r.

(2) There exists an exact sequence 0 — M — G > Gl ... -Gl >
G" — 0 with each G* Q-Gorenstein injective.

(3) Ext'(L,M) =0forall L € £ andalli > r + 1.

4) Ext* TH (L, M) =0forall L € &.

(5) Every rth Q8 ordnj-cosyzygy of M is Q-Gorenstein injective.
(6) Every rth 'V-cosyzygy of M is Q-Gorenstein injective.

Proof. The result follows as in Proposition 11.2.5 noting that Ext! (L, V) = 0 for all
L e £,V € Vsince V is Q-Gorenstein injective. O

Corollary 12.5.33. Let M € §y(R). Then
(1) right Gordnj-dimM < d.
(2) right Fordnj-dim M = right V-dim M if and only if right V-dim M < oo.

Proof. (1) follows from Theorem 12.5.18 and Proposition 12.5.32 above.
(2) follows from (1) above and Corollary 12.5.31. |

Proposition 12.5.34. The following are equivalent for an R-module M € §y(R):
(1) Ext'(M, N) = 0 forall i > 1 and all Q-Gorenstein injective R-modules N.
(2) Ext!(M, N) = 0 for all Q-Gorenstein injective R-modules N.

(3) M has right 'V-dimension at most d.
(4) M has finite right 'V-dimension.

Proof. (1) = (2) and (3) = (4) are trivial, and (2) = (1) follows by induction.

(1) = (3). Let0 > M — V% — VI — ... be exact with each V! € V and
K = Ker(Vd — Vd+1). Then K is 2-Gorenstein injective by Theorem 12.5.18.
So Hom(V4+! K) — Hom(V¥,K) — Hom(V4~!, K) is exact and thus K is a
summand of V4.

(4) = (1) by Corollary 12.5.30. |

Lemma 12.5.35. Let £ be the class of R-modules in §y(R) such that right V-dim L <
0. Then &L is closed under inductive limits.

Proof. right V-dim L < d by the Proposition above and so the result follows since V
is closed under inductive limits by Lemma 12.5.1. m|

Theorem 12.5.36. Every R-module M € §y(R) has a Q2-Gorenstein injective en-
velope M — G such that if 0 - M — G — L — 0 is exact, then right'V-
dimL < d — 1 whenever d > 1.
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Corollary 12.5.37. Let M € §y(R) and M — G be a Q2-Gorenstein injective enve-
lope, then right V-dim M < oo if and only if M — G is a 'V-envelope.

Theorem 12.5.38. If M € Go(R) and 0 — M — G’ - G! - .- is a minimal
right Q-Gorenstein injective resolution, then G' € 'V for eachi > 1 and G' = 0 for
i>d.

Proof. This follows from Theorem 12.5.36 and Corollary 12.5.37 above. |

Remark 12.5.39. There are analogous results for 2-Gorenstein projective and €2-
Gorenstein flat precovers and preenvelopes and balance.

Exercises

Prove Lemma 12.5.1.

Prove Remark 12.5.4.

Prove Theorem 12.5.5.

Prove the second part of Theorem 12.5.6.

Provel & 3,1 46,29 1< 12,1 < 15,and 1 < 16 in Theorem
12.5.13.

Complete the proof of Theorem 12.5.15.
Prove Remark 12.5.17.
Prove Theorems 12.5.18 and 12.5.19.

Prove that an R-module M is Gorenstein injective if and only if M € $o(R) and
Hom(€2, M) is 2-Gorenstein injective.

Al e

L ® N

10. Prove that an R-module M is Gorenstein projective (flat) if and only if M €
0(R) and 2 ® M is Q2-Gorenstein projective (flat).

11. Prove part (2) of Theorem 12.5.26.
12. Complete the proof of Theorem 12.5.27.

13. Prove that every inductive limit of 2-Gorenstein injective modules is $2-Goren-
stein injective.

14. Prove Theorem 12.5.28.
15. Prove Proposition 12.5.32.
16. Prove Theorem 12.5.36.
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