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Preface

The purpose of this second volume is to give the reader some feeling for problems
and proofs concerning complexes. So we have included some basic results. These
are probably well known, but it may be hard to find their proofs all in one place. We
have also tried to give a sampling of some of the new developments and the associated
tools in the study of complexes. Then we hope we will have encouraged the readers
to go on to learn about more advanced topics such as derived categories and dualizing
complexes. Bibliographical notes at the end of the volume describe references for
extra reading.

We would like to again thank Mrs. Rosie Torbert for continuing to prepare the
manuscripts for us.
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Chapter 1

Complexes of Modules

In this chapter, we will consider categories of complexes of modules and will give
some of their basic properties. We characterize the projective and injective objects in
these categories and prove the complex version of the Baer criterion.

1.1 Definitions and Basic Constructions

In what follows R will be a ring.

Definition 1.1.1. By a complex of leftR-modules we mean a pair ..Cn/n2Z; .dn/n2Z/

where each Cn is a left R-module and where dn W Cn ! Cn�1 is a linear map such
that dn�1ıdnD0 for all n2Z. We usually abbreviate and denote ..Cn/n2Z ; .dn/n2Z/

as .C; d/ or simply as C (with d understood). We call d the differential of C and the
modules Cn the terms of C .

Remark 1.1.2. If it is convenient to use superscripts instead of subscripts we let
C n D C�n and dn D d�n. So we have dn W C n ! C nC1.

However, we will frequently use superscripts to distinguish complexes. So we will
let .C i /i2I denote a family of complexes indexed by i 2 I .

It is convenient to assume that for a complex C we have Cn \ Cm D ; when
n ¤ m. So then we take x 2 C to mean x 2 S

n2Z Cn and we write deg.x/ D n if
x 2 Cn. We note that in actual practice we may have Cn \Cm ¤ ; with n ¤ m. The
cardinality (denoted jC j) of complex C is defined to be

P

n2Z jCnj, i.e. jSn2Z Cnj.
Sometimes we need to distinguish the differentials of various complexes. To do so

we often use the obvious conventions. So for example, we might let d and d 0 be the
differentials of C and C 0. Another convention is to use dC to indicate the differential
of the complex C .

Many results for modules easily carry over to complexes. So we will often limit
ourselves to stating results without proofs. But we suggest that the reader who is less
familiar with complexes check these out.

In the rest of the chapter, by “complex” we mean a complex of left R-modules for
some ring R. Similarly “module” will mean a left R-module. We will let R-Mod
denote the category of left R-modules.
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Definition 1.1.3. Given complexes C 0 and C of left R-modules, by a morphism f W
C 0 ! C we mean a family .fn/n2Z of linear maps fn W C 0n�Cn such that dn ıfn D
fn�1 ı d 0n for all n 2 Z.

So the above means that we have a commutative diagram

� � � �� C 0nC1

fnC1

��

d 0
nC1

�� C 0n

fn

��

d 0n �� C 0n�1

fn�1

��

�� � � �

� � � �� CnC1

dnC1
�� Cn

dn �� Cn�1
�� � � �

It is easy to check that with this definition we get an additive category. This category
will be denoted C.R-Mod/. So HomC.R-Mod/.C;D/ will denote the abelian group of
morphisms f W C ! D.

The notation C 2 C.R-Mod/ will mean that C is a complex of left R-modules.
If R is a commutative ring, r 2 R and f W C ! D is a morphism in C.R-Mod/,

then rf W C ! D defined by .rf /.x/ D r.f .x// for x 2 C is a morphism in
C.R-Mod/. So we see that when R is a commutative ring, HomC.R-Mod/.C;D/ can
be made into an R-module.

Definition 1.1.4. If C D ..Cn/; .dn// (we omit the n 2 Z) is a complex, then C 0 D
..C 0n/; .d 0n// is said to be a subcomplex of C if C 0n is a submodule of Cn for each n
and if dn agrees with d 0n on C 0n.

If C 0 is a subcomplex of C , we write C 0 � C . If .C i /i2I is a family of sub-
complexes of C , there are obvious subcomplexes of C that will be represented by the
symbols

T

i2I C
i and

P

i2I C
i .

To say that C is the direct sum of a family .C i /i2I of subcomplexes will have the
obvious meaning. And so then to say that a subcomplex S � C is a direct summand
of C will also have the obvious meaning.

If S � C is a direct summand, then for each n 2 Z, Sn is a direct summand of Cn.
However it may happen that Sn is a direct summand of Cn for each n without S being
a direct summand of C .

If S � C is a subcomplex, then for any n 2 Z, dn W Cn ! Cn�1 induces a map
Cn=Sn ! Cn�1=Sn�1. With these maps we get a quotient complex which will be
denoted C=S .

If f W C ! D is a morphism of complexes, then we check that dn.Ker.fn// �
Ker.fn�1/. This shows that we get a subcomplex of C whose nth term is Ker.fn/.
This subcomplex will be denoted Ker.f /.

In a similar manner, we get a complex denoted Im.f / with Im.f / � D. So then
we get the complexes Coker.f / D D= Im.f / and Coim.f / D C=Ker.f /.
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If f W C ! D is a morphism and S is a subcomplex of C with S � Ker.f /,
then we get an induced morphism C=S ! D along with the usual claims about
C=S ! D. So finally we see that C.R-Mod/ is an Abelian category. (See Enochs–

Jenda [8, Section 1.3]). We say a diagram C 0
f! C

g! C 00 of complexes is exact
if Im.f / D Ker.g/. So for each n 2 Z, C 0n ! Cn ! C 00n is an exact sequence of
modules. We then generalize this notion to longer sequences of complexes. So, for
example, C 1 ! C 2 ! C 3 ! C 4 is exact if and only if C 1 ! C 2 ! C 3 and
C 2 ! C 3 ! C 4 are both exact.

An exact sequence of the form 0 ! C 0 ! C ! C 00 ! 0 is called a short exact
sequence of complexes.

Definition 1.1.5. By the suspension of a complex C we mean the complex denoted
S.C / where S.C /n D Cn�1 and whose differential is �d where d is the differential
ofC (more precisely, dS.C /

n D�dC
n�1 for any n). Then we define Sk.C / for any k2Z

in the obvious fashion with Sk.C /n D Cn�k . Note that HomC.R-Mod/.S.C /;D/ Š
HomC.R-Mod/.C; S

�1.D// for any C and D.

More generally, we have

HomC.R-Mod/.S
k.C /;D/ Š HomC.R-Mod/.C; S

�k.D//

for any k 2 Z.
If f W C ! D is a morphism, we get a morphism S.C / ! S.D/ denoted

S.f /. So S.f /n.x/ D fn�1.x/ for x 2 Cn�1. Hence S is an additive functor from
C.R-Mod/ to S.R-Mod/. In fact it is an automorphism of the category C.R-Mod/.

If C is a complex, we see that we have a subcomplex denoted Z.C/ of C where
Z.C/n D Ker.dn/ for each n. Note that the differential of Z.C/ is 0. Similarly we
define a subcomplexB.C/ � C whereB.C/n D Im.dnC1/. Since dnıdnC1 D 0, we
get B.C/n � Z.C/n and so B.C/ is a subcomplex of Z.C/. The quotient complex
Z.C/=B.C / is denoted H.C/.

The elements of Z.C/ are called the cycles of C and the elements of B.C/ are
called the boundaries of C . The groups H.C/n are called the homology modules
of C .

The modules Z.C/n, B.C/n and H.C/n are usually denoted Zn.C /, Bn.C / and
Hn.C /, respectively. So then we have Hn.C / D Zn.C /=Bn.C /. The complex C is
said to be exact if H.C/ D 0, or equivalently if Ker.dn/ D Im.dnC1/ for all n 2 Z.

We can regard Z;B and H as additive functors

C.R-Mod/! C.R-Mod/

where Z.f /, B.f / and H.f / for a morphism f W C ! D are defined in a natural
fashion.

If f W C ! D is an isomorphism of complexes, then H.f / W H.C/ ! H.D/ is
also an isomorphism. The converse is not true in general.
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Definition 1.1.6. A morphism f W C ! D is said to be a homology isomorphism if
H.f / W H.C/! H.D/ is an isomorphism.

For a family of complexes .C i /i2I we have Z.
L

i2I C
i / D L

i2I Z.C
i / and

B.
L

i2I C
i / D L

i2I B.C
i /. HenceH.

L

i2I C
i / Š L

i2I H.C
i /. The analogous

result holds for
Q

i2I C
i . Hence we see that

L

i2I C
i is exact if and only if each C i

is exact and that
Q

i2I C
i is exact if and only if each C i is exact.

Definition 1.1.7. We refer to Definitions 1.5.1 and 1.5.2 and Theorem 1.5.3 of Vol-
ume I. Just as for modules we can define a direct system .C i ; .fj i // (with i; j 2 I ,
I a direct set) of complexes of left R-modules. Then we can form the direct (or
inductive) limit lim! C i and we get the usual universal property associated with the

morphisms C j ! lim! C i .

Proposition 1.1.8. For a direct system .C i ; .fj i // in C.R-Mod/, we have an isomor-
phism

H.lim! C i / Š lim! H.C i /:

Proof. The maps C j ! lim! C i give maps H.C j / ! H.lim! C i /. So we get a map

of the limit of the direct system .H.C i /;H.fj i // into lim! H.C i /, i.e. a map

lim! H.C i /! H.lim! C i /:

It is then a simple direct limit argument to get that this map is an isomorphism.

We note that this result gives that if each C i in such a system is exact then so is
lim! C i .

1.2 Complexes Formed from Modules

Definition 1.2.1. If M is a module, we let NM denote the complex

� � � ! 0!M
1!M ! 0! � � �

where the two M ’s are in the 1st and 0th place. We let M denote the complex

� � � ! 0!M ! 0! � � �

with M in the 0th place.
Note that M is a subcomplex of M and that M=M D S.M/.
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If C is an arbitrary complex, then a morphism M ! C is given by a commutative
diagram

� � � �� 0

��

�� M
1 ��

��

M

��

�� 0

��

�� � � �

� � � �� 0 �� C1
�� C0

�� 0 �� � � �

So the linear M ! C0 is determined by the linear M ! C1. And conversely, any
linear M ! C1 gives rise to a morphism M ! C . So we see that

HomC.R-Mod/.M;C / Š HomR.M;C1/:

In a similar manner, we get that

HomC.R-Mod/.M;C / Š HomR.M;Z0.C //:

More generally, we have

HomC.R-Mod/.S
n.M/; C / Š HomC.R-Mod/.M; S�n.C // Š HomR.M;Cn�1/:

Similarly,
HomC.R-Mod/.S

n.M/; C / Š HomR.M;Zn.C //:

The isomorphism HomC.R-Mod/.C;M/ Š HomR.C0;M/ can be seen to hold by
considering the commutative diagram

� � � �� C2

��

�� C1

��

�� C0

��

�� C�1

��

�� � � �

� � � �� 0 �� M �� M �� 0 �� � � �

Then the commutative diagram

� � � �� C1
��

��

C0

��

�� C�1

��

�� � � �

� � � �� 0 �� M �� 0 �� � � �
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gives the isomorphism

HomC.R-Mod/.C;M/ � HomR.C0=B0.C /;M/:

Thus
HomC.R-Mod/.S

n.C /;M/ Š HomR.C�n;M/

and
HomC.R-Mod/.S

n.C /;M/ Š HomR.C�n=B�n.C /;M/:

1.3 Free Complexes

Definition 1.3.1. By a graded setX we mean a family of sets .Xn/n2Z. If we assume
(as we usually will) that Xn \ Xm D ; if n ¤ m, then we write x 2 X to mean
x 2 S

n2ZXn and we write deg.x/ D n if x 2 Xn (the notation jxj D n is also
used).

For graded sets X and Y we define X [ Y and X \ Y in the obvious way.
If X and Y are graded sets, by a morphism f W X ! Y of degree p 2 Z we mean

a family .fn/n2Z of functions fn where fn W Xn ! XnCp for all n 2 Z. So then if
f W X ! Y has degree p and g W Y ! Z has degree q, then g ı f W X ! Z has
degree p C q.

So we get a category with Hom.X; Y / denoting the set of morphisms X ! Y (of
any degree). So we see that in this category, Hom.X; Y / has the structure of a graded
set with Hom.X; Y /p being the set of morphisms f W X ! Y of degree p.

If X is a graded set, we define the suspension S.X/ as we did for complexes. So
S.X/n D Xn�1. And then we define Sk.X/ for any k 2 Z.

By the cardinality of a graded setX (denoted jX j or card.X/), we mean
P

n2Z jX jn
(or

P

n2Z card.Xn/).
“Forgetting” the obvious things we see that a complex C gives rise to a graded set.

Then the differential d W C ! C is a morphism of degree �1.
If X is a graded set and C a complex, X � C will mean Xn � Cn for all n 2 Z.

Definition 1.3.2. If X is a graded subset of the complex C , we say S � C is the
subcomplex generated by X if S is the intersection of all subcomplexes of C that
contain X . C is said to be a finitely generated complex if there is a finite set X � C

that generates C .

Definition 1.3.3. A complex F is said to be a free complex with base B if B � F

is a graded subset of F such that for any complex C and any morphism B ! C of
graded sets of degree 0, there is a unique morphism F ! C of complexes that agrees
with the morphism B ! C .

We say F is free if it has a base.
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Example 1.3.4. The complex R D ! 0! 0! R ! R ! 0! 0 � � � is free with
the base B consisting of the 1 2 R of degree C1.

Now we note that if F is free with base B � F , then for any k 2 Z, Sk.F / is free
with base Sk.B/. Also, if .F i /i2I is any family of free complexes, then

L

i2I F
i is

also free.
Using these observations we see that we can construct a free complex F with base

B such that each jBnj is some specified cardinal number.

Proposition 1.3.5. Given any complex C , there is a free complex F and an epimor-
phism F ! C .

Proof. It suffices to find a free F with a base B such that jBnj � jCnj. Then there is
a degree 0 epimorphism B ! C (of graded sets). So the corresponding F ! C is
necessarily an epimorphism.

Definition 1.3.6. A complex C is said to be finitely presented if there is an exact
sequence

Q! P ! C ! 0

with Q and P finitely generated free complexes.

The argument for the next result is like the argument when we use modules instead
of complexes.

Proposition 1.3.7. If C is a finitely presented complex in C.R-Mod/ and .C i ; .fj i //

is a direct system in C.R-Mod/, then

Hom.C; lim! C i / Š lim! Hom.C; C i /:

1.4 Projective and Injective Complexes

Definition 1.4.1. A complex P is said to be projective if for any morphism P ! D

and any epimorphism C ! D, the diagram

P

�����
�

�
�

C �� D

can be completed to a commutative diagram by a morphism P ! C .

Proposition 1.4.2. Any free complex F is projective.
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Proof. Given a base B � F and a diagram as above we can complete the diagram

B

�����
�

�
�

C �� D

Then find the corresponding linear F ! C .

Corollary 1.4.3. A complex P is projective if and only if it a direct summand of a
free complex.

Proof. As for modules, just complete

P

1
�����

�
�

�

F �� P

where F is free and F ! P is an epimorphism. For the converse we just note
that a direct sum of complexes is projective if and only if each of the summands is
projective.

Remark 1.4.4. Since P is then isomorphic to a direct summand of F , we get Pn is
isomorphic to a direct summand of Fn. It is not hard to see that if F is free then each
Fn is a free module. Hence Pn is a projective module. So this is a necessary condition
on P in order that P be projective. The next example shows that the condition is not
sufficient.

Example 1.4.5. R has R as a subcomplex and R=R D S.R/. Since

HomC.R-Mod/.S.R/;R/ D 0;

the diagram

S.R/

1

�����
�

�
�

NR �� S.R/

cannot be completed to a commutative diagram. So S.R/ (and so also S�1.S.R// D
R/ is not a projective complex even though each term of S.R/ is a projective module.



Section 1.4 Projective and Injective Complexes 9

However we have the following.

Proposition 1.4.6. If P is a projective module, then NP is a projective complex.

Proof. Given a diagram

NP

�����
�

�
�

C �� D

with C ! D an epimorphism of complexes, we use the remarks of Section 1.2 above
to get the diagram

P

�����
�

�
�

C1
�� D1

where C1 ! D1 is surjective. Then since P is a projective module we get a linear
P ! C1 that makes the diagram commutative. And then again by Section 1.2, we see
that we get a morphism P ! C that makes the original diagram commutative.

Theorem 1.4.7. Let P be a complex. Then the following are equivalent:

a) P is projective

b) P is a direct summand of a free complex

c) There is a family .P n/n2Z of projective modules such that P Š L

n2Z S
n.P n/

d) P is exact and Z.P / has all its terms projective

Furthermore, for a projective P , the family .P n/n2Z in c) above is unique up to
isomorphism.

Proof. a) , b) was shown above. We argue b) ) d). If F D P ˚Q where F is
free then H.F / D H.P /˚H.Q/. Since F is the direct sum of various Sn.R/’s and
since these are exact we have F is exact. So H.F / D 0 and hence H.P / D 0. Now
consideringZ.F / D Z.P /˚Z.Q/ and noting thatZ.Sn.R// D Sn.R/, we see that
Z.F / has free terms. Hence Z.P / has projective terms.

We now show d) ) c). By d) we have the exact Pn ! Zn�1.P / ! 0 exact
for every n 2 Z. Since Zn�1.P / is projective we get a section and we have Pn Š
Zn.P /˚Zn�1.P /. So P is the direct sum of the complexes

� � � ! 0! Zn�1.P /
1�! Zn�1.P /! 0! � � �

i.e. P Š L

n2Z S
n�1Zn�1.P /. This gives c).

c) ) a) follows from the observation that every Sn.P n/ is projective.
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Proposition 1.4.8. Let P be an exact complex such that each Pn .n 2 Z/ is a pro-
jective module and such that for some n, Pk D 0 for k < n. Then P is a projective
complex.

Proof. Since PnC1 ! Pn ! 0 is exact and since Pn is projective this map has a
section. So we can assume PnC1 D P 0nC1 ˚ Pn where P 0nC1 D Ker.PnC1 ! Pn/.
So then P is the direct sum of the complex P 0 D � � � ! P 0nC2 ! P 0nC1 ! 0 and the
complex � � � ! 0! Pn ! Pn ! 0! � � � . Then P 0 will also satisfy our hypothesis
and so we can continue the procedure. Finally we see that we can appeal to c) of
Theorem 1.4.7 and get that P is a projective complex.

Definition 1.4.9. A complex I is said to be injective if for any morphism A! I and
any monomorphism A! B of complexes, the diagram

A

��

�� B

���
�

�
�

I

can be completed to a commutative diagram by a morphism B ! I .

Before proving results for injective complexes, we make some observations. Note
that an injective complex is a direct summand of any complex that contains it. Also
note that if I is an injective module, then Sn. NI / is an injective complex. And for any
complex C

HomC.R-Mod/.C; S
n. NI // Š HomR.Cn; I /:

If we choose I so that we have an injection Cn ! I , then the corresponding mor-
phism C ! Sn.I / is such that Cn ! .Sn. NI //n D I is this map.

If we now choose an injective module In for each n in such a way that we have an
injective linear map Cn ! In and then form the corresponding morphism C ! In

we see that C ! Q

n2Z I
n is a monomorphism. Since

Q

n2Z I
n as a product of

injective complexes is an injective complex, we see that there are enough injective
complexes. But then if C itself is injective we get that C is isomorphic to a direct
summand of

Q

n2Z I
n. But now we observe that

Q

n2Z S
n.In/ D L

i2Z S
n.In/.

With these observations we can get the basic results about injective complexes.
We first note that this description of the injective complexes shows that every injec-

tive complex is exact.
We now want to prove a Baer criterion for injective complexes. So we briefly recall

how we get the criterion for modules. We say a module E is injective for a module
M if for every submodule S � M and every linear S ! E there is an extension
M ! E. If E is injective forM and S �M then it is injective for S andM=S . If E
is injective for M1 and M2 and if S �M1 ˚M2 and if f W S ! E is linear then we
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extend S \M1 ! E to M1 ! E. But then the linear maps S ! E, M1 ! E agree
on S \M1 and so can be combined to give a linear map M1 C S ! E. But since
M1˚0 �M1CS , we haveM1CS DM1˚T for some T �M2. Extending T ! E

and combining with M1 C S D M1 ˚ T ! E, we get the desired M1 ˚M2 ! E.
Using this argument and Zorn’s lemma we get

Proposition 1.4.10. If E is injective for eachMi in some family .Mi /i2I of modules,
then E is injective for

L

i2I Mi .

So by the observation that E is injective if and only if it is injective for every free
module and using the fact that a free module is the direct sum of copies of R we get
the Baer criterion for modules, i.e. E is injective if and only if E is injective for R.

Modifying these arguments we get the complex version of this criterion.

Theorem 1.4.11. A complexE is injective if and only if it is injective for each Sn.R/.

Note that subcomplexes of NR are of the form � � � ! 0! I ,! J ! 0! � � � were
I; J are left ideals of R.

1.5 Exercises

1. For a family .C i /i2I of complexes, find necessary and sufficient conditions in
order that

Y

i2I

C i D
M

i2I

C i

2. We say that a complex C is cyclic if there is an x 2 C that generates C (and then
we say x is a generator of C ).

a) Find all cyclic complexes (where R is any ring)

b) Let R D Z and let C and D be cyclic complexes. Find necessary and suffi-
cient conditions in order that C ˚D be cyclic.

c) Find all rings R for which it holds that every subcomplex of a cyclic complex
(over R) is cyclic.

3. Show that every projective complex P ¤ 0 has a subcomplex that is not projec-
tive.

4. Show that the ring R is left Noetherian if and only if every direct sum of injective
complexes is injective.

5. If a complex C is the direct sum of its subcomplexes S and T , argue that for each
n 2 Z, Cn is the direct sum of Sn and Tn. Find a counterexample to the converse
of this claim.
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6. If S � C is a subcomplex of the complex C , we say that S is an essential
subcomplex of C (or C is an essential extension of S) if S \ T ¤ 0 for every
subcomplex T � C , T ¤ 0. In this case we write S 0C . Then show that C is an
essential extension of S if and only if for every x 2 C , x ¤ 0 there is an r 2 R
such either rx ¤ 0 and rx 2 S or such that rdx ¤ 0 and rdx 2 S where d is
the differential.

7. Argue that for any complex C there is an injective complex E which is an essen-
tial extension of C (such an E is called an injective envelope of C ).

8. If M is a module, find injective envelopes of NM and of M .

9. If C is a complex, show that Z.C/ �0 C if and only if C has no subcomplexes
isomorphic to Sn. NM/ for n 2 Z, and M ¤ 0 a module.

10. Call a complex C a simple complex if C ¤ 0 and if C and 0 are the only sub-
complexes of C . Find all simple complexes.

11. For a complex C , prove that the following are equivalent:

a) every subcomplex S � C is a direct summand of C

b) C is the direct sum of simple subcomplexes of C

c) d D 0 and each Cn.n 2 Z/ is a direct sum of simple modules.

12. Show that if P is a projective complex then P is exact and each Pn is a projective
module.

13. If k is a field, prove that every C 2 C.k-Mod/ is the direct sum of complexes of
the form Sk. Nk/ and Sj .k/ (for i; j 2 Z).

14. For a ring R, argue that the following are equivalent:

a) a module M is injective if and only if it is projective

b) a complex C , is injective if and only if it is projective.

15. For a ring R, argue that the following are equivalent:

a) every projective module is free

b) every projective complex is free

16. If I is an exact complex and is such that for some n0, In D 0 if n > n0, prove
that I is injective if and only if each Ik is an injective module.

17. Let R D Z=.4/ and let C D � � � ! Z=.4/
2�! Z=.4/

2�! Z=.4/ ! � � � . Show
that C is exact, has all its terms projective and all its terms injective, but that C
is neither projective nor injective

18. Let P 2 C.Z-Mod/ have all its terms finitely generated and projective (so free).
Prove that P is the direct sum of complexes of some suspension of � � � ! 0 !
.n/ ,! Z ! 0! � � � with n 2 Z and this Z in the 0th place.

19. Give an example of a homology isomorphism f W C ! D that is not an isomor-
phism in C.R-Mod/ (cf. Definition 1.1.6).



Chapter 2

Short Exact Sequences of Complexes

For a ring R we will let C.R-Mod/ denote that category of complexes of left R-mod-
ules. So C 2 C.R-Mod/ will mean that C is such a complex.

Given complexes C and D of left R-modules for some ring R, we introduce the
groups Extn.C;D/ for n � 0. We show that the elements of Ext1.C;D/ can be put
in a bijective correspondence with the equivalence classes of short exact sequences
0! D ! U ! C ! 0 of complexes.

We introduce the short exact sequences of complexes associated with the mapping
cones of morphisms f W C ! D in C.R-Mod/ and consider some of the properties
of these sequences. We also consider the behavior of the homology groups associated
with a short exact sequence of complexes.

2.1 The Groups Extn.C; D/

If C;D 2 C.R-Mod/, we know there are exact sequence P ! C ! 0 and 0 !
D ! E inC.R-Mod/whereP is a projective complex andE is an injective complex.
So we have the beginning of a projective resolution of C and of an injective resolution
of D. Since we use subscripts to denote terms of a complex, we will use superscripts
to distinguish the terms of these resolutions.

Definition 2.1.1. By a projective resolution of C 2 C.R-Mod/, we mean an exact
sequence of complexes

� � � ! P�2 ! P�1 ! P 0 ! C ! 0

in C.R-Mod/ where each P�n; n � 0, is a projective complex. By an injective
resolution of D 2 C.R-Mod/, we mean an exact sequence

0! D ! E0 ! E1 ! � � �
of complexes in C.R-Mod/ where each En, n � 0, is an injective complex.

An exact sequence in C.R-Mod/ of the form

0! S ! P�.n�1/ ! � � � ! P 0 ! C ! 0

with P 0; P�1; : : : ; P�.n�1/ projective complexes will be called a partial projective
resolution of C of length n.
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A partial injective resolution of D 2 C.R-Mod/ will be defined in a similar man-
ner.

Example 2.1.2. If M 2 R-Mod and if � � � ! P1 ! P0 ! M ! 0 is a projective
resolution of M in R-Mod, then using definition 1.2.1 we see that

� � � ! NP1 ! NP0 ! NM ! 0

is a projective resolution of NM in C.R-Mod/.

Similarly for we can construct an injective resolution of NN 2 C.R-Mod/ from an
injective resolution of N in R-Mod.

Once we have the notions of projective and injective resolutions in C.R-Mod/, we
can define the groups Extn.C;D/ (or more precisely Extn

C.R-Mod/
.C;D/ for C;D 2

C.R-Mod/).
So if

� � � ! P�1 ! P 0 ! C ! 0

is a projective resolution of C 2 C.R-Mod/, then Extn.C;D/ is defined to be the nth

homology group of the complex

0! Hom.P 0;D/! Hom.P 1;D/! � � �
of Abelian groups.

The usual arguments give that these groups are well-defined. They can also be
computed as the homology groups of

0! Hom.C;E0/! Hom.C;E1/! � � �
where

0! D ! E0 ! E1 ! � � �
is an injective resolution of D.

If 0 ! S ! P�.n�1/ ! � � � ! P�1 ! P 0 ! C ! 0 is a partial projective
resolution of C then Extn.C;D/ can be computed as the cokernel of

Hom.P�.n�1/;D/! Hom.S;D/

Using the complex version of the Horseshoe lemma and the fact that Ext0.C;D/ Š
Hom.C;D/, we get long exact sequences associated with short exact sequences 0!
C 0 ! C ! C " ! 0 and 0! D0 ! D ! D00 ! 0 of complexes. These are:

0! Hom.C 00;D/! Hom.C;D/! Hom.C 0;D/! Ext1.C 00;D/! � � �
and

0! Hom.C;D0/! Hom.C;D/! Hom.C;D00/! Ext1.C;D0/! � � �
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Given a projective resolution

� � � ! P�1 ! P 0 ! C ! 0

and a k 2 Z, we see that

� � � ! Sk.P�1/! Sk.P 0/! Sk.C /! 0

is a projective resolution of Sk.C /.
For D 2 C.R-Mod/ we have Hom.Sk.P�n/;D/ Š Hom.P�n; S�k.D//. From

this isomorphism it follows that

Extn.Sk.C /;D/ Š Extn.C; S�k.D//

for all n � 0.

Proposition 2.1.3. If M;N 2 R-Mod and C 2 C.R-Mod/, then Extn. NM;C/ Š
Extn.M;C1/ and Extn.C; NN/ Š Extn.C�1; N / for n 2 Z.

Proof. Let � � � ! P2 ! P1 ! P0 ! M ! 0 be a projective resolution of M in
R-Mod. Then � � � ! NP2 ! NP1 ! NP0 ! NM ! 0 is a projective resolution of NM in
C.R-Mod/. We compute the Extn. NM;C/ by considering the complex

0! Hom. NP0; C /! Hom. NP1; C /! � � �

and computing homology. But for each k, Hom. NPk; C / Š Hom.Pk; C1/. So this
complex is isomorphic to the complex

0! Hom.P0; C1/! Hom.P1; C1/! � � �

and the homology groups of this complex are the groups Extn.M;C1/. The second
claim is proved in a similar manner.

Proposition 2.1.4. If M;N 2 R-Mod and C 2 C.R-Mod/, then for n; k 2 Z

Extn.Sk. NM/;C / Š Extn.M;CkC1/

and
Extn.C; Sk. NN// Š Extn.Ck�1; N /:

Proof. We have Extn.Sk. NM/;C / Š Extn. NM;S�k.C // Š Extn.M; S�k.C /1/ D
Extn.M;CkC1/. The second isomorphism is proved in a similar manner.

It is more complicated to compute the groups Extn.M;C / and Extn.C;N /. How-
ever, with M D R we get the next result.



16 Chapter 2 Short Exact Sequences of Complexes

Proposition 2.1.5. For C 2 C.R-Mod/, we have

Ext1.R; C / Š H�1.C /:

Proof. The complex NR is projective (in fact it is free, cf. Example 1.3.4). The
complex R is a subcomplex of NR and NR=R Š S.R/. So we have the partial pro-
jective resolution 0 ! R ! NR ! S.R/ ! 0. Applying S�1 we get the par-
tial projective resolution 0 ! S�1.R/ ! S�1. NR/ ! R ! 0 of R. By sec-
tion 1.2, we know that Hom.S�1.R/; C / Š Hom.R; S.C // Š Z�1.C /. And also
Hom.S�1. NR/; C / Š Hom. NR; S.C // Š C0.

With these isomorphisms, we have that

Hom.S�1. NR/; C /! Hom.S�1.R/; C /

corresponds to a map C0 ! Z�1.C /. But from the definition of the isomorphisms
we see that C0 ! Z�1.C / agrees with d0 and so its cokernel is H�1.C /.

Using suspensions the next result is immediate.

Proposition 2.1.6. For k 2 Z, and C 2 C.R-Mod/

Ext1.Sk.R/; C / Š Hk�1.C /:

Then we also get:

Corollary 2.1.7. If C 2 C.R-Mod/, then C is exact if and only if Ext1.Sk.R/; C / D
0 for all k 2 Z.

We will later need the next result.

Proposition 2.1.8. If C is a finitely presented complex in C.R-Mod/, then for any
directed system .Di W .fj i // of complexes we have

Extn.C; lim! Di / Š lim! Extn.C;Di /

for all n � 0.

Proof. The proof is the same as that for modules.

2.2 The Group Ext1.C; D/

In the first part of this section, we recall that if M;N 2 R-Mod then the � 2
Ext1.M;N / can be put in bijective correspondence with the equivalence classes of
short exact sequences 0 ! N ! U ! M ! 0 in R-Mod. We will note that
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the same arguments can be applied to get such a correspondence between the � 2
Ext1.C;D/ (for C;D 2 C.R-Mod/) and the equivalence classes of short exact se-
quences 0! D ! U ! C ! 0 in C.R-Mod/.

But first, we recall the following.

Definition 2.2.1. If we have a diagram

S
f1 ��

p2

��

M1

M2

of left R-modules, we can form the pushout diagram

S
f1 ��

f2

��

M1

g1

��

M2

g2 �� P

where P D .M1 ˚M2/=T with

T D ¹.f1.x/;�f2.x// j x 2 Sº

and where g1.x1/ D .x1; 0/ C T and g2.x2/ D .0; x2/ C T for x1 2 M1 and
x2 2M2.

This diagram can be expanded to a commutative diagram with exact rows:

0 �� Ker.f1/
� � �� S

f2

��

f1 �� M1

g1

��

�� Coker.f1/

��

�� 0

0 �� Ker.g2/
� � �� M2

g2 �� P �� Coker.g2/ �� 0

It is easy to check that Coker.f1/! Coker.g2/ is always an isomorphism and that if
f1 is injective, so is g2.
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Given any commutative diagram

S
f1 ��

f2

��

M1

g 0
1

��

M2

g 02 �� P 0

there is a unique linear map h W P ! P 0 such that g01 D h ı g1 and g02 D h ı g2.

If furthermore this diagram is such that Coker.f1/! Coker.g02/ is an isomorphism
and such that f1 and g02 are injections, then we get the commutative diagram

0 �� S

��

�� M1

��

�� Coker.f1/

��

�� 0

0 �� M2

g2 �� P

h

��

�� Coker.g2/

��

�� 0

0 �� M2

g 02 �� P 0 �� Coker.g02/ �� 0

with exact rows. Since we assumed Coker.f1/ ! Coker.g02/ is an isomorphism,
and since Coker.f1/ ! Coker.g2/ is an isomorphism, we get that Coker.g2/ !
Coker.g02/ is an isomorphism. This then implies that h is an isomorphism. So we also
say that

S
f1 ��

f2

��

M1

g 01
��

M2

g 02 �� P 0

is a pushout diagram.
So now with a change in notation we see that we have proved the next result.
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Proposition 2.2.2. Any diagram

0 �� S

��

�� U �� M �� 0

S 0

of left R-modules with an exact row can be completed to a commutative diagram

0 �� S

��

�� U

��

�� M �� 0

0 �� S 0 �� U 0 �� M �� 0

with exact rows. Furthermore, given any such commutative diagram with exact rows,

S ��

��

U

��

S 0 �� U 0

is a pushout diagram.

Definition 2.2.3. If M;N 2 R-Mod, we say that two short exact sequences

� W 0! N ! U !M ! 0

and
� 0 W 0! N ! U 0 !M ! 0

are equivalent if there is a commutative diagram

0 �� N �� U

��

�� M �� 0

0 �� N �� U 0 �� M �� 0

We note that U ! U 0 is then an isomorphism (and so we have an equivalence rela-
tion).
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Definition 2.2.4. For M;N 2 R-Mod let Ext.M;N / denote the set of all equiva-
lence classes of short exact sequences 0! N ! U !M ! 0.

Theorem 2.2.5. ForM;N 2 R-Mod, there is a bijection Ext1.M;N /! Ext.M;N /.

Proof. Let 0 ! S ,! P ! M ! 0 be a partial projective resolution of M . This
gives an exact sequence

Hom.P;N /! Hom.S;N /! Ext1.M;N /! 0

We define a function Hom.S;N /! Ext.M;N / as follows:
If f 2 Hom.S;N /, we use a pushout to form a commutative diagram

0 �� S

f

��

� � �� P

��

�� M �� 0

� W 0 �� N �� U �� M �� 0

We map f to the equivalence class Œ�� 2 Ext.M;N /.
Suppose f; f 0 2 Hom.S;N / have the same image in Ext.M;N /. Then we have a

diagram.

0 �� S

ff 0

����

� � �� P

gg 0

����

�� M �� 0

0 �� N
h �� U

k �� M �� 0

Since g � g0 maps P to the image of N in U , there is a linear t W P ! N such that
h ı t D g� g0. This means that f and f 0 are in the same coset of Im.Hom.P;N /!
Hom.S;N // is Hom.S;N /.

But then h ı .t j S/ D h ı .f � f 0/ and so t j S D f � f 0.
Conversely, if

0 �� S

f

��

� � �� P

g

��

�� M �� 0

� W 0 �� N
h �� U

k �� M �� 0
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is a commutative diagram with exact rows and if f 0 2 Hom.S;N / is such that f �
f 0 D t j S for a linear map t W P ! N , then

0 �� S

f 0

��

� � �� P

gChıt
��

�� M �� 0

� W 0 �� N
h �� U

k �� M �� 0

is commutative. Hence f and f 0 have the same image in Ext.M;N /. This shows
that we get an injection Coker.Hom.S;N /! Hom.P;N //! Ext.M;N /.

To show that this map is a bijection, let � W 0 ! N
h! U

k! M ! 0 be exact.
Since P is projective, we can complete the diagram

P ��

g

���
�
�

M �� 0

U
k �� M �� 0

to a commutative diagram. But then there is a linear map f W S ! U such that
h ı .g j S/ D h ı f . So the image of f in Ext.M;N / is the equivalence class of � .
Hence Hom.S;N /! Ext.M;N / is surjective.

So finally we get that we have a bijection

Coker.Hom.S;N /! Hom.P;N //! Ext.M;N /:

The isomorphism

Coker.Hom.S;N /! Hom.R;N // Š Ext1.M;N /

then gives us the desired bijection

Ext1.M;N /! Ext.M;N /:

Remark 2.2.6. The reader should check that another partial projective resolution 0!
S 0 ,! P 0 ! M ! 0 of M leads to the same bijection Ext1.M;N / ! Ext.M;N /.
Also, if f D 0: S ! N , then the image of f D 0 is the equivalence class of
0!M !M ˚N ! N ! 0, i.e. the split exact sequence.

Now if C;D 2 C.R-Mod/ and if we define Ext.C;D/ to be the set of equivalence
classes of short exact sequences 0 ! D ! U ! C ! 0 in C.R-Mod/, then with
the same type arguments we get the following result.

Theorem 2.2.7. For C;D 2 C.R-Mod/, there is a bijection

Ext1.C;D/! Ext.C;D/
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2.3 The Snake Lemma for Complexes

Given a commutative diagram

M 0 ��

s0

��

M

s

��

�� M 00

s00

��

�� 0

0 �� N 0 �� N �� N 00

of left R-modules with exact rows, there is a connecting homomorphism Ker.s00/ !
Coker.s0/ such that

Ker.s0/! Ker.s/! Ker.s00/! Coker.s0/! Coker.s/! Coker.s00/

is an exact sequence. See Proposition 1.2.13 of Volume I.
The connecting homomorphism is natural. This means that if

NM 0 ��

Ns0
��

NM

Ns
��

�� NM 0

Ns00
��

�� 0

0 �� NN 0 �� NN �� NN 00

is another such diagram, then any morphism of the first diagram into the second gives
a commutative diagram

Ker.s0/ ��

��

Ker.s/

��

�� Ker.s00/

��

�� Coker.s0/

��

�� Coker.s/ ��

��

Coker.s00/

��
Ker.Ns0/ �� Ker.Ns/ �� Ker.Ns00/ �� Coker.Ns0/ �� Coker.Ns/ �� Coker.Ns00/

Using this observation we get our next result.

Proposition 2.3.1. (The Snake Lemma for complexes). If

C 0 ��

s0

��

C

s

��

�� C 00

s00

��

�� 0

0 �� D0 �� D �� D00
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is commutative diagram in C.R-Mod/ with exact rows, then there is a connecting
homomorphism Ker.s00/! Coker.s0/ such that the sequence

Ker.s0/! Ker.s/! Ker.s00/! Coker.s0/! Coker.s/! Coker.s00/

is exact.

Proof. For each n 2 Z, we have the commutative diagram

C 0n ��

s0n
��

Cn

sn

��

�� C 00n

s00

��

�� 0

0 �� D0n �� Dn
�� D00n

in R-Mod. Furthermore, the differentiations give a map of this diagram into the
diagram corresponding to n � 1. So we see that the connecting homomorphisms
Ker.s00n/ ! Coker.s0n/ give a map Ker.s00/ ! Coker.s0/ of complexes. Once we
know this, the rest of the claim follows.

Note that if C 2 C.R-Mod/, then the differentiation d of C can be regarded as a
morphism d W C ! S.C /. So if 0! C 0 ! C ! C 00 ! 0 is a short exact sequence
in C.R-Mod/, we get the commutative diagram

0 �� C 0

d 0

��

�� C

d
��

�� C 00

d 00

��

�� 0

0 �� S.C 0/ �� S.C / �� S.C 00/ �� 0

By Proposition 2.3.1, this gives rise to an exact sequence

0! Z.C 0/! Z.C/! Z.C 00/! S.C 0/=B.S.C 0//
D S.C 0=B.C 0//! S.C=B.C //! S.C 00=B.C 00//! 0:

So applying S�1 to this sequence, we get that

C 0=B.C 0/! C=B.C /! C 00=B.C 00/! 0
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is exact. Again using the differentials to induce maps, we get a commutative diagram

C 0=B.C 0/ ��

��

C=B.C /

��

�� C 00=B.C 00/

��

�� 0

0 �� S.Z.C 0// �� S.Z.C // �� S.Z.C 00//

with exact rows. Applying the snake lemma to this diagram we get the exact sequence

H.C 0/! H.C/! H.C 00/! S.H.C 0//! S.H.C//! S.H.C 00//:

Since S is an automorphism of C.R-Mod/, we see that we also get the exact se-
quence

� � � ! S�1H.C 0//! S�1H.C/! S�1H.C 00/! H.C 0/
! H.C/! H.C 00/! S.H.C 0//! S.H.C//! S.H.C 00//! � � �

This exact sequence gives us the long exact sequence

� � � ! HnC1.C
00/! Hn.C

0/! Hn.C /! Hn.C
00/! Hn�1.C

0/! � � � :

Proposition 2.3.2. If 0 ! C 0 ! C ! C 00 ! 0 is a short exact sequence in
C.R-Mod/, then if any two of C 0, C and C 00 are exact then so is the third.

Proof. For a complex C , C exact means H.C/ D 0. Clearly if H.C/ D 0, then
H.S.C // D 0, and H.S�1.C // D 0. So the claim follows from the exactness of

H.S�1.C 0//! H.S�1.C /! H.S�1.C 00//! H.C 0/
! H.C/! H.C 00/! H.S.C 0//! H.S.C //! H.S.C 00//:

2.4 Mapping Cones

In the earlier sections of this chapter, we have considered short exact sequences of
complexes. Mapping cones of morphisms in C.R-Mod/ can be used to construct
such short exact sequences.

Definition 2.4.1. Let C;D 2 C.R-Mod/ and let f W C ! D be a morphism. Let
C.f / (called the cone of f ) be the complex such that for each n 2 Z, C.f /n D
Dn ˚ Cn�1 and where

dC.f /
n .y; x/ D .dD

n .y/C fn�1.x/;�dC
n�1.x//:
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We should check that we do have a complex. Using the simplified notation

d.y; x/ D .d.y/C f .x/;�d.x//;

we see that

d.d.y; x// D .d2.y/C d.f .x// � f .d.x//; d2.x// D .0; 0/

since d ı f D f ı d .

It is easy to check that we have morphisms Y ! C.f / defined by y 7! .y; 0/ and
C.f / ! S.C / defined by .y; x/ 7! x. And then we see that we get a short exact
sequence

0! Y ! C.f /! S.C /! 0

in C.R-Mod/.
If we apply Proposition 2.3.1 to this short exact sequence, we get a morphism

H.S.C //! SH.Y / D H.S.Y //.

Proposition 2.4.2. A morphism f W C ! D in C.R-Mod/ is a homology isomor-
phism (see Definition 1.1.6) if and only if C.f / is an exact complex.

Proof. The short exact sequence 0 ! D ! C.f / ! S.C / ! 0 gives rise to the
exact sequence of homology groups

� � � ! H.D/! H.C.f //! H.S.C //

! H.S.D//! H.S.C.f ///! H.S2.C //! � � �

Noting that f is a homology isomorphism if and only if S.f / is a homology isomor-
phism the result follows.

2.5 Exercises

1. a) Let 0! C 0 ! C ! C 00 ! 0 be a short exact sequence in C.R-Mod/. Prove
that 0! Z.C 0/! Z.C/! Z.C 00/ is also an exact sequence.

b) Give an example where Z.C/! Z.C 00/! 0 is not exact.

c) Argue that if C 0 is exact, then Z.C/! Z.C 00/! 0 is exact.

2. Again let 0! C 0 ! C ! C 00 ! 0 be an exact sequence in C.R-Mod/. Argue
that 0 ! B.C 0/ ! B.C/ and B.C/ ! B.C 00/ ! 0 are exact, but in general
B.C 0/! B.C/! B.C 00/ is not exact.

3. Given M;N 2 R-Mod, compute Extn. NM; NN/ and Extn.M;N /.
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4. Define the projective dimension ofC2C.R-Mod/ (with the notation proj: dimC).
Then prove that for n � 0, proj: dimC � n if and only if ExtnC1.C;D/ D 0 for
all D 2 C.R-Mod/.

5. If proj: dimC � n < C1 for C 2 C.R-Mod/, argue that C is exact and that
each term Ck of C has projective dimension at most n.

6. If R ¤ 0 is a ring, show that there is always some C 2 C.R-Mod/ with
proj: dimC D C1.

7. Let l: gl: dimR � n < C1. Argue that if E 2 C.R-Mod/ is exact, then
proj: dimE � n.

8. Prove 4.–7. above for injective dimension of complexes.

9. If M;N 2 R-Mod, show that Extn. NM; NN/ Š Extn.M;N / for all n. Then show
also that Extn. NM;S. NN// Š Extn.M;N / for all n and that Extn. NM;Sk. NN// D 0

if k ¤ 0; 1.

10. If C 2 C.R-Mod/, a morphism R ! C is uniquely determined by some x 2
Z0.C /. Given such a morphism, compute the pushout of the diagram

R � � ��

��

R

C

Argue that the pushout is a complex of the form

� � � ! C3
d3! C2 ! C1 ˚R! C0

d0! C�1
d�1! C�2 ! � � �

where C2 ! C1˚R is the map x 7! .d2.x/; 0/ and where C1˚R! C0 is the
map .y; r/ 7! d1.y/C rx. Then compute the homology modules of the pushout
complex.

11. Let S � C be a subcomplex of C 2 C.R-Mod/. Show that the following are
equivalent:

1) 0! H.S/! H.C/ is exact

2) H.C/! H.C=S/! 0 is exact

3) B.S/ D S \ B.C/
12. Let C 2 C.R-Mod/. Show that Z.C/ D 0 if and only if C D 0.
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The Category K.R-Mod/

3.1 Homotopies

Let R be a ring. We begin by defining the category of graded left R-modules.

Definition 3.1.1. By Gr.R-Mod/, we mean the category whose objects are families
.Mn/n2Z of left R-modules indexed by the set Z of integers. These objects will be
called graded left R-modules. Given two such objects M D .Mn/n2Z and N D
.Nn/n2Z, by a morphism f W M ! N of degree p 2 Z we mean a family .fn/n2Z

where for each n, fn W Mn ! NnCp is a linear map. If P D .Pn/n2Z is another
object and g D .gn/n2Z W N ! P is a morphism of degree q, then g ı f W M ! P

is defined to be the family .gnCp ı fn/n2Z with gnCp ı fn W Mn ! PnCpCq . So
g ı f has degree p C q. So letting deg.f / D p mean f has degree p, we get
the formula deg.g ı f / D deg.g/ C deg.f /. So then for M;N 2 Gr.R-Mod/,
HomGr.R-Mod/.M;N / (or simply Hom.M;N // is the set of morphisms f W M ! N

of any possible degree. We let Hom.M;N /p � Hom.M;N / denote the set of mor-
phisms f W M ! N with deg.f / D p. We have that f C g W M ! N is defined
for f; g 2 Hom.M;N / if deg.f / D deg.g/. So in fact Hom.M;N / is an object of
Gr.Z-Mod/.

If f; f1; f2 2 Hom.M;N / and g; g1; g2 2 Hom.N; P /, we get the equalities

.g1 C g2/ ı f D g1 ı f C g2 ı f
g ı .f1 C f2/ D g ı f1 C g ı f2

when deg.g1/ D deg.g2/ and deg.f1/ D deg.f2/.
Using this terminology, we see that a complex C 2 C.R-Mod/ can be considered

as an object of Gr.R-Mod/ with a morphism d D dC W C ! C of degree �1 such
that d ı d D dC ı dC D 0. So then a morphism f W C ! D in C.R-Mod/ is a
morphism in Gr.R-Mod/ such that f ı dC D dD ı f (or f ı d D d ı f ).

In Gr.R-Mod/, we will also define S.M/ for M D .Mn/n2Z by the formula
S.M/ D .Mn�1/n2Z. For f W M ! N of degree p we let S.f / W S.M/ ! S.N /

be the morphism of degree P where S.f / D .fn�1/n2Z.

Definition 3.1.2. If C;D 2 .R-Mod/ and if f; g W C ! D are morphisms in
C.R-Mod/, we say f and g are homotopic if there is a morphism s W C ! D
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in Gr.R-Mod/ of degree 1 so that f � g D s ı dC C dD ı s (or succinctly,

f � g D s ı d D d ı s/. We write f Š g or f
s� g and say f is homotopic

to g by s. We also say s is a homotopy connecting f and g.

Using the obvious notation, we give some properties of homotopies. These are

f
0Š f (here 0 W C ! D is a morphism of degree 1), if f

sŠ g, then g
�sŠ f . If

f
sŠ g and g

tŠ h, then f
sCtŠ g. If f

sŠ g and f 0
s0Š g0 then f C f 0

sCs0Š g C g0.
If f

sŠ g (say with f; g W C ! D) and if .h W D ! E is a morphism is C.R-Mod/,

then h ı f hısŠ h ı g. Similarly f ı e sıeŠ g ı e for a morphism e W B ! C .

Proposition 3.1.3. If .C i /i2I is a family of complexes in C.R-Mod/ and if fi

siŠ
gi where fi ; gi 2 Hom.C i ;D/ for some D 2 C.R-Mod/, then f

sŠ g where
f; g W L

C i ! D and s W L

C i ! D are defined by the formulas f ..xi /i2I / D
P

i2I f .xi /, g..xi /i2I / D
P

i2I gi .xi / and s..xi /i2I / D
P

i2I si .xi /.

Proof.

f ..xi /i2I / � g..xi /i2I / D
X

i2I

fi .xi / �
X

i2I

gi .x/

D
X

i2I

.fi .xi // � gi .xi // D
X

i2I

.dD ı si C si ı dCi

i /.xi /

D dD
�

X

i2I

si .xi /
�

C S..dC i

.xi /i2I /

D dD ı s..xi /i2I /C s.d
L

i2I Ci ..xi /i2I //

So we get

d ı s C s ı d D f � g:
Now given a family .Dj /j2I of complexes of left R-modules and morphisms

fj ; gj W C ! Dj for each j 2 I and homotopies fj

sjŠ gj for each j 2 J , we

get morphisms f; g W C ! Q

j2I D
j and a homotopy s with f

sŠ g. These claims
are easily verified.

3.2 The Category K.R-Mod/

Given a ring R, and C;D 2 C.R-Mod/, we have an equivalence relation f Š g

(f is homotopic to g) on the f; g 2 HomC.R-Mod/.C;D/ D Hom.C;D/. We let Œf �
denote the equivalence class of f . If f1; f2 2 Hom.C;D/; g1; g2 2 Hom.D;E/



Section 3.2 The Category K.R-Mod/ 29

with E 2 C.R-Mod/, then f1 Š f2 and g1 Š g2 imply that g1 ı f1 Š g2 ı f2.
This means that for f W C ! D and g W D ! E, we can define Œg� ı Œf � as Œg ı f �.
Similarly we can define Œf �C Œg� to be Œf C g� when f; g 2 Hom.C;D/. So we see
that we get a category.

Definition 3.2.1. For a ring R, we let K.R-Mod/ be the category whose objects are
the C 2 C.R-Mod/ and whose morphisms C ! D are the equivalence classes Œf �
for f 2 HomC.R-Mod/.C;D/.

To distinguish the sets HomC.R-Mod/.C;D/ and the sets HomK.R-Mod/.C;D/ we
let Hom.C;D/ mean HomC.R-Mod/.C;D/. Note that each HomK.R-Mod/.C;D/ is an
abelian group.

In K.R-Mod/, we have an identity ŒidC � where idC is in C.R-Mod)). We will
denote ŒidC � simply as idC .

So if f W C ! D is an isomorphism in C.R-Mod/, then Œf � is an isomorphism in
K.R-Mod/ with Œf ��1 D Œf �1�.

Many properties ofC.R-Mod/ are lost when we considerK.R-Mod/. For example,
there are no natural notions of Ker.Œf �/ or Coker.Œf �/ for Œf � 2 HomK.R-Mod/.C;D/.

However, if .C i /i2I is a family of complexes in C.R-Mod/, then we can form
the complex

L

i2I C
i . Then this complex with the canonical homomorphisms ej W

C j ! L

i2I C
i are an (external) direct sum in C.R-Mod/. This means that given

morphisms fj W C j ! D for each j 2 I , there is a unique morphism f W
L

i2I C
i ! D such that f ı ej D fj for each j 2 I .

Using this notation we get the next result.

Proposition 3.2.2. With the morphisms Œej � W C j ! L

i2I C
i ;

L

i2I C
i is a direct

sum in K.R-Mod/.

Proof. Given D 2 K.R-Mod/ and Œfj � W C j ! D for each j 2 I , we have the
morphisms fj W C j ! D in C.R-Mod/.

These give a morphism f W L

i2I C
i ! D so that f ı ej D fj for each j 2 I .

So Œf � ı Œej � D Œfj � for each j 2 I . To establish the uniqueness of f , suppose

g W L

i2I C
i ! D is such that Œg�ıŒej � D Œfj � for each j . This gives that gıej

sj� fj

for some homotopy sj . Then by Proposition 3.1.3 we see that this gives that g Š f ,
i.e. that Œg� D Œf �.

In a similar manner, we get products in K.R-Mod/. We let pj W Q

i2I C
i ! C j

for j 2 I be the canonical projections.

Proposition 3.2.3. With the morphisms Œpj � W Q

i2I C
i ! C j ,

Q

i2I C
i is a product

in K.R-Mod/.
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We noted that if C;D 2 C.R-Mod/ are isomorphic in C.R-Mod/ with f W C !
D an isomorphism, then Œf � W C ! D is an isomorphism in K.R-Mod/ with
Œf ��1 D Œf �1�. However, Œf � W C ! D can be an isomorphism in K.R-Mod/
where f W C ! D is not an isomorphism. The morphism Œf � will be an isomor-
phism in K.R-Mod/ if and only if there is a g W D ! C in C.R-Mod/ such that
Œg� ı Œf � D ŒidC � and Œf � ı Œg� D ŒidD�, or equivalently if and only if g ı f Š idC

and f ı g Š idD . Such an f will be called a homotopy isomorphism.
We now characterize the C 2 C.R-Mod/ that are isomorphic to the complex in

K.R-Mod/.

Proposition 3.2.4. A complex C 2 C.R-Mod/ is isomorphic to 0 in K.R-Mod/ if
and only if C is the direct sum of complexes of the form Sk. NM/ where M 2 R-Mod
and k 2 Z.

Proof. We first argue that for M 2 R-Mod, NM is isomorphic to 0. Since f D 0 W
NM ! 0 and g D 0 W 0 ! NM are the only possible morphisms in C.R-Mod/, this

means we only need show that id NM
sŠ 0 for some s. But if we let s D .sn/n2Z

be such that s0 D idM and such that sn D 0 if n ¤ 0 then we have id NM
sŠ 0.

In a similar manner, we see any Sk. NM/ is isomorphic to 0 in K.R-Mod/. Using
Proposition 3.2.2, we see that any direct sum of Sk. NM/’s is also isomorphic to 0 in
K.R-Mod/

Conversely, suppose C 2 C.R-Mod/ is isomorphic to 0 in K.R-Mod/. Then

idC
s� 0. So for each n 2 Z we have

idCn
D sn�1 ı dn C dnC1 ı sn:

Restricting to Zn.C /, this equality becomes

idZn.C / D dnC1 ı .sn j Zn.C //:

This gives thatCnC1 ! Zn.C / is surjective and has a section. SoZnC1.C / is a direct
summand ofCnC1 with a complementary submodule SnC1 such that SnC1 ! Zn.C /

is an isomorphism. So � � � ! 0! SnC1
Š! Zn.C /! 0 is a subcomplex of C . Since

C is the direct sum of these subcomplexes, we have established our claim.

3.3 Split Short Exact Sequences

Given a short exact sequence 0 ! C 0 f! C
g! C 00 ! 0 in C.R-Mod/, we will be

concerned with criteria that guarantee the sequence is split exact in C.R-Mod/.
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Just as for modules, we have the splitting criterion:

Proposition 3.3.1. If

0! C 0
f! C

g! C 00 ! 0

is a short sequence in C.R-Mod/, then the following are equivalent:

a) f admits a retraction r W C ! C 0 (so r ı f D idC 0)

b) g admits a section t W C 00 ! C (so g ı t D idC 00).

We note that if 0! C 0 t! C
g! C 00 ! 0 is split exact with a retraction r W C !

C 0, then for each n 2 Z,

0! C 0n
fn! Cn

gn! C 00n ! 0

is split exact with a retraction rn W Cn ! C 0n.
It can happen that each 0 ! C 0n ! Cn ! C 00n ! 0 is split exact without 0 !

C 0 ! C ! C 00 ! 0 being split exact. If we only know that each 0! C 0n ! Cn !
C 00n ! 0 is split exact we say that 0 ! C 0 ! C ! C 00 ! 0 is split exact at the
module level. If this is the case then each 0 ! C 0n ! Cn ! C 00n ! 0 is isomorphic
to the short exact sequence

0! C 0n ! C 0n ˚ C 00n ! C 00n ! 0:

Replacing Cn with C 0n ˚ C 00n we see that the dn W Cn ! Cn�1 (i.e. dn W C 0n ˚ C 00n !
Cn�1 ˚ C 00n�1) must be of the form

dn.x
0; x00/ D .d 0n.x0/C fn.x

00/; d 00n .x00//

where fn W C 00n ! C 0n�1 is a linear map. Since dn�1 ı dn D 0 we see that we have

dn.fn.x
00//C fn�1.dn.x

00// D 0:

This means that we can use the fn to create a morphism g W S�1.C 00/ ! C 0 where
gn D fnC1. Then we check that C D C.g/. So, up to isomorphism, an exact
sequence 0 ! C 0 ! C ! C 00 ! 0 that splits at the module level is the short exact
sequence associated with a mapping cone. So then we ask what more is needed to
give that the sequence is split exact.

Proposition 3.3.2. If f W C ! D is a morphism in C.R-Mod/, then

0! D ! C.f /! S.C /! 0

is split exact if and only if f Š 0.
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Proof. Assume
0! D ! C.f /! S.C /! 0

is split exact. Let t W S.C /! C.f / be a section. This means that for x 2 S.C /n D
Cn�1; tn.x/ D .un.x/; x/ where un W Cn�1 ! Dn is linear for each n.

Since t W S.C /! C.f / is a morphism in C.R-Mod/, we now drop subscripts and
let x 2 S.C / (i.e. x 2 S.C /n) for a unique n 2 Z). Then the fact that t W S.C / !
C.f / is a morphism of complexes gives the equation

.�u.dC .x//;�dC .x// D .dD.u.x//C f .x/;�dC .x//

and so that
f .x/ D �dD.u.x// � u.dC .x//:

But this gives that if s D �u, then we have f
sŠ 0.

These steps can be reversed and give that f Š 0 imply

0! D ! C.f /! S.0/! 0

has a section.

It turns out that it useful to have an even weaker condition that guarantees a mapping
cone sequence splits.

Proposition 3.3.3. If f W C ! D is a morphism in C.R-Mod/ then

0! D
f! C.f /! S.C /! 0

is split exact if and only if the morphism Œf � in K.R-Mod/ admits a retraction in
K.R-Mod/.

Proof. We drop subscripts for complexes in our proof and also write compositions
g ı f as products gf .

Let r W C.f / ! D be such that Œr� is a retraction for Œu�. This means that idD

tŠ
r ıs for some homotopy t . This in turn means that for y 2 D we have .dtCtd /.y/ D
y�r.y; 0/. Define C.f /! D by .y; x/ 7! yCt .f .x//Cr.0; x/ for .y; x/ 2 C.f /.
If this is a morphism of complexes, it gives a retraction of u in C.R-Mod/. Since
d.y; x/ D .dy C f .x/;�dx/, we need to show that

d.y C t .f .x//C r.0; x// D dy C f .x/ � t .f .dx// � r.0; dx/:
Canceling dy and using the fact that df D fd in the term �t .f .dx//, we see that
we need to show that

d.t.f .x//C t .d.f .x// D f .x/ � dr.0; x/ � r.0; dx/:
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But d.t.f .x// C .d.f .x/// D .dt C td /.f .x// D f .x/ � r.f .x/; 0/. So now
canceling f .x/, we see that we need

r.f .x/; 0/ D dr.0; x/C r.0; dx/:

Since dr D rd we have

dr.0; x/C r.0; dx/ D rd.0; x/C r.0; dx/
D r.f .x/;�dx/C r.0; dx/
D r..f .x/; 0/C .0;�dx//C r.0; dx/
D r.f .x/; 0/

as desired.

We have a dual result.

Proposition 3.3.4. If f W C ! D is a morphism in C.R-Mod/ then 0 ! D !
C.f /

q! S.C / ! 0 is split exact if and only if the morphism Œq� in K.R-Mod/
admits a section in K.R-Mod/.

Proof. We argue that if we have a section up to homotopy then we have a section.
Let s W S.C / ! C.f / be a section up to homotopy where s.x/ D .u.x/; v.x//.

Let w be the associated homotopy. Then �.dw C wd/.x/ D x � v.x/. We have

ds.x/ D d.u.x/; v.x// D .du.x/C f v.x/;�dv.x//

But s is a morphism and so ds.x/ D s.�dx/ D .�ud.x/;�vd.x//. So we get
.duC ud/.x/ D �f v.x/ and dv.x/ D vd.x/.

We now claim that x 7! .f w.x/ C u.x/; x/ is the desired section. To get that
this function commutes with differentials we need that df w.x/C du.x/C f .x/ D
�f wd.x/ � ud.x/ or that f ..dw C wd/.x// C .du C ud/.x/ D �f .x/. Since
.dw C wd/.x/ D v.x/ � x and since .du C ud/.x/ D �f v.x/, we see that the
equality holds.

3.4 The Complexes Hom.C; D/

Given C;D 2 C.R-Mod/ we can regard C and D as objects of Gr.R-Mod/. So
we form the graded abelian group HomGr.R-Mod/.C;D/. We will show that this
graded abelian group can be made into a complex. To simplify notation we will write
Hom.C;D/ in place of HomGr.R-Mod/.C;D/.

Then instead of dHom.C;D/ for the differential, we will write d 0.
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Definition 3.4.1. For C;D 2 C.R-Mod/, we let Hom.C;D/ be the complex with
differential d 0 where d 0.f / D f ı dC � .�1/pdD ı f when f 2 Hom.C;D/p .

We need to check that d 0 is indeed a differentiation. We first note that d 0.f / is
defined since f ı dC and dD ı f both have degrees p � 1.

We have

d 02.f / D d 0.d 0.f // D d 0.f ı dC � .�1/pdD ı f /
D .f ı dC � .�1/pdD ı f / ı dC

� .�1/p�1dD ı .f ı dC � .�1/PdD ı f /

Since dC ıdC D 0 and dD ıdD D 0 and since�.�1/pdD ıf ıdC �.�1/p�1dD ı
f ı dC D 0, we see that d 02.f / D 0.

Proposition 3.4.2. If C;D 2 C.R-Mod/, then f 2 Hom.C;D/p will be a cycle (i.e.
f 2 Zp.Hom.C;D// if and only if f 2 HomC.R-Mod/.C; S

p.D//.

Proof. Suppose f 2 Zp.Hom.C;D//. Since deg.f / D p, we can regard f as a
morphism C ! Sp.D/ of graded modules of degree 0. The equation d 0.f / D 0

says
f ı dC � .�1/pdD ı f D 0

i.e. that f ıdC D .�1/pdD ıf . Since .�1/pdD is the differentiation of Sp.D/ we
see that f W C ! Sp.D/ is a morphism in C.R-Mod/. Reversing the steps we get
the converse.

We now characterize the boundaries in Hom.C;D/.

Proposition 3.4.3. For C;D 2 C.R-Mod/ and f 2 Hom.C;D/p we have f is a
boundary of Hom.C;D/ (i.e. f 2 Bp.Hom.C;D// if and only if f as a morphism
C ! Sp.D/ in C.R-Mod/ is homotopic to 0.

Proof. Assume f is a boundary. Then f is a cycle, so by the preceding result
f W C ! Sp.D/ is a morphism. If f is a boundary, then d 0.s/ D f with
s 2 Hom.C;D/pC1. But this means

f D s ı dC � .�1/pC1dD ı s
D s ı dC C .�1/pdD ı s

Noting that s can be regarded as a map of graded modules C ! SP .D/ of degree
C1 we see that f Š 0.

We get the converse by reversing the steps.
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Given complexes C and D of left R-modules, we form the complex Hom.C;D/.
It is then natural to ask about the properties of this complex. We can now see when
Hom.C;D/ is exact.

Corollary 3.4.4. For C;D 2 C.R-Mod/, Hom.C;D/ is an exact complex if and
only if for every p 2 Z every morphism f W C ! Sp.D/ in C.R-Mod/ is homotopic
to 0.

Proof. This result follows immediately from Propositions 3.4.2 and 3.4.3 above.

Given C;D 2 C.R-Mod/ and f 2 Hom.C;D/, we can construct the mapping
cone C.f / and the associated exact sequence 0 ! D ! C.f / ! S.C / ! 0. By
Theorem 2.2.7, this exact sequence can be regarded as an element of Ext1.S.C /;D/.
If we know that Ext1.S.C /;D/ D 0, then the sequence 0 ! D ! C.f / !
S.C / ! 0 is split exact. By Proposition 3.3.2 this sequence is split exact if and
only if f is homotopic to 0. So we get that if Ext1.S.C /;D// D 0 then every
morphism f W C ! D is homotopic to 0. We would have the converse of this
statement if we knew that every element of Ext1.S.C /;D// thought of as a short
exact sequence. 0 ! D ! U ! S.C / ! 0 were equivalent to a sequence
0 ! D ! C.f / ! S.C / ! 0 associated with a morphism f W C ! D. In
Section 3.3 it was noted that if 0! D ! U ! S.C /! 0 splits at the module level
then the sequence is equivalent to a mapping cone short exact sequence.

Finally we remark that for C;D 2 C.R-Mod/, the condition that every morphism
f W C ! D in C.R-Mod/ is homotopic to 0 is equivalent to the condition that
HomK.R-Mod/.C;D/ D 0.

3.5 The Koszul Complex

In this section, we let R be a commutative ring and r 2 R. Let K be the complex

� � � ! 0 ! R
r! R ! 0 ! � � � with the R’s in the 1st and 0th positions. Then we

have the following.

Lemma 3.5.1. For D 2 C.R-Mod/;HomK.R-Mod/.K;D/ D 0 if and only if 0 !
H0.D/

r! H0.D/ and H1.D/
r! H1.D/! 0 are exact.

Proof. The morphisms f W K ! D correspond to a choice of y 2 D and x 2 D0

subject to the conditions that dx D 0 and dy D rx. So this means x is a cycle and
rx is a boundary. A homotopy s W K ! D is determined by a choice of u 2 D2 and
v 2 D1.

We first assume HomK.R-Mod/.K;D/ D 0. So every f W K ! D is homotopic
to 0. We argue that

0! H0.C /
r! H0.C /
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is injective. If xCB0.C / (with x 2 Z0.C // is in the kernel ofH0.C /
r! H0.C /, then

rx is a boundary. So let dy D rx. Such an x and y give us a morphism f W K ! D.

By hypothesis f
s� 0. Let s correspond to u 2 D2 and v 2 D1. Then f

s� 0 gives
us the equations dv D x and duC rv D y. In particular, we see that x 2 B0.C / and

so that x C B0.C / D 0. So 0! H0.C /
r! H0.C / is exact.

We now argue that H1.D/
r! H1.D/ ! 0 is exact. Let y C B1.D/ 2 H1.D/

(with y 2 Z1.D//. Then since dy D 0, with this y 2 D1 and x D 0 2 D0 we get a
morphism f W K ! D. Then f Š 0 just says that for some u 2 D2, v 2 D, dv D
x D 0 and duC rv D y. So v 2 Z1.D/ and we get r.v C B1.D// D y C B1.D/.

So H1.D/
r! H1.D/! 0 is exact.

Conversely assume that 0 ! H0.D/
r! H0.D/ and H1.D/

r! H1.D/ ! 0 are
exact. We want to argue that every morphism f W K ! D is homotopic to 0. Let f

correspond to y 2 D1, x 2 D0 with dx D 0 and dy D rx. Since 0 ! H0.D/
r!

H0.D/ is injective and since r.x C B0.D// D rx C B0.D/ D dy C B0.D/ D 0,
we get x C B0.D/ D 0. So x D dv0 for v0 2 D1. But the drv0 D rx. So since
dy D rx, we get d.y � rv0/ D 0, i.e.

y � rv0 2 Z1.D/

Then since H1.D/
r! H1.D/ ! 0 is exact, there is a z C B1.D/ 2 H1.D/ with

rz CB1.D/ D y � rv0 CB1.D/. This means y � rv0 D rz C du for some u 2 D2

and so that y D r.v0 C z/C du. If v D v0 C z, then dv D dv0 C dz D x C 0 and
y D rv C du. So this gives that f Š 0.

3.6 Exercises

1. Let D 2 C.R-Mod/. Prove that Hom. NM;D/ is exact for all M 2 R-Mod.

2. Find a necessary and sufficient condition on C 2 C.R-Mod/ such that 0 !
Hom.C;D0/ ! Hom.C;D/ ! Hom.C;D00/ ! 0 is exact for all exact 0 !
D0 ! D ! D00 ! 0 in C.R-Mod/.

3. For M;N 2 R-Mod, explain why Hom.M;N/ Š Hom.M;N /.

4. Let r 2 R where R is a commutative ring and let K 2 C.R-Mod/ be as in
Section 3.5. If r is nilpotent (i.e. rn D 0 for some n � 1) and ifD 2 C.R-Mod/,
show that Hom.K;D/ is exact if and only if D is exact.

5. Let f W C ! D, g W D ! E be morphisms in C.R-Mod/. Define natural
morphisms C.f /! C.g ı f / and C.g ı f /! C.g/.



Chapter 4

Cotorsion Pairs and Triplets in C.R-Mod/

In this chapter we give the basic results concerning cotorsion pairs of classes of com-
plexes of left R-modules.

4.1 Cotorsion Pairs

Definition 4.1.1. If A is a class of complexes of left R-modules we let A? consist of
all C 2 C.R-Mod/ such that Ext1.A; C / D 0 for all A 2 A. We let ?A consist of all
B 2 C.R-Mod/ such that Ext1.B;A/ D 0 for all A 2 A.

Definition 4.1.2. A pair .A;B/ of classes of objects of C.R-Mod/ is said to be a
cotorsion pair (or a cotorsion theory) for C.R-Mod/ if B? D B and ?B D A.

These notions in C.R-Mod/ are basically the same as those for R-Mod (see Chap-
ter 7 of the Volume I). Some arguments and ideas there carry over to the category
C.R-Mod/ with little modification.

Definition 4.1.3. A cotorsion pair .A;B/ in C.R-Mod/ is said to be complete (or to
have enough injectives and projectives) if for every C 2 C.R-Mod/ there are exact
sequences 0! B ! A! C ! 0 and 0! C ! B 0 ! A0 ! 0 in C.R-Mod/ with
A;A0 2 A and B;B 0 2 B.

If we only assume the existence of the sequences 0 ! B ! A ! C ! 0 (or the
sequences 0 ! C ! B 0 ! A0 ! 0) for every C , then the argument in Volume I
(see Proposition 7.1.7) shows we also get the sequences 0 ! C ! B 0 ! A0 ! 0

(the sequences 0! B ! A! C ! 0).
The best result guaranteeing that a cotorsion pair .A;B/ in C.R-Mod/ was pro-

vided by Eklof–Trlifaj. We recall that result below.
We note that if S is any class of objects of C.R-Mod/ and if S? D B and A D

?B, then .A;B/ is a cotorsion pair. We say it is the cotorsion pair cogenerated by S .
If there is a set S that cogenerates .A;B/, then we say that .A;B/ is cogenerated by
a set.

The next result was originally proved for modules. A proof for modules is given in
Volume I (see Theorem 7.4.1). The proof carries over directly to complexes.

Theorem 4.1.4 (Eklof, Trlifaj). If a cotorsion pair .A;B/ in C.R-Mod/ is cogener-
ated by a set, then it is complete.
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The proof of this theorem allows us to give a description of A in terms of S when
.A;B/ is the cotorsion pair cogenerated by the set S . To give this description we will
need some terminology.

Some of this terminology is in a state of flux and so will not be precisely that of
Volume I.

Definition 4.1.5. Given C 2 C.R-Mod/ and an ordinal � , then a family .C ˛j˛ � �/
of subcomplexes C ˛ of C (one for each ordinal ˛ with ˛ � �) is said to be a filtration
of C of length � if

a) C ˛ � C ˛0 when ˛ � ˛0 � �
b) C ˇ D S

˛<ˇ C
˛ when ˇ � � is a limit ordinal

c) C � D C and C 0 D 0.

If S is a class of objects of C.R-Mod/, then a filtration .C ˛ j ˛ � �/ is said to be
an S-filtration of C if C ˛C1=C ˛ is isomorphic to an object of S whenever ˛C1 � � .
For any such class S , by Filt.S), we mean the class of complexes C 2 C.R-Mod/
that have an S-filtration of length � for some ordinal � . The class S is said to be
closed under taking filtrations if Filt.S/ D S .

With this terminology we get the basic result of Eklof.

Theorem 4.1.6. If .A;B/ is a cotorsion pair in C.R-Mod/, then Filt.A/ D A.

Proof. This theorem was proved for modules as Corollary 7.3.5 of Volume I.

We would like to use Theorem 4.1.6 to give necessary and sufficient conditions
on a class A of objects of C.R-Mod/ in order that A be the first component of a
cotorsion pair .A;B/ inC.R-Mod/ that is cogenerated by a set. So our first necessary
condition on A is that Filt.A/ D A. We now note two other properties such an A

must have. First if P 2 C.R-Mod/ is projective, then since Ext1.P;D/ D 0 for
all D 2 C.R-Mod/, and so in particular Ext1.P;B/ D 0 for all B 2 B, we get
that P 2 A. Then if A D A1 ˚ A2 for A 2 A we have Ext1.A1 ˚ A2;D/ D
Ext1.A1;D/C Ext1.A2;D/ for all D 2 C.R-Mod/. This shows A is closed under
taking direct summands.

Now let S be a set of objects of C.R-Mod/ and let .A;B/ be the cotorsion pair
cogenerated by S . The proof of Theorem 7.4.1 of Volume I says that for every C 2
C.R-Mod/ there is an exact sequence 0 ! C ! B ! A ! 0 with B 2 B and
with A 2 Filt.S/. So A 2 Filt.S/ � Filt.A/ D A. If we then consider the proof of
Proposition 7.1.7 of Volume I (with C playing the role of M ), we see that for every
C 2 C.R-Mod/ we have an exact sequence

0! B ! NA! C ! 0



Section 4.1 Cotorsion Pairs 39

where there is an exact sequence

0! P ! NA! A! 0

with P projective and with A 2 Filt.S/.
So if P 2 Filt.S/, then NA 2 Filt.S/. Note that the P of Proposition 7.1.7 of

Volume I could be chosen to be a free module, and in our situation P could be chosen
a free complex. But then to get P 2 Filt.S/, we only need Sk. NR/ 2 S for each
k 2 Z (see Section 1.3).

If a cotorsion pair .A;B/ is cogenerated by a set S , then letting T be S along with
all the Sk. NR/ for k 2 Z, then T is a set and cogenerates .A;B/. So we could assume
that for each k 2 Z, Sk. NR/ 2 S . So we get:

Theorem 4.1.7. A cotorsion pair .A;B/ in C.R-Mod/ is cogenerated by a set if and
only if there is a set S of objects of C.R-Mod/ such that Sk. NR/ 2 S for all k 2 Z
and such that A consists of all direct summands of objects of Filt.S/.

Example 4.1.8. Let S consist of precisely all the Sk. NR/, k 2 Z. If we appeal to
the theorem above, we see that S? consists of all the exact complexes. We will let
E denote the class of exact complexes. So E D S? and we get that .?E;E/ is a
cotorsion pair in C.R-Mod/ which is cogenerated by a set.

The complexes P 2 ?E go by various names. We will call them Dold projective
complexes.

The cotorsion pair .?E;E/ has the interesting property that E is the first component
of a cotorsion pair .E;E?/which is cogenerated by a set. This will follow from a later
general result, but to illustrate a useful technique we will give a proof here.

We recall that for C 2 C.R-Mod/, we define the cardinality of C (denoted jC j) to
be

P

n2Z jCnj.

Lemma 4.1.9. Let R be a ring and � be an infinite cardinal such that jRj � �. Let
E 2 E and let x 2 E (so x 2 En for a unique n 2 Z). Then there exists an exact
subcomplex E 0 � E with x 2 E 0 and such that jE 0j � �.

Proof. We will use what is called a zig-zag technique to construct E 0. We first note
that since jRj � � and since K is infinite, if X � M for M 2 R-Mod where X is
a subset with jX j � �, then if S is the submodule of M generated by X we have
jS j � �.

We will construct E 0 as the union of an increasing sequence of subcomplexes.

C 0 � C 1 � C 2 � � � �
of E where x 2 C 0, jC nj � K and Z.C n/ � B.C nC1/ for each n 2 Z. Then if
E 0 D S

n2Z C
n, we have Z.E 0/ D S

n2ZZ.C
n/ � S

n2ZB.C
nC1/ � B.E 0/. So
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Z.E 0/ D B.E 0/ and E 0 will be exact. So we have x 2 C 0 � E 0 and jE 0j � �.
Letting x 2 Ek and C 0 be such that C 0

k
D R and C 0

k�1
D dk.Rx/. Then set C 0

n D 0

if n ¤ k; k � 1. So C 0 � E is a subcomplex, x 2 C 0 and jC 0j � �. Having
constructed C n with jC nj � � we want to construct C nC1 with C n � C nC1 but
such that Z.C n/ � B.C nC1/ and with jC nC1j � �. For each ` 2 Z we have

Z`.C
n/ � Z`.E/ D B`.E/:

So since we assumed jRj � �, we can find a submodule S`C1 � E`C1 such that
Z`.C

n/ � d`C1.S`C1/.
We now define C nC1

`
so that for ` 2 Z, C nC1

`
D C n

`
C S` C d`C1.S`C1/. Then

C nC1 is a subcomplex of E, C n � C nC1 and by construction Z.C n/ � B.C nC1/.
So finally we have the desired subcomplex E 0 � E.

Remark 4.1.10. We will have other occasions when we need to use the technique we
used in this proof. When we do so we will call it the zig-zag technique. So we will
allow ourselves to appeal to the technique without giving details.

With the notation of the lemma we have E 0 � E with both E 0 and exact. Hence
E=E 0 is exact.

Definition 4.1.11. Let A be a class of objects of C.R-Mod/. Then A is said to be a
Kaplansky class if there is a cardinal number � such that when we have x 2 A for
A 2 A, there is a subcomplex A0 � A with x 2 A0 and with A0 and A=A0 2 A where
jA0j � �. We also say A is Kaplansky relative to �.

So Lemma 4.1.9 could be rephrased. It says that the class E of exact complexes
in C.R-Mod/ is Kaplansky relative to any infinite cardinal � such that jRj � �. We
can use the class E to illustrate another important notion. Again with jRj � K, K an
infinite cardinal, let E 2 E . Let E0 D 0 � E. For any x 2 E, let E1 � E be
exact with x 2 E1 and jE1j � � (by Lemma 4.1.9). Then considering E=E1 2 E

and some y 2 E=E1, we can find E2=E1 � E=E1 with y 2 E2=E1, E2=E1 2 E

and jE2=E1j � �. But then is clear E2 is exact and we can repeat the procedure with
E=E2. Then noting that the union of any chain of exact subcomplexes of E is exact,
we see that for some ordinal number � we can construct a filtration .E˛ j ˛ � �/

of E such that when ˛ C 1 � � we have E˛C1=E˛ exact (i.e. E˛C1=E˛ 2 E and
jE˛C1=E˛j � �.

Definition 4.1.12. If A is a class of objects of C.R-Mod/, we say that A is de-
constructible if there is a cardinal number � such that every A 2 A has a filtration
.A˛ j ˛ � �/ for some ordinal � such that when ˛ C 1 � � we have A˛C1=A˛ 2 A

and jA˛C1=A˛j � �. In this case we also say that A is deconstructible relative to �.
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So with the same E we have that E is deconstructible relative to any infinite � with
� � jRj.

Let A be a class which is deconstructible relative to the cardinal number �. Then
there is a subset S � A of representatives of A 2 A with jAj � �. Then by the
definition of deconstructibility, we have A � Filt.S/.

Theorem 4.1.13. Suppose A is a class of objects of C.R-Mod/ such that

a) A D Filt.A/

b) A is closed under taking direct summands

c) A is deconstructible

d) Sk. NR/ 2 A for every k 2 Z.

Then with B D A?, .A;B/ is a cotorsion pair which is cogenerated by a set.

Proof. This follows from Theorem 4.1.7. We choose S � A as a set including rep-
resentatives of A 2 A with jAj � � where A is deconstructible relative to K, but
also requiring that Sk. NR/ 2 A for each k 2 Z. Then A � Filt.S/. But since
S � A; Filt.S/ � Filt.A/ D A. So A D Filt.S/. Since A is closed under direct
summands we get that A consists of all direct summands of objects of Filt.S/. So
now Theorem 4.1.7 gives us the result.

There is a module theoretic version Theorem 4.1.13. We will state it here.

Theorem 4.1.14. Suppose A is a class of objects of R-Mod such that

a) A D Filt.A/

b) A is closed under direct summand

c) A is deconstructible

d) R 2 A.

Then with B D A?, the pair .A;B/ is a cotorsion pair which is cogenerated by a
set.

Corollary 4.1.15. With E the class of exact complexes in C.R-Mod/, .E;E?/ is a
cotorsion pair in C.R-Mod/ which is cogenerated by a set.

Proof. We have already noted that E satisfies a), b), and c) of the theorem above. We
get Sk. NR/ 2 E since Sk. NR/ is exact. So E satisfies a)–d) and we have established the
claim.
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4.2 Cotorsion Triplets

In the last section we argued that with E the class of exact complexes in C.R-Mod/,
we have that .?E;E/ and .E;E?/ are both cotorsion pairs which are cogenerated by
sets. So this motivates the next definition.

Definition 4.2.1. If A;B;C are each classes of objects of C.R-Mod/, we say
.A;B;C/ is a cotorsion triplet in C.R-Mod/ if each of .A;B/ and .B;C/ are cotor-
sion pairs in C.R-Mod/. We say the triple is complete if each of the pairs .A;B/ and
.B;C/ is complete.

In Section 4.1 we showed that .?E;E;E?/ is a complete cotorsion triplet in
C.R-Mod/. Another complete triplet is .?C.R-Mod/, C.R-Mod/, C.R-Mod/?/
where ?C.R-Mod/ consists of the projective complexes and C.R-Mod/? consists of
the injective complexes.

We now give a method for constructing a family of complete triplets.

Definition 4.2.2. A complex P 2 C.R-Mod/ is said to be a perfect complex if Pn D
0 except for a finite number of n 2 Z and if each Pn is a finitely generated projective
module.

If a complex P is perfect and exact then it is easy to see that P is projective. If
f W P ! Q is a morphism of perfect complexes. Then C.f / is perfect. If moreover
f W P ! Q is a homology isomorphism then C.f / is exact (Proposition 2.4.2). So
in this case C.f / is a projective complex. In particular C.idp/ is projective for any
perfect complex P . We have the exact sequence

0! P ! C.f /! S.P /! 0

and the sequence
0! S�1P ! S?C.f /! P ! 0:

is exact. This is a partial project resolution of P . So applying S�1 to this sequence
we get the exact sequence

0! S�2P ! S�2C.f /! S ! P ! 0:

So we see that for any n � 1 we get a partial projective resolution

0! S�nP ! S�nC.f /! S�nC1C.f /! � � � ! S�1C.f /! P ! 0

of P . Hence we get that for k � 1 and n � 1,

Extk.S�nP;D/ D ExtkCn.P;D/

for any complex D. So we get the next result.
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Lemma 4.2.3. If P 2 C.R-Mod/ is a perfect complex, then for any complex D and
k � 1 and n � 1 we get that

Extk.S�nP;D/ D ExtkCn.P;D/:

Lemma 4.2.4. If P 2 C.R-Mod/ is a perfect complex, then Ext1.P;Q/ D 0 for any
projective complex Q.

Proof. By Proposition 2.1.4, we have Ext1.P; Sk. NR//ŠExt1.Pk�1; R/ for any k2Z.
Since Pk�1 is projective, we get Ext1.Pk�1; R/ D 0 and so Ext1.P; Sk. NR// D 0.
So now using the fact that P is a finitely generated complex, we get that Ext1.P;�/
commutes with direct sums. Hence Ext1.P; F / D 0 for any free complex F (see
Section 1.3) and so since any projective complex Q is a direct summand of a free
complex F we also get Ext1.P;Q/ D 0.

Proposition 4.2.5. Let S be a set of perfect complexes in C.R-Mod/. Let B consist
of all complexes B such that Extn.P;B/ D 0 for all P 2 G for all n � 1. Then there
is a complete cotorsion triplet .A;B;C/. In fact .A;B/ and .B;C/ are cogenerated
by sets and .P ;C/ is perfect.

Proof. If we let T consist of all S�nP for P 2 S and n � 0, then T is a set and by
the observation above we have T ? D B.

Note that by the definition of T , we have that forQ 2 T , B 2 B, Extn.Q;B/ D 0

for all n � 1.
Now if we let A D ?B, then .A;B/ is a cotorsion pair which is cogenerated

by a set. We now prove that B satisfies a), b) c) and d) of Theorem 4.1.13. Since
B D T ? we get b). To get d), we will appeal to Proposition 2.1.4. By that result
we get Ext1.Q; Sk. NR// Š Ext1.Qk�1; R/, for any Q 2 T . By the definition of T ,
Qk�1 is projective. So Ext1.Qk�1; R/ D 0 and so Ext1.Q; Sk. NR// D 0. So for any
k 2 Z, Sk. NR/ 2 Q1 D B. To get a), i.e. B D Filt.B/, let .B˛ j ˛ � �/ be a
filtration of B where B˛C1=B˛ 2 B whenever ˛ C 1 � � . We want to argue that
B 2 B.

We argue by transfinite induction that B˛ 2 B. If ˛ D 0, B0 D 0 and so triv-
ially B0 2 B. If B˛ 2 B with ˛ < � then B˛C1=B˛ 2 B. But we have
the exact 0 ! B˛ ! B˛C1 ! B˛C1=B˛ ! 0. So if P 2 S we have the
exact 0 D Ext1.P;B˛/ ! Ext1.P;B˛C1/ ! Ext1.P;B˛C1=B˛/ D 0 and so
Ext1.P;B˛C1/ D 0. Hence B˛C1 2 B.

Now if ˇ � � is a limit ordinal and if B˛ 2 B for all ˛ < ˇ we want to argue that
Bˇ 2 B, that is Ext1.P;Bˇ / D 0 for all P 2 S .

Since we have the partial projective resolution

0! S�1P ! S�1C.f /! P ! 0;

we can complete Ext1.P;Bˇ / using this resolution.
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The complex S�1P is finitely generated and so any morphism S�1P ! Bˇ D
S

˛<ˇ ˇ
˛ will have its image in B˛ for some ˛ < ˇ. Since we assumed B˛ 2 B,

that is Ext1.P; ˇ˛/ D 0 when P 2 S , we get that S�1P ! B˛ has an extension
S�1C.f / ! B˛. So the original S�1P ! Bˇ has an extension S�1C.f /! Bˇ .
So we get Ext1.P;Bˇ / D 0. This completes the proof.

4.3 The Dold Triplet

In Example 4.1.8, we let S consist of all the complexes Sk. NR/ for all k 2 Z. These
complexes are all perfect. So we can apply Proposition 4.2.5 and get a cotorsion
triplet. By Corollary 2.1.7 we have that S? D E where E is the class of exact
complexes. So our triplet in this case is .?E;E;E?/. We will call the P 2 ?E the
Dold projective complexes and the I 2 E? the Dold injective complex.

Proposition 4.3.1. The complex P 2 C.R-Mod/ is a Dold projective complex if and
only if Pn is a projective module for every n 2 Z and if every morphism f W P ! E

where E is an exact complex is homotopic to 0.

Proof. For every N 2 R-Mod, Sk. NN/ is an exact complex. By Proposition 2.1.4,
Ext1.P; Sk. NN// D Ext1.Pk�1; N /. So if P 2 ?E , we get that Ext1.Pk�1; N / D 0.
So for every k 2 Z, Pk�1 is projective. Now given f W P ! E we have the
exact sequence 0 ! E ! C.f / ! S.P / ! 0 and so the exact 0 ! S�1E !
S�1C.f / ! P ! 0. But S�1E is also exact. Since we assume P 2 ?E , this
sequence is split exact. So 0 ! E ! C.f / ! S.P / ! 0 is split exact. By
Proposition 3.3.2 this means f W P ! E is homotopic to 0.

Conversely assume P is such that each Pn is projective and that each f W P ! E

withE exact is homotopic to 0. We want to argue that for all exactE, Ext1.P;E/D 0.
So this means that every short exact sequence 0! E ! U ! P ! 0 splits. Since
each Pn is projective we get that 0! E ! U ! P ! 0 splits at the module level.
That is, for each n 2 Z, 0! En ! Un ! Pn ! 0 is split exact. But as observed in
Section 3.3, this means that the sequence is isomorphic to a sequence of the form

0! E ! C.g/! P ! 0

where g W S�1P ! E is a morphism of complexes. By hypothesis S.g/ W P !
S.E/ is homotopic to 0. Hence g W S�1P ! E is homotopic to 0 and 0 ! E !
C.g/ ! P ! 0 is split exact by Proposition 3.3.2. So 0 ! E ! U ! P ! 0 is
split exact. Since we now have Ext1.P;E/ D 0 for all exact E, we have P 2 ?E .
That is, P is Dold projective.

Dual arguments give us the next result.
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Proposition 4.3.2. The complex I 2 C.R-Mod/ is Dold injective if and only if In is
a injective module for every n 2 Z and if every morphism g W E ! I where E is an
exact complex is homotopic to 0.

4.4 More on Cotorsion Pairs and Triplets

Definition 4.4.1. A cotorsion pair .A;B/ in C.R-Mod/ is said to be hereditary if
Extn.A;B/ D 0 for all A 2 A, B 2 B and n � 1.

Proposition 4.4.2. If .A;B/ is a cotorsion pair in C.R-Mod/, then the following are
equivalent:

a) .A;B/ is hereditary

b) If A 2 A and if 0 ! A0 ! P ! A ! 0 is exact where P is a projective
complex, then A0 2 A

c) If B 2 B and 0 ! B ! I ! B 0 ! C is exact where I is an injective
complex, then B 0 2 B.

Proof. Establishing the equivalence of a), b) and c) is just a matter of dimension
shifting. To indicate how the argument goes we prove a) implies b). So with A 2 A

and 0 ! A0 ! P ! A ! 0 exact where P is projective, let B 2 B. Then we get
an exact sequence Ext1.P;B/ ! Ext1.A0; B/ ! Ext2.A;B/. But Ext1.P;B/ D 0

since P is projective and Ext2.A;B/ D 0 by hypothesis. Hence Ext1.A0; B/ D 0.
The reader can now argue that the other implications hold.

Definition 4.4.3. A cotorsion triplet .A;B;C/ in C.R-Mod/ is said to be hereditary
if each of the cotorsion pairs .A; B/ and .B;C/ are hereditary.

Our next result will show how important this concept can be. First we recall some
results and terminology. Suppose .A;B/ is a complete cotorsion pair in C.R-Mod/,
then for C 2 C.R-Mod/, we have an exact sequence 0! B ! A! C ! 0. Then
if A0 2 A we have the exact

Hom.A0; A/! Hom.A; C /! Ext1.A0; B/ D 0;

i.e. Hom.A0; A/! Hom.A; C /! 0 is exact. So using the terminology of Chapter 5
of Volume I (but applied to complexes), we have the A! C is an A-precover of C .
Using this procedure we can construct a complex (of complexes)

� � � ! A�2 ! A�1 ! A0 ! C ! 0

such that if A 2 A then Hom.A;�/ applied to this complex gives an exact sequence.
Using the terminology of Chapter 8 of Volume I, this is a left A-resolution of C . As
noted in Section 8.1 of Volume I, the associated complex

� � � ! A�2 ! A�1 ! A0 ! 0
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is unique up to a homotopy isomorphism. In fact the complex

� � � ! A�2 ! A�1 ! A0 ! C ! 0

is also unique up to a homotopy isomorphism.
We will freely use other terminology of Volume I but adapted to the categories

C.R-Mod/.

Theorem 4.4.4. Let .A;B;C/ be a cotorsion triplet in C.R-Mod/. If .A;B;C/ is
hereditary, then A\B is the class of projective complexes and B \ C is the class of
injective complexes. If .A; B;C/ is hereditary and complete, then Hom.�;�/ is right
balanced by A � C (see Definition 8.2.13 of Volume I).

Proof. We assume .A;B;C/ is hereditary and letD 2 A\B. We want to prove that
D is projective. Let 0! K ! P ! D ! 0 be exact with P projective. Since D 2
B and since .B;C/ is hereditary, K 2 B. But then since D 2 A and since .A;B/
is a cotorsion pair, Ext1.D;K/ D O . So the sequence 0 ! K ! P ! D ! 0 is
split exact. Hence D is projective. Conversely, if P 2 C.R-Mod/ is projective then
since .A;B/ is a cotorsion pair then A 2 A. But .B;C/ is also a cotorsion pair and
so P 2 B. Hence P 2 A \B. Thus A \B is the class of projective complexes.

A dual argument gives that B\C is the class of injective complexes when .A;B;C/
is a hereditary triplet. Now we assume that .A;B;C/ is complete and hereditary.

Given D 2 C.R-Mod/, we use the fact that .A; B/ is complete to construct a
complex

� � � ! A�1 ! A0 ! D ! 0

so that if B�1 D Ker.A�nC1 ! A�nC2/ where n � 2, then B�n 2 B for n � 1 and
0 ! B�1 ! A0 ! D ! 0 and 0 ! B�n ! A�nC1 ! B�nC1 ! 0 for n � 2

are exact. Let 0 ! B�1 ! E ! B 0 ! 0 be exact with E injective. Since .A;B/
is hereditary, B 0 2 B and so Ext1.B 0; C / D 0 since .B;C/ is a cotorsion pair. This
gives that Hom.E; C / ! Hom.B�1; C / ! 0 exact, and so that the map B�1 ! C

has an extension E ! C .
Now since E is injective and 0 ! B�1 ! A0 is exact we get that the B�1 ! E

can be extended toA0 ! E. We want to prove that if B 2 B, then Hom.�; B/ leaves
the sequence exact. We argue that it leaves the sequence 0! B�1 ! A0 ! D ! 0

exact. Then same argument will give that it leaves each 0 ! B�n ! B�nC1 !
B�nC2 ! 0 exact and so that it leaves

� � � ! A�2 ! A�1 ! A0 ! D ! 0

exact.
Let B�1 ! C be given. We want to argue it has an extension A0 ! C .
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But we have a commutative diagram

B�1 ��

��

A0

����
��

��
��

E

��

C

So we have the desired extension A0 ! C .
A dual argument gives the rest of the proof that Hom.�;�/ is right balanced by

A � C .

Proposition 4.3.2 guarantees that for each set S of perfect complexes inC.R-Mod/,
we get a complete cotorsion triplet .A;B;C/ with B consisting of all B such that
Extn.P;B/ D 0 for all n � 1 and all P 2 S . In fact B D T ? where T consists of
all S�nP for P 2 S and n � 0. We would like to also generate triplets .A;B;C/
that are hereditary. The next result allows us to do this.

Proposition 4.4.5. If S is a set of perfect complexes and if U is the set of all the
complexes Sk.P / where P 2 S , k 2 Z, then there is a complete and hereditary
cotorsion triplet .A;B;C/ with B D U?.

Proof. We apply Proposition 4.3.2 but using U instead of S . Then by the proof
of that Proposition, we get a complete triplet .A;B;C/ with B D U?. We also
get that .A;B/ is hereditary. So we only need argue that .B;C/ is hereditary. By
Proposition 4.4.2, it suffices to show that if 0 ! B 0 ! Q ! B ! 0 is exact with
B 2 B andQ projective, then B 0 2 B. So we need to show that Ext1.P;B 0/ D 0 for
all P 2 U. But we have the exact sequence

Hom.P;Q/! Hom.P;B/! Ext1.P;B 0/! Ext1.P;Q/

So to get Ext1.P;B 0/ D 0 it suffices to show that Ext1.P;Q/ D 0 and that

Hom.P;Q/! Hom.P;B/! 0

is exact. By we have Ext1.P;Q/ D 0.
To get that Hom.P;Q/! Hom.P;B/! 0 is exact, we consider the diagram

0 �� P

��

�� C.idP /

���
�

�
�

�

�� S.P / �� 0

0 �� B 0 �� Q �� B �� 0
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with exact rows. Since P 2 U, we have S.P / 2 U and so Ext1.S.P /; B/ D 0. So
this gives an extension C.idP /! B of P ! B . But C.idP / is a projective complex
and so C.idP / ! B has a lifting C.idP / ! Q. Restricting to P , we get a lifting
P ! Q of the original P ! B .

Remark 4.4.6. We have a plentiful supply of hereditary triplets in C.R-Mod/. So
it is natural to ask if we have examples of hereditary quadruplets .A;B;C ;D/ in
C.R-Mod/. But then since .A;B;C/ and .B;C ;D/ are hereditary triplets, we get
that B \ C is both the class of projective complexes and the class of injective com-
plexes. This means that a complex is projective if and only if it is an injective complex.
In this case a module is injective if and only if it projective. Recall that in R-Mod
we have the cotorsion pairs .Proj; R-Mod/ .R-Mod; Inj/ where Proj and Inj are the
classes of projective and injective classes. So if Proj D Inj we have the quadruplet
.Proj; R-Mod; Proj; R-Mod/ and we likewise get a quintuplet, sextuplet etc.

4.5 Exercises

1. Consider the perfect complex K.r/ D K of Section 3.5 (so r 2 R and R is com-
mutative.) Let S D ¹Kº in Proposition 4.4.5. Then identify the triplet .A;B;C/
that we get both when r D 0 and when r D 1.

2. Let P 2 C.R-Mod/ be such that Pn is a projective module for every n and such
that for some n0, Pn D 0 for all n > n0. Prove that P is Dold projective.

Hint: Use Proposition 4.3.1.

3. State and prove a dual result for I 2 C.R-Mod/.

4. Argue that with R D Z there are an infinite number of distinct complete and
hereditary cotorsion triplets in C.Z-Mod/.
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Adjoint Functors

In this chapter we will give a brief introduction to adjoint functors. We will give the
version that suits the applications we have in mind.

5.1 Adjoint Functors

Definition 5.1.1. If C and D are categories and S W C ! D and T W D ! C are
functors, we say that S is a left adjoint of T or that T is a right adjoint of S if the two
functors .S; Y / 7! Hom.S.X/; Y / and .X; Y / 7! Hom.X; T .Y // from C0 �D into
Sets (where Sets is the category of sets) are naturally isomorphic (see Section 1.3 of
Volume I).

We note that we are using the common convention where a functor is described by
what it does to objects with the assumption that it is clear what it does to morphisms.

Given a functor S W C ! D , we can ask whether S admits a right adjoint T W
D ! D .

Proposition 5.1.2. Let S W C ! D be a functor. Suppose that for every object Y
of D there exists an object X of D and a morphism � W S.X/ ! Y in D with the
following universal property: if X 0 is any object of D and if � 0 W S.X 0/ ! Y is
another morphism in D , then there is a unique morphism f W X 0 ! X in C such that
� ı S.f / D � 0. Then S has a right adjoint T W D ! C .

Proof. We give a sketch of a proof. We first note that if N� W S.X/ ! Y is another
morphism in D (where X is an object of C ) having the same universal property as
� W S.X/ ! Y , then there exist unique morphisms f W X ! NX and g W NX ! X

such that N� ı S.f ı g/ D N� ı S.f / ı S.g/ D N� . But N� ı S.idX / D N� . So we have
f ı g D id NX . Similarly we get g ı f D idX . Hence f and g are isomorphisms and
f �1 D g.

This shows that the object X such that � W S.X/ ! Y has our universal property
is unique up to isomorphism.

Suppose that for each object Y of D we choose one such X and that we let T .Y /
denote the X that we choose. To get a corresponding functor T W D ! C , we
need to give T .h/ for a morphism h W Y1 ! Y2. Let �1 W S.T .Y1// ! Y1, and
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�2 W S.T .Y2// ! Y2 be the given universal morphisms. Then considering the dia-
gram

S.T .Y1//
�1 ��

���
�
�

Y1

h
��

S.T .Y2//
�2 �� Y2

and using the universal property of �2, we get that there is a unique morphism f W
T .Y1/ ! T .Y2/ such that S.f / W S.T .Y1// ! S.T .Y2// make the diagram above
commutative. We then let T .h/ D f for this unique f .

Then it can be quickly checked that T W D ! C is a functor and that T is a right
adjoint of S .

Remark 5.1.3. Proposition 5.1.2 gives a condition on S W C ! D that is sufficient
to guarantee that S has a right adjoint T W D ! C . In fact the condition is necessary
and every right adjoint T of S can be constructed as in the proof of the Proposition
above with this observation it can then be seen that T is unique up to isomorphism.

If we consider the special case where C is some full subcategory of D and where
S W C ! D is just the embedding functor, then a � W S.X/ D X ! Y with the
universal property is a C -precover of Y (see Section 5.1 of Volume I). In fact it is
such that if � 0 W X 0 ! Y is another morphism of D with X 0 in C , then there is a
unique morphism f W X 0 ! X so that � ı f D � 0. So this � W X ! Y will be
a C -cover with this unique factorization property. This observation and the duality
between covers and envelopes suggests a result dual to Proposition 5.1.2.

Proposition 5.1.4. Let T W D ! C be a functor. Suppose that for every object X
of C there exists an object Y of D and a morphism � W X ! T .Y / in C with the
following universal property: if Y 0 is any object of D and if � 0 W X ! T .Y 0/ is
another morphism in C , then there is a unique morphism g W Y ! Y 0 in D such that
T .g/ ı � D � 0. Then T has a left adjoint S W C ! D .

Proof. The proof is dual to the proof of Proposition 5.1.2 above.

Now let .A;B/ be a complete cotorsion pair in C.R-Mod/. Then we can think of
A as a full subcategory of C.R-Mod/. So we have the embedding functor S W A !
C.R-Mod/. So we can ask whether S has a right adjoint. In general this will not be
the case. However, since .A;B/ is complete, for every C 2 C.R-Mod/ we will have
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an exact sequence

0! B ! A
�! C ! 0

with A 2 A and B 2 B. But this means that � W A! C will be an A-precover. But
in general we will not be able to find such an A ! C that has the desired universal
property, i.e. so that if � 0 W A0 ! C is a morphism in C.R-Mod/ with A0 2 A then
there is a unique f W A0 ! A so that �ıf D � 0. To remedy this situation we go to
the homotopy category K.R-Mod/ of Chapter 3.

Definition 5.1.5. If A is a full subcategory of C.R-Mod/, we let K.A/ be the full
subcategory of K.R-Mod/ having the same objects as A.

Definition 5.1.6. If A is a full subcategory of C.R-Mod/, we let S.A/ be the full
subcategory of C.R-Mod/ whose objects are the S.A/ where A 2 A. We will say A

is closed under suspensions if S.A/ � A, i.e. is S.A/ 2 A for all A 2 A. We now
give the main result of this chapter.

Theorem 5.1.7. Let .A;B/ be a complete cotorsion pair in C.R-Mod/ where A is
closed under suspensions. Then the embedding functor K.A/ ! K.R-Mod/ has a
right adjoint.

Proof. Our proof will be based on Proposition 5.1.2. So given an object C 2
K.R-Mod/ we need to find an A 2 K.A/ (so A 2 A/ and a morphism A ! C

in K.R-Mod/ that has the desired universal property. Since .A;B/ is complete, we

know that for C 2 C.R-Mod/ we have an exact 0 ! B ! A
�! C ! 0 in

C.R-Mod/ with A 2 A and B 2 B. Our candidate for the morphism A ! C in
K.R-Mod/ will be Œ��. So we need to argue that if A0 2 K.A/ and if Œ� 0� W A0 ! C

is any morphism in K.R-Mod/, then there is a unique morphism Œf � W A0 ! A in
K.R-Mod/ such that Œ�� ı Œf � ı Œ� 0�. The existence of Œf � follows from the fact that
� W A! C is an A-precover in C.R-Mod/. For this means that given � W A0 ! C in
C.R-Mod/ with A0 2 A, there is a morphism f W A0 ! A so that � ı f D � 0. But
then Œ�� ı Œf � D Œ� ı f � D Œ� 0�.

For uniqueness we need to argue that if g W A0 ! A is any other morphism in
C.R-Mod/ such that Œ��ı Œg� D Œ� 0�, then Œf � D Œg�, i.e. that f Š g (f is homotopic
to g, see Definition 3.1.2). So finally we see that we need to prove that if f; g W
A0 ! A are morphisms in C.R-Mod/ such that � ı f Š � ı g, then f Š g.

Since � ı f Š � ı g gives � ı .f � g/ Š 0, we see that we need to prove that
� ı .f � g/ Š 0 implies f � g � 0.

So writing f for f � g, we want to argue that � ı g Š 0 implies f Š 0.
By Proposition 3.3.2 this means that we need to prove that if 0! C ! C.�ıf /!

S.A0/ ! 0 is split exact, then 0 ! A ! C.f / ! S.A0/ ! 0 is split exact. But as
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noted in Chapter 4, we have the commutative diagram

0 �� A

�

��

�� C.f /

��

�� S.A0/ �� 0

0 �� C

����������

�� C.� ı f / �� S.A0/ �� 0

Since by hypothesis � ı f Š 0, by Proposition 3.3.2 the bottom short exact sequence
is split exact. Hence C ! C.� ı f / admits a retraction C.� ı f /! C . Then using
the composition C.f /! C.� ı f /! C we get a commutative diagram

A ��

��

C.f /

����
��

��
��

C

Since A is closed under extensions and suspensions, the exact sequence 0 ! A !
C.f / ! S.A0/ ! 0 gives that C.f / 2 A. But A ! C is an A-precover of C . So
the map C.f /! C has a lifting C.f /! A.

We now want to apply Proposition 3.3.3. That result says that to get that 0 !
A ! C.f / ! S.A0/ ! 0 is split exact (and so that f Š 0) we only need that
A ! C.f / admits a retraction C.f / ! A in K.R-Mod/. So we argue that our
lifting C.f / ! A provides a retraction in K.R-Mod/. This means that we need to
argue that the composition A ! C.f / ! A is homotopic to idA. If we call this
composition h then we need to argue that idA � h Š 0. Since both diagrams

A ��

		��
��

��
��

�
C.f /

��

�� A

����
��

��
��

�

C

and A



�
��

��
��

�

idA �� A0

��		
		

		
	

C

are commutative we see that .A! C/ ı .idA � h/ D 0. So this means that Im.idA �
h/ � Ker.A ! C/ D B . So we can think of idA � h as a morphism k W A ! B .
Since S.A/ 2 A we have Ext1.S.A/; B/ D 0. So 0! B ! C.k/! S.A/ ! 0 is
split exact andK D idA � h (as a morphism into B) is homotopic to 0. So then easily
it is homotopic to 0 as a morphism into C . This completes our proof.
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The proof of the next result follows the same pattern.

Theorem 5.1.8. Let .A;B/ be a complete cotorsion pair in C.R-Mod/
where S�1B � B. Then the embedding functor K.B/ ! K.R-Mod/ has a left
adjoint.

Proof. We will give the main steps of the proof. Since .A;B/ is complete, for C 2
C.R-Mod/ we have an exact sequence 0 ! C

�! B ! A ! B with B 2 B

and A 2 A. Then C ! B is a B-preenvelope of C . We now want to argue that
if � 0 W C ! B 0 is a morphism in C.R-Mod/ with B 0 2 B, then there is a unique
Œg� W B ! B 0 inK.R-Mod/ with Œg� ı Œ� � D Œ� 0�. It suffices to argue that if g ı � Š 0,
then g Š 0. So we assume g ı � � 0. We have the commutative

0 �� B 0

��

�� C.g ı �/

��

�� S.C /

S.�/

��

�� 0

0 �� B 0 �� C.g/ �� S.B/ �� 0

with exact rows. By hypothesis g ı � Š 0 and so the top row is split exact and
we have a section S.C / ! C.g ı �/. But then we get the composition S.C / !
C.g ı �/ ! C.g/. Applying S�1, we get C ! S�1.C.g ı �// ! S�1.C.g//.
But 0 ! S�1.B 0/ ! S�1.C.g// ! B ! 0 is exact and B; S�1.B 0/ 2 B. So
S�1.C.g// 2 B. But since � W C ! B is a B-preenvelope, we get a morphism
B ! S�1.C.g// that gives us a commutative diagram

C

��

















��

B �� S�1.C.g//

The morphism B ! S�1.C.g// then gives a morphism S.B/ ! S.S�1.C.g// D
C.g/. To complete the proof, we need to show that S.B/ ! C.g/ gives a section
for C.g/ ! S.B/ in K.R-Mod/. An argument dual to the argument in the proof of
Theorem 5.1.7 will give this fact and will complete the proof.

To apply the results of this chapter we need a supply of complete cotorsion pairs
.A;B/ in C.R-Mod/ with A closed under suspensions. The results of Chapter 4
provide some examples. In Chapter 7 we will see other ways of getting examples.
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5.2 Exercises

1. Let S W C ! D and T W D ! E be functors and �.X; Y / W Hom.S.X/; Y / !
Hom.X; T .Y // be a natural bijection (i.e. �: Hom.S.�/;�/ ! Hom.�; T .�//
is a natural isomorphism of functors). Taking X to be T .Y / for Y 2 D we
have idY 2 Hom.T .Y /; T .Y //. Using �.T .Y /; Y / we get a morphism � W
S.T .Y // ! Y . Argue that � has the universal property described in Proposi-
tion 5.1.2.

2. Let S1 W C ! D and S2 W D ! E be functors having right adjoints T1 W D ! C

and T2 W E ! D , respectively. Argue that T1 ı T2 is a right adjoint of S2 ı S1.

3. Consider the category C whose objects are diagrams f WM ! N of leftR-mod-
ules and where a morphism of M ! N to M 0 ! N 0 is given by a commutative
diagram

M ��

��

N

��

M 0 �� N 0

Consider the functor S W C ! R-Mod where S.M ! N/ D M . Find a left
adjoint and a right adjoint of S .

4. Consider the forgetful functor T :Groups ! Sets. Argue that T has a left adjoint
(Hint: Recall the notion of a free group on a set.), but that G has no right adjoint.
Suggestions: Consider the set X D ¹a; bº with a ¤ b. Argue that there is no
group G and function � W G ! X that has the desired universal property.
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Model Structures

Quillen, in his Homotopical Algebra, defined a model structure on a category. Hovey
showed that there is a close connection between certain model structures on an abelian
category and cotorsion pairs in that category. We will exhibit this close connection in
the category C.R-Mod/. Then we will use this connection to give examples of model
structures on C.R-Mod/.

6.1 Model Structures on C.R-Mod/

Suppose we have two morphisms i W A ! B and p W X ! Y in C.R-Mod/. By a
morphism from i to p we just mean that we are given a commutative square

A ��

i
��

X

p

��

B �� Y

Definition 6.1.1. We say that i has the left lifting property with respect to p, or that
p has the right lifting property with respect to i , if for every such commutative square
we can complete the diagram to a commutative diagram

A ��

i
��

X

p

��





��
��

��
�

B �� Y

Example 6.1.2. In C.R-Mod/, a morphism i W 0 ! B has the left lifting property
with respect to every epimorphism p W X ! Y if and only if B is a projective
complex. Similarly X ! 0 will have the right lifting property with respect to every
momorphism i W A! B if and only if X is an injective complex.

Definition 6.1.3. By a model structure on C.R-Mod/, we will mean that we have two
classes of morphisms NC and NF called the cofibrations and the fibrations of the model
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structure. A morphism i W A ! B in NC will be called a trivial cofibration if i is a
homology isomorphism. Similarly p W X ! Y in NF will be called a trivial fibration
if p is a homology isomorphsm. Then the following conditions should be satisfied.
A morphism i W A ! B is a cofibration if and only if it has the left lifting property
with respect to every trivial fibration, and i W A ! B is a trivial cofibration if and
only if it has the left lifting property with respect to every fibration. And a morphism
p W X ! Y is a fibration if and only if it has the right lifting property with respect
to every trivial cofibration and is a trival fibration if and only if it has the right lifting
property with respect to every cofibration. Finally we require that every morphism
f W C ! D in C.R-Mod/ can be factored both as f D p ı i where i is a trivial
cofibration and p is a fibration and as f D p0 ı i 0 where i 0 is a cofibration and p0 is a
trivial fibration.

For later use and to motivate a later definition we prove the next result.

Lemma 6.1.4. If a morphism i W A ! B in C.R-Mod/ has the left lifting property
with respect to a morphism p W X ! Y in C.R-Mod/, then 0! Coker.A! B/ has
the left lifting property with respect to p.

Proof. Let C D Coker.A! B/, then a commutative diagram

0 ��

��

X

p

��

0 �� Y

gives rise to a commutative diagram

A ��

i
��

0

��

�� X

p

��

B �� C �� Y

If the diagram

A ��

i
��

X

p

��

B ��

h


�

�
�

�

Y
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can be completed to a commutative diagram, then A ! B
h! X is the 0 morphism

and so have an induced morphism C D Coker.A! B/! X . But then

0 ��

��

X

��

C ��

���������

Y

is also commutative. So the claims easily follow from these observations.

Lemma 6.1.5. If a morphism p W X ! Y has the right lifting property with respect
to a morphism i W A! B , then Ker.X ! Y /! 0 has the right lifting property with
respect to i .

Proof. The proof is dual to that of Lemma 6.1.4.

Definition 6.1.6. If . NC ; NF / is a model structure on C.R-Mod/, then an object C 2
C.R-Mod/ is said to be (trivially) cofibrant if 0 ! C is a (trivial) cofibration. An
object F 2 C.R-Mod/ is said to be a (trivially) fibrant if F ! 0 is a (trivial) fibration.

Note that 0! C being a trivial cofibration just means that 0! C is a cofibration
and that C is exact. Similary F ! 0 is a trivial fibration if it is a fibration and F is
exact. So if we let C denote the class of cofibrant objects and if E is the class of exact
complexes then C \ E is the class of trivially cofibrant ojects. Similarly F \ E will
be the class of trivially fibrant objects if F is the class of fibrant objects.

Definition 6.1.7. Let . NC ; NF / be a model structure on C.R-Mod/ and let C and F

be the cofibrant and fibrant objects respectively. Then . NC ; NF / is said to be a special
model structure on C.R-Mod/ if a morphism i W A ! B is a (trivial) cofibration if
and only if i is a monomorphism with (trivially) cofibrant cokernel, and if p W X ! Y

is a (trivial) fibration if and only if P is an epimorphism with (trivially) fibrant kernel.

We now exhibit the connection between model structures on C.R-Mod/ and cotor-
sion pairs in C.R-Mod/.

Theorem 6.1.8. Let . NC ; NF / be a special model structure on C.R-Mod/ and let C and
F be the cofibrant and fibrant objects for this model structure. Then .C \ E;F / and
.C ;F \ E/ are complete cotorsion pairs in C.R-Mod/.

Proof. We will prove that .C \E;F / is a complete cotorsion pair in C.R-Mod/. The
proof that .C ;F \ E/ is such a pair is similar.
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Let C 2 C and F 2 F \ E . We first prove that Ext1.C; F / D 0. Let 0 ! F !
U ! C ! 0 be exact. This gives rise to the commutative square

0 ��

��

U

��

C

���
�

�
�

C

Then since 0 ! C is a cofibration and since U ! C is a special fibration the
diagram can be completed to a commutative diagram. But then C ! U is a section
for U ! C and so 0 ! F ! U ! C ! 0 is split exact. Hence Ext1.C; F / D 0.
This gives that C � ?.F \ E/ and that

F \ E � C?:

We now prove that ?.F \ E/ � C . So suppose that C 2 ?.F \ E/. That is,
Ext1.C; F / D 0 for all F 2 ?.F \ E/. We want to prove that C 2 C , i.e. that C is
cofibrant. But this means that we need to prove that a commutative square

0 ��

��

X

��

C

���
�

�
�

�� Y

with X ! Y a trivial fibration can be completed to a commutatie diagram. Since our
model structure is special, X ! Y is an epimorphism with a trivially fibrant kernel.
So let 0 ! F ! X ! Y ! 0 be exact with F 2 F \ E . Then we have the exact
sequence

Hom.C;X/! Hom.C; Y /! Ext1.C; F /:

By hypothesis Ext1.C; F / D 0, so Hom.C;X/ ! Hom.C; Y / ! 0 is exact. Then
this in turn gives that

0 ��

��

X

��

C

���
�

�
�

�� Y

can be completed to a commutative diagram. So this gives that C 2 C and so that
C D ?.F \ E/.
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We now argue that C? � F \E . So let F 2 C?. To get that F 2 F \E , we need
that the commutative square

A ��

��

F

��

B



�
�

�
�

�� 0

can be completed to a commutative diagram whenever A ! B is a monomorphism
with cofibrant cokernel. Let 0 ! A ! B ! C ! 0 be exact with C cofibrant, i.e.
C 2 C . Then the exact Hom.B; F / ! Hom.A; F / ! Ext1.C; F / D 0 shows that
the diagram can be completed to a commutative diagram. So C? � F \E and hence
C? D F \ E . So we have that .C ;F \ E/ is a cotorsion pair.

It only remains to show that our cotorsion pair is complete. Let X 2 C.R-Mod/.
Then f D 0 W 0! X has a factorization f D p ı i where i is a cofibration and p is
a trivial fibration. Then if i D 0 W 0! C and p W C ! X we have that C is cofibrant
and so C 2 C . Since p W C ! X is a trivial fibration, it is an epimorphism with
trivially fibrant kernel F . So we have an exact sequence 0 ! F ! C ! X ! 0

with C 2 C and F 2 F \C . Given Y 2 C.R-Mod/, we establish the existence of an
exact sequence 0 ! Y ! F 0 ! C 0 ! 0 with F 0 2 F \ E and C 0 2 C by writing
f D 0 W Y ! 0 as f D p0 ı i 0 with i 0 a cofibration and p0 a trivial fibration.

So .C ;F \ E/ is a complete cotorsion pair. As noted earlier, the argument that
.C \ E;F / is a complete cotorsion pair is similar.

We now want to prove a converse of Theorem 6.1.8.
We first prove two lemmas.

Lemma 6.1.9. If p W X ! Y and p0 W Y ! Z are epimorphisms in C.R-Mod/, then
there is an exact sequence

0! Ker.p/! Ker.p0 ı p/! Ker.p0/! 0

Proof. We have Ker.p/ � Ker.p0 ı p/. This give the map Ker.p/ ! Ker.p0 ı p/.
The map Ker.p0 ı p/ ! Ker.p0/ is x 7! p.x/. Then it is easy to check that these
maps give us the desired exact sequence.

Lemma 6.1.10. Let

A
f

��

i
��

X

p

��

B

h


�

�
�

�
g

�� Y
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be a commutative square in C.R-Mod/ where i is a monomorphism with cokernel C
and where P is an epimorphism with kernel F . If Ext1.C; F / D 0, then the diagram
can be completed to a commutative diagram.

Proof. We have the exact sequences 0 ! A ! B ! C ! 0 and 0 ! F !
X ! Y ! 0. These give us the following commutative diagram with exact rows and
columns:

Hom.C;X/ ��

��

Hom.C; Y /

��

�� Ext1.C; F / D 0

Hom.B; F /

��

�� Hom.B;X/ ��

��

Hom.B; Y /

i�
��

Hom.A; F / ��

��

Hom.A;X/
p�

��

@
��

Hom.A; Y /

@
��

0 �� Ext1.C; F / �� Ext1.C;X/
p�

�� Ext0.C; Y /

where i�, p� and @ (twice) have the obvious meanings. We now argue by diagram
chasing. We have that f 2 Hom.A;X/ and g 2 Hom.B; Y / have the same im-
ages in Hom.A; Y /. So since @.i�.g// D 0, we get that @.f / D 0. So there is
an Nh 2 Hom.B;X/ such that Hom.B;X/! Hom.A;X/ maps Nh to f , i.e. such that
Nhıi D f . Then referring to the diagram we see that g D pı Nh is the kernel of i� and so
is in the image of Hom.C; Y /! Hom.B; Y /. But Hom.C;X/! Hom.C; Y /! 0

is exact. So we can find k 2 Hom.C;X/ so that Hom.C;X/ ! Hom.C;X/ !
Hom.B; Y / maps k to g � p ı Nh. If we now let h D NhC k ı j where j W B ! C ,
then we can check that k makes the original diagram commutative.

Theorem 6.1.11. Suppose C and F are classes of objects of C.R-Mod/ such that
.C \ E;F / and .C ;F \ E/ are complete cotorsion pairs in C.R-Mod/. Then if NC
is the class of monomorphisms A! B in C.R-Mod/ whose cokerenel is in C and if
NF is the class of epimorphisms p W X ! Y in C.R-Mod/ whose kernel is in F , then
. NC ;F / is a special model structure on C.R-Mod/.

Proof. Suppose i W A ! B and p W X ! Y are in C and F respectively. Let
0 ! A ! B ! C ! 0 and 0 ! F ! X ! Y ! 0 be exact with C 2 C

and F 2 F . Now suppose moreover that F 2 E , i.e. that F 2 F \ E . Then
since .C ;F \ E/ is a cotorsion pair, Ext1.C; F / D 0. Then by Lemma 6.1.10, any
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commutative square

A ��

i
��

X

p

��

B



�
�

�
�

�� Y

can be completed to a commutative diagram. So using the language of model struc-
tures, we have that every cofibration has the left lifting property with respect to every
trivial fibration. The same type argument gives that every trivial cofibration has the
left lifting property with respect to every fibration.

Now let i W A! B be a morphism which has the left lifting property with respect
to every trivial fibration p W X ! Y . Then we want to argue that i W A ! B is a
monomorphism and that its cokernel is in C .

We first argue that it is a monomorphism. Let I be any injective complex. Then
since .C ;F / is a cotorsion pair, I 2 F . In Chapter 1 we saw that every injective
complex is exact. Therefore I 2 F \ E . So p W I ! 0 is a trival fibration. Now
suppose that A � I . Then since i W A! B is a fibration, the square

A ��

i
��

I

��

B



�
�

�
�

�� 0

can be completed to a commutative diagram. But then i W A ! B must be a
monomorphism. So now we want to show that if 0 ! A ! B ! C ! 0 is
exact, then C 2 C . So if F 2 F \ C , we must show that Ext1.C; F / D 0.

So let 0 ! F ! I ! Y ! 0 be exact with injective. Then I ! Y 2 NF .
So i W A ! B has the left lifting property with respect to I ! Y . Hence by
Lemma 6.1.4, 0 ! C has the left lifting property with respect to I ! Y . But this
means Hom.C; I /! Hom.C; Y /! 0 is exact. But this gives that Ext1.C; F / D 0.

So now we have that if i W A! B has the left lifting property with respect to every
trivial p 2 NF , then i 2 NC . So since we have already shown that every i 2 NC has the
left lifting property with respect to every trivial p 2 NF .

The other claims about lifting properties can be proved in a similar or in a dual
manner.

Then it now remains to prove that every morphism f has the factorizations f D
p ı i D p0 ı i 0 as in the definition of a model structure.

We argue that f has a factorization f D p ı i with i a trivial cofibration and p a
fibration. We will use the fact that .C \ E;F / is a complete cotorsion pair.
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We first assume f W A! B is a monomorphism with cokernel L. Sine .C \E;F /

is complete, there is an exact sequence 0 ! F ! C ! L ! 0 with F 2 F and
C 2 C \ E . If we form a pull back of

C

��

B �� L

we get a commutative diagram

0

��

F

��

F

��

0 �� A �� B 0

��

�� C

��

�� 0

0 �� A �� B ��

��

L �� 0

0

with exact rows and columns. So i D .A ! B 0/ 2 NC and i is a trivial cofibration
since C is exact. And p D .B 0 ! B/ 2 F . Since f D p ı i 0, we have the desired
factorization.

Now we assume f W X ! Y is an epimorphism with kernel K. Since .C \ E;F /

is complete, we have an exact sequence 0 ! K ! F ! C ! 0 with F 2 F and
C 2 C \ E . Now forming a pushout of

K ��

��

X

F
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we get a commutative diagram

0

��

K ��

��

X

��

�� Y

0 �� F

��

�� X 0 ��

��

Y �� 0

C C

��

0

with exact rows and columns. We see then that .X 0 ! Y / ı .X ! X 0/ is the desired
factorization.

Now we let f W A ! B be any morphism. We can write f as the composition

A
g! A ˚ B

h! B with A ! A ˚ B the map x 7! .x; 0/ and A ˚ B ! B the
map .x; y/ 7! f .x/ C y. Then since h is an epimorphism we have a factorization
h D p ı i with i a trivial cofibration and p a fibration. But then i is a monomorphism
and so i ı g is a monomorphism. So i ı g has a factorization i ı g D q ı j with j a
trivial cofibration and q a fibration.

So we get f D h ı g D p ı i ı g D .p ı q/ ı j where j is a trivial cofibration.
We have that both p and q are fibrations, so both are epimorphisms. Hence p ı q is
an epimorphism. By Lemma 6.1.9 we have an exact sequece

0! Ker.q/! Ker.p ı g/! Ker.p/! 0:

But Ker.q/;Ker.p/ 2 F . So since F is closed under extensions, we get that Ker.p ı
q/ 2 F . Hence p ı q 2 NF , i.e. p ı q is a fibration. This gives us the desired
decomposition of f into a trivial cofibration followed by a fibration. The argument
for a decomposition into a cofibration followed by a trivial fibration is the same.

Definition 6.1.12. If A and B are classes of objects of C.R-Mod/ such that .A \
E;B/ and .A;B \ E/ are both complete cotorsion pairs in C.R-Mod/, we say that
.A \ E;B/, .A;B \ E/ is a Hovey pair. Theorems 6.1.11 and 6.1.8 say that there
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is a bijective correspondence between the collection of special model structures on
C.R-Mod/ and the collection of Hovey pairs in C.R-Mod/.

Example 6.1.13. In section 4.3 we considered the Dold triplet .?E;E;E?/. This
triplet is hereditary (see Definition 4.4.3). By Theorem 4.4.4 ?E \ E consists of all
the projective complexes. By then .?E \ E; R-Mod/ is trivially a complete cotorsion
pair. But so is .?E; .R-Mod/ \ E/ D .?E;E/. Hence we have a Hovey pair .?E \
E; R-Mod/, .?E;E/. Similarly we have a Hovey pair .E;E?/, .R-Mod;E?\E/. So
this give us two special model structures on C.R-Mod/.

6.2 Exercises

In the next set of exercises, let . NC ; NF / be a special model structure on C.R-Mod/ and
let C and F be the classes of cofibration and fibrant objects for this model structure.

1. Argue that NC contains all isomorphisms and that it is closed under taking compo-
sition.

2. If f W C ! D is a morphism in C.R-Mod/ and if C
i! U

p! D and C
i 0!

U 0 p0! D are two factorizations of f with i and i 0 trivial cofibrations and with p
and p0 fibrations, then argue that there is a morphism h W U ! U 0 that makes the
diagram

C �� U

���
�
�

�� D

C �� U 0 �� D

commutative.

Hint: Use Lemma 6.1.10.

3. Using the notation of problem 2, suppose that C ! U ! D is such that the
diagram

C �� U

���
�
�

�� D

C �� U �� D

can only be completed by automorphisms k W U ! U of U . In this case all
f D p ı i a minimal factorization of f into a trivial cofibration followed by a
fibration. Then:
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a) Show that if f D p ı i and f D p0 ı i 0 are both minimal factorizations
of f then any h W U ! U 0 that makes the diagram of Exercise 2 above
commutative is an isomorphism.

b) If C ! U !D and NC ! NU ! ND are minimal factorizations of f W C !D

and Nf W NC ! ND, argue that C ˚ NC ! U ˚ NU ! D ˚ ND is a minimal
factorization of f ˚ Nf W C ˚ NC ! D ˚ ND.

c) Argue the converse of b)

d) If C 2 C and F 2 F describe minimal factorizations of C ! 0 and 0! F .
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Creating Cotorsion Pairs

In this chapter we will be concerned with ways of getting complete cotorsion pairs
in C.R-Mod/. One method for creating such pairs is by starting with a complete
cotorsion pair in R-Mod and then using this pair to find related pairs in C.R-Mod/.

7.1 Creating Cotorsion Pairs in C.R-Mod/ in a Termwise
Manner

Let A be a class of objects of R-Mod. We will often regard A as a full subcategory
of R-Mod. Then C.A/ will denote the class of objects A 2 C.R-Mod/ such that
An 2 A for each n 2 Z. We will also think of C.A/ as the corresponding full
subcategory of C.R-Mod/.

Now let .A;B/ be a complete cotorsion pair inR-Mod. The question we will ask is
whether C.A/ and C.B/ are components of complete cotorsion pairs in C.R-Mod/.

We first note that it is certainly not true in general that .C.A/; C.B// is even a
cotorsion pair in C.R-Mod/. For example, let .A;B/ be the pair .R-Mod; Inj/ with
Inj � R-Mod the class of injective modules. Then C.R-Mod/? is the class of injec-
tive complexes say I . We know that I 2 C.Inj/. But in Chapter 1 we saw that every
injective complex is exact. But not every element of C.Inj/ is exact (unless R D 0).

So our question will be whether .C.A/; C.A/?/ and .C.B/?; C.B// form com-
plete cotorsion pairs in C.R-Mod/. Recall that a pair .A;B/ in R-Mod is complete
if it is cogenerated by a set (Volume I, Theorem 7.4.1). We now use this result to get
the following.

Theorem 7.1.1. If .A;B/ is a cotorsion pair in R-Mod which is cogenerated by a
set, then .C.B/?; C.B// is a cotorsion pair in C.R-Mod/ which is cogenerated by a
set.

Proof. We only need to find a set T of objects of C.R-Mod/ such that T ? D C.B/.
Let S be a set of objects of R-Mod such that S? D B. Now let T D ¹Sk. NM/ 2
M 2 S ; k 2 Zº. Then by Proposition 2.1.3, we get that T ? D C.B/. This gives the
result.

An example of interest is when B D Inj. It would be nice to have a description of
C.Inj/?.

With the object of creating Hovey pairs (see Chapter 6), we prove the next result.
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Corollary 7.1.2. ..C.B/\E/?; C.B/\E/ is a cotorsion pair which is cogenerated
by a set where E is the class of exact complexes.

Proof. We let U be the set of objects of C.R-Mod/ with U D T [ T 0 where T 0 D
¹Sk.R/ W k 2 Zº. Then U? D T ?\ .T 0/?. So by the above and by Corollary 2.1.7,
we get that U? D C.B/ \ E .

The proof of the analogous result for .C.A/; C.A/?/ and .C.A/ \ E , .C.A/ \
E/?/ is not as direct. The tools we need will be provided by the so-called Hill lemma.
We note that this lemma has proved to be of great use in the work of Trlifaj et al.

7.2 The Hill Lemma

The Hill lemma is a way of creating a plentiful supply of submodules of a module
with a given filtration, but where these submodules have nice properties.

Throughout this section we will suppose that C is a set of left R-modules. We will
also suppose that k is an infinite regular cardinal with jRj < � and with jC j < �

for all C 2 C . We will also let M be a left R-module with a given C -filtration
.M˛ j ˛ � �/.

We will use the following procedure to create a family of submodules of M . For
each ˛ C 1 � � , we have jM˛C1

M˛
j < �. So choosing a set X of representatives of

the cosets in jM˛C1j
M˛

, we let A˛ be the submodule of M˛C1 generated by X . Then
since jX j < �, jRj < �, and � is infinite, we get jA˛j < �. We also have M˛C1 D
M˛ C A˛. We do this for each ˛ C 1 � � and so have the fixed A˛ � M . By
transfinite induction we get that Mˇ D

P

˛<ˇ A˛ for each ˇ � � .
We note that if we begin with a module M and a family .A˛/˛<� of submodules

for some ordinal � such that M D P

˛<� M˛, then if we define Mˇ D P

˛<ˇ M˛

for each ˇ � � , then we have a filtration of M .
Now suppose S � ¹˛ j ˛ < �º. Then we define M.S/ to be

P

˛2S M˛.
There are then two natural ways to get a filtration on M.S/. One is by taking the

induced filtration on M.S/, i.e. the filtration .M.S/ \Mˇ j ˇ � �/. Another way
would be to define the ˇth term of the filtration to be

P

˛2S;˛<ˇ M˛.

Definition 7.2.1. We say S � ¹˛ j ˛ < �º is closed if the two filtrations above are
the same, i.e. if

M.S/ \Mˇ D
X

˛2S;˛<ˇ

A˛

for all ˇ � � .

Eventually our Hill class of submodules will be the M.S/ where S is closed. But
first we want to get other ways to guarantee that S is closed.
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Noting that
P

˛2S;˛<ˇ A˛ � M.S/ \Mˇ for any S and any ˇ � � , we have that
S is closed if and only if M.S/ \Mˇ �

P

˛2S;˛<ˇ A˛ for every ˇ � � .
We want other ways to guarantee that S is closed.

Lemma 7.2.2. For S � ¹˛ j ˛ < �º, we have M.S/ \Mˇ �
P

˛2S;˛<ˇ A˛ for all
ˇ � � if and only if the containment holds for all ˇ 2 S .

Proof. If the containment holds for all ˇ, then it holds for ˇ 2 S . Conversely suppose
it holds for all ˇ 2 S . We want to prove that it holds for all ˇ.

If ˇ � � is such that ˛ < ˇ for all ˛ 2 S then

M.S/ \Mˇ DM.S/ D
X

˛2S

A˛ D
X

˛2S;˛<ˇ

A˛

So our containment holds. If ˇ is such that ˇ � ˛ for some ˛ 2 S , let ˇ0 2 S be the
least element of S such that ˇ � ˇ0. Then

M.S/ \Mˇ �M.S/ \Mˇ 0 �
X

˛2S;˛<ˇ 0

A˛ D
X

˛2S;˛<ˇ

A˛:

So the containment holds for ˇ.

The next result gives an even simpler check that S � ¹˛ j ˛ < �º is closed.

Lemma 7.2.3. S is closed if and only if for all ˇ 2 S ,

Mˇ \ Aˇ �
X

˛2S;˛<ˇ

A˛

Proof. The condition is obviously necessary. Now suppose it holds for all ˇ. We then
want to argue thatM.S/\Mˇ �

P

˛2S;˛<ˇ A˛ for all ˇ 2 S . If this condition does
not hold for all ˇ 2 S , we choose the least ˇ for which it does not.

Then let x 2 M.S/ \ Mˇ , x … P

˛2S;˛<ˇ A˛. Then since x 2 M.S/ D
P

˛2S A˛, we can write x D x1 C � � � C xk with x1 2 A˛1
; : : : ; xk 2 A˛k

, where
˛1 < ˛2 < � � � < ˛k and where ˛1; : : : ; ˛k 2 S . Now we also suppose that ˛k is the
least element of S we can get by this procedure.

Then xk D x � .x1 C � � � C xk�1/ 2M˛k
\A˛k

� P

˛2S;˛<˛k
A˛. So then x D

.x1C� � �Cx˛k�1
/Cxk 2

P

˛2S;˛<˛k
A˛. So writing x as a sum in

P

˛2S;˛<˛k
A˛ ,

we contradict the choice of ˛k .

Lemma 7.2.4. Let .Si /i2I be any family of closed subsets of ¹˛ j ˛ � �º. Then
S D S

i2I Si is also closed.

Proof. This follows easily from the previous lemma.
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Note that M.S/ DM.
S

i2I Si / D P

i2I M.Si /.

Lemma 7.2.5. Let S � ¹˛ j ˛ < �º be closed. If ˇ � � is such that ˛ � ˇ for all
˛ 2 S and if Mˇ \ Aˇ �

P

˛2S;˛<ˇ A˛, then S [ ¹ˇº is closed.

Proof. Again, we only need to use Lemma 7.2.3 above.

We want to use this lemma to guarantee a plentiful supply of closed S .

Lemma 7.2.6. If ˛ � � , then there is a closed subset S with ˛ 2 S , jS j < � and
with ˛ the largest element of S .

Proof. We proceed by transfinite induction. So suppose the claim holds for all ˛ < ˇ
for some ˇ � � . We argue that it holds for ˇ. We have

Mˇ \ Aˇ �Mˇ D
X

˛<ˇ

A˛:

Since jAˇ j < �, we have jMˇ \ Aˇ j < �. So there is a set T of ˛ with ˛ < ˇ with
jT j < � and with Mˇ \ Aˇ �

P

˛2T A˛ .
For each ˛ 2 T we have ˛ < ˇ. So by our induction hypothesis, we have a

closed subset S˛ with jS˛j < � and with the ˛ the largest element of S˛ . But then
S 0 D S

˛2T S˛ is closed by Lemma 7.2.4. Also jS 0j � P

˛2T jS˛j < � since � is an
infinite regular cardinal. Now let S D S 0 [ ¹ˇº. Then using Lemma 7.2.5, we have
that S is closed.

Corollary 7.2.7. If S � ¹˛j˛ < �º is closed and ˇ � � , then there is a closed T
with S � T , ˇ 2 T and with jT � S j < �.

Proof. Apply the previous lemma and Lemma 7.2.4.

Lemma 7.2.8. If S � T are closed subsets of ¹˛j˛ � �º, then M.T /=M.S/ 2
Filt.C/.

Proof. We argue that M.T / 2 Filt.C/. For ˇ C 1 � � , we have

M.T / \MˇC1=.M.T / \Mˇ / D
X

˛2T;˛<ˇC1

A˛

.

X

˛2T;˛<ˇ

A˛

If ˇ … T , we see that this quotient is 0. If ˇ 2 T , the quotient is isomorphic to

Aˇ=
�

Aˇ \
X

˛2T;˛<ˇ

S˛

�

D Aˇ=.Aˇ \Mˇ / Š
Aˇ CMˇ

Mˇ

D MˇC1

Mˇ

So this gives that the filtration on M.T / induced from that on M is a C -filtration. So
M.T / 2 Filt.C/.

The argument that M.T /=M.S/ 2 Filt.C/ is similar.
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Definition 7.2.9. With all our hypotheses in place, we call the Hill class of submod-
ules of M the submodules M.S/ for S � ¹˛ j ˛ < �º closed.

This class will be denoted H .M/. We note that it depends on the filtration of M ,
on the choice of � and on the choice of the A˛. We will call H .M/ a Hill class of
submodules relative to �. We now record all that we have proved about H .M/. Note
that 0 2 H .M/ since S D � is closed. Similarly M 2 H .M/.

Theorem 7.2.10. a) If N � P with N;P 2 H .M/ then P=N 2 Filt.C/ (and so
N 2 Filt.C/ and M=N 2 Filt.C/).

b) H .M/ is closed under sums.

c) If N 2 H .M/ and X � M with jX j < �, then there is a P 2 H .M/ with
N � P , X � P and jP=N j < �.

Proof. The proofs of these claims are in the above. The claim for c) is just Corol-
lary 7.2.7. For b) we recall that M.

S

i2I Si / D P

i2I M.Si / when .Si /i2I is a
family of closed sets and that

S

i2I Si is closed (Lemma 7.2.4).

We now begin with M 2 Filt.C/. Suppose we have a direct sum decomposition
M D M1 ˚M2. It is not necessarily true that M1;M2 2 Filt.C/. But using Hill
classes we can prove a related result.

We first give some terminology. For a submodule N � M we say N is homo-
geneous with respect to the direct sum decomposition M D M1 ˚ M2 if N D
.M1 \ N/ ˚ .M2 ˚ N/. Note that sum of and intersection of homogeneous sub-
modules is homogeneous.

Proposition 7.2.11. IfX �M is a subset with jX j < �, then there is a homogeneous
Q with Q 2 H .M/, X � Q and with jQj < �.

Proof. By c) of Theorem 7.2.10 above there is a P 2 H .M/ with X � P and
jP j < �. Of course, P may not be homogeneous. But P � P1˚P2 where P1 and P2

are the projections of P ontoM1 andM2 (using the decompositionM DM1˚M2).
Also jP1j < �, jP2j < � and jP1 ˚ P2j < �. So we can find P 0 2 H .M/ with
P1 ˚ P2 � P 0 and with jP 0j < K. Continuing in this manner, we find P � P 0 �
P 00 � � � � with P .k/ � H .M/, P .k/j < �; .P .k//1 ˚ .P .k//2 � P .kC1/. Then if
Q D S1

kD0 P
.k/, we quickly check that Q satisfies the desired properties.

Corollary 7.2.12. If M D M1 ˚M2, then M has a filtration .M �̨ j ˛ � �/ with
eachM �̨ 2 H .M/ where eachM �̨ is homogeneous and jM �̨C1=M

�̨j < � whenever
˛ C 1 � � .

Proof. This follows from the previous result.



Section 7.2 The Hill Lemma 71

Now we note that since each M �̨ is homogeneous with respect to the direct sum
decomposition M D M1 ˚M2, each M �̨C1=M

�̨ has a natural direct sum decompo-
sition. But also recall that we have M �̨C1=M

�̨ 2 Filt.C/. From this we immediately
get the next result

Corollary 7.2.13. M1 has a filtration by modules which are direct summands of mod-
ules in Filt.C/ and which have cardinality less than K .

So we let D be a set of representatives of all modulesD which are direct summands
of modules in Filt.C/ but where jDj < �. So with this terminology, we have that M1

admits a D-filtration.
We will apply what we have done to a cotorsion pair .A;B/ in R-Mod which is

cogenerated by a set C . For convenience we can suppose R 2 C . We then let � be
an infinite regular cardinal so that jC j < � for all C 2 C . Then we know that every
M 2 A is a direct summand of a module having a C -filtration. Using the D above,
we get that every M 2 A has a D-filtration. Note that by our choice of D , we have
D � A.

In fact we can let D be a set of representatives of all D 2 A such that jDj < �.
Then with this D we get that D cogenerates .A;B/, R 2 D , and every M 2 A has
a D-filtration. We also note that D has some obvious closure properties. First, any
direct summand of an element of D is isomorphic to an element of D . Then if M
has D-filtration .M˛j˛ � �/ where � < �, then M 2 A and jM j < �. So M is then
isomorphic to an element of D . Thus we can now prove our desired result.

Theorem 7.2.14. If .A;B/ is a cotorsion pair in R-Mod which is cogenerated by a
set, then .C.A/; C.A/?/ is a cotorsion pair in C.R-Mod/ which is cogenerated by a
set.

Proof. We prove that C.A/ satisfies the conditions of Theorem 4.1.13. Since
Filt.A/ D A, clearly Filt.C.A// D C.A/. So a) of that Theorem is satisfied. Sim-
ilarly C.A/ satisfies b). Since R 2 A, we get C.A/ satisfies d). So we now prove
C.A/ satisfies condition c). We let D � A be as in the above. So D is a set which
cogenerates .A;B/ and jDj < � for allD 2 D where � is an infinite regular cardinal.
We also have the closure properties for D given above. We want to prove that C.A/
is �-deconstructible. This means that every A 2 C.A/ has a filtration .A˛j˛ � �/

with jA˛C1=A˛j � � and with A˛C1=A˛ 2 A for every ˛ C 1 � � .
To get the term A˛C1

n0C1, we consider a set X � A˛C1
n0

of representatives of the
cosets of A˛C1

n0
=A˛

n0
. Then dn0

.X/ � An0C1. We have A˛
n0C1 2 H .An0C1/ and

jdn0
.X/j < �. So we can find A˛C1

n0C1 2 H .An0C1/ such that A˛
n0C1 � A˛C1

n0C1,

dn0
.X/ � A˛C1

n0C1 and such that jA˛C1
n0C1=A

˛
n0C1j < �. Note that by our choice of X ,

and since dn0
.A˛

n0
/ � A˛

n0C1, we get dn0
.A˛C1

n0
/ � A˛C1

n0C1. We continue this method
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and construct A˛C1
n0C2; A

˛C1
n0C3; : : : . Then letting A˛C1

n D A˛
n if n < n0, we have the

desired complexA˛C1 � A. So now it easy to see thatA has the desired filtration.

Using the analogous method along with the zig-zag procedure of Remark 4.1.10,
we get the proof of the next result.

Theorem 7.2.15. If .A;B/ is a cotorsion pair in R-Mod which is cogenerated by
a set, then .C.A/ \ E; .C.A/ \ E/?/ is a cotorsion pair in C.R-Mod/ which is
cogenerated by a set.

7.3 More Cotorsion Pairs

In the last section we considered one way of using a cotorsion pair inR-Mod to create
cotorsion pairs in C.R-Mod/. Starting with the pair .A;B/ in R-Mod, we consider
the classes C.A/ and C.B/ in C.R-Mod/. So we considered complexes A 2 C.A/
each of whose terms are in A and B 2 C.B/ each of whose terms are in B.

So, for example, if .A;B/ D .Proj; R-Mod/ with Proj the class of projective left
R-modules, we get the P 2 C.Proj/. These consist of all complexes P such that Pn

is projective for each n 2 Z. But as we saw in Section 1.4, these are not the projective
complexes. According to Theorem 1.4.7, P 2 C.R-Mod/ is projective if and only if
P is exact and each Zn.P / is a projective module. This observation suggests another
way of creating cotorsion pairs in C.R-Mod/ from pairs in R-Mod.

Definition 7.3.1. If A is a class of objects of R-Mod, we let QA be the class of A 2
C.R-Mod/ such that A is exact and such that Zn.A/ 2 A for each n.

Note that if .A;B/ is a cotorsion pair in R-Mod, then if A 2 QA we have an exact
sequence

0! Zn.A/! An ! Zn�1.A/! 0

for each n. So since A is closed under extensions, we get that An 2 A for each n. So
QA � C.A/, and in fact QA � C.A/ \ E with E the class of exact sequences.

Our object now is to use QA and QB to create cotorsion pairs in C.R-Mod/.

Theorem 7.3.2. If .A;B/ is cogenerated by a set then . QA; QA?/ and .? QB; QB/ are
cotorsion pairs in C.R-Mod/ each of which are cogenerated by a set.

Proof. The argument for . QA; QA?/ is now a familiar one. We use the zig-zag proce-
dure of Remark 4.1.10 and the Hill classes of Section 7.2 (as in the proof of Theo-
rem 7.2.14).

The argument that .? QB; QB/ is a cotorsion pair which is cogenerated by a set is
similar to the proof of Theorem 7.1.1. So we need to find a set T of complexes so



Section 7.3 More Cotorsion Pairs 73

that T ? D QB. So let S be a set of modules that cogenerate .A;B/. Then we let T

consist of all Sk.R/, all Sk. NM/ and all Sk.M/ where k 2 Z and M 2 S .
We first argue that T ? � QB . Let B 2 T ?. Since Sk.R/ 2 T for all k we get that

B is exact by Corollary 2.1.7. By Proposition 2.1.4 and the fact that Sk. NM/ 2 T for
all k we get that Bn 2 B D S? for all n. We now want to prove that Zn.B/ 2 B for
all n.

We argue that Z1.B/ 2 B. The argument that Zn.B/ 2 B for any n follows using
suspensions.

Since B is exact, we have an exact sequence

0! Z1.B/! B1 ! Z0.B/! 0:

Now let M 2 S . We want to show that Ext1.M;Z1.B// D 0. Since B1 2 B D S?,
we do have that Ext1.M;B1/ D 0. So using the exact sequence

Hom.M;B1/! Hom.M;Z0.B//! Ext1.M;Z1.B//! Ext1.M;B1/ D 0

we see that we only need to argue that Hom.M;B1/ ! Hom.M;Z0.B// ! 0 is
exact.

To do so consider M and a morphism f W M ! B . Such a morphism is given
by a linear map M ! Z0.B/. Since Ext1.S.M/;B/ D 0, we get that M ! B is
homotopic to 0 by Proposition 3.3.2. So f Š 0. But then S is (essentially) given
by a linear map M ! B1 that lifts M ! Z0.B/. So we get that Hom.M;B1/ !
Hom.M1Z0.B// ! 0 is exact. So we have Z1.B/ 2 S? D B, and similarly that
Zn.B/ 2 B for all n. So B 2 QB.

But conversely, if B 2 QB, then reversing these arguments we get that B 2 T ?
and so that QB D T ?. Hence .? QB; QB/ is a cotorsion pair which is cogenerated by a
set.

We have the two cotorsion pairs . QA; QA?/, .? QA; QB/ in C.R-Mod/, each of which
is cogenerated by sets. We want to prove that if the original cotorsion pair .A;B/ is
hereditary, then this pair is a Hovey pair (see Definition 6.1.12). Using that definition,
to say . QA; QA?/, .? QB; QB/ is a Hovey pair means that QA D ? QB\E and E \ QA? D QB
where E is the class of exact sequences. So with this in mind we prove the next result.

Theorem 7.3.3. If .A; B/ is a hereditary cotorsion pair in R-Mod, then . QA; QA?/,
.? QA; QA/ is a Hovey pair in C.R-Mod/.

Proof. We argue that QA D ? QB \ E . The proof that E \ QA? D QB will then follow
from a similar argument. We first argue that QA � ? QB \ E . We have QA � E by the
definition on QA. To get QA � ? QB, we need to show that Ext1.A;B/ D 0 for A 2 QA
and B 2 QB. We think of the d of B as a morphism B ! S.Z.B//. Since B is exact,
this gives rise to an exact sequence

0! Z.B/! B ! S.Z.B//! 0:
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So to get Ext1.A;B/ D 0 it suffices to show that

Ext1.A;Z.B// D 0 and Ext1.A; S.Z.B/// D 0:

Each of Z.B/ and S.Z.B// have d D 0 and all their terms in B. So each is the
direct sum (and the direct product) of complexes of the form � � � ! 0! 0! Bn !
0 ! 0 ! � � � with Bn 2 B and with Bn in the nth place. So we want to prove
Ext1.A;B/ D 0 when A 2 QA and B D � � � ! 0 ! 0 ! Bn ! 0 ! � � � Since
Ext1.Ak; Bn/ D 0, any exact 0! B ! U ! A! 0 splits at the module level and
so can be thought of as the sequence associated with the mapping cone of a morphism
S�1.A/! B . So by Proposition 3.3.2 we only need to prove that any such morphism
is homotopic to 0. Any morphism S�1.A/! B is homotopic to 0 if and only if every
morphism A ! S.B/ is homotopic to 0. Since S.B/ has the same form as B , we
only need argue that any A! B is homotopic to 0. But a morphism A! B is given
by a commutative diagram

� � � �� AnC1

��

�� An

��

�� An�1
��

��

An�2
��

��

� � �

� � � �� 0 �� Bn
�� 0 �� 0 �� � � �

This induces a diagram

0 �� Zn�1.A/

��

�� A

���
�

�
�

�

Bn

Since 0! Zn�1.A/ ,! An�1 ! Zn�2.A/! 0 is exact and since

Ext1.Zn�2.A/; B/ D 0;

we see that we get the extension An�1 ! Bn of Zn�1.A/! Bn. But this extension
provides the desired homotopy A! B . So we now have QA � ? QB \ E .

Now let A 2 ? QB \ E . We want to show that A 2 QA. Since A 2 E (and so is
exact), this means we must show that Zn.A/ 2 A. This means that we need to show
that Ext1.Zn.A/; B/ D 0 for all B 2 B. For B 2 B, let 0 ! B ! E ! B 0 ! 0

be exact with E injective. Then since .A;B/ is hereditary, we have that B 0 2 B. So
thinking of 0 ! B ! E ! B 0 ! 0 as a complex with E in any position, we have
a complex in QB . So to get Ext1.Zn.A/; B/ D 0, we need that Hom.Zn.A/;E/ !
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Hom.Zn.A/; B
0/! 0 is exact. Thus suppose we have a linear Zn.A/! B 0. Using

this we create morphism of complexes

� � � �� AnC4
��

��

�� AnC3

0

��

�� AnC2
��

0

��

AnC1
��

��

An

��

�� � � �

� � � �� 0 �� B �� E �� B 0 �� 0 �� � � �

Then since A 2 ?B, we use the mapping cone sequence and Proposition 3.3.2 to get
that this morphism is homotopic to 0. The homotopy gives a map An ! B 0 which
extends the original Zn.A/! B 0. But

Hom.An; E/! Hom.An; B
0/! Ext1.An; B/ D 0

is exact, so the extension An ! B 0 has a lifting An ! E. Hence the original
Zn.A/ ! B 0 has a lifting Zn.A/ ! E. Consequently Ext1.Zn.A/; B/ D 0. So
Zn.A/ 2 A and we have thatA 2 QA. This completes the argument that QA D ?B\ QB.
The argument that E \ QA D QB is similar.

7.4 More Hovey Pairs

In Section 7.3, we saw how to start with a cotorsion pair .A;B/ in R-Mod which
is cogenerated by a set and then create the cotorsion pairs . QA; QA?/, .?B; QB/ in
C.R-Mod/. Then we saw that if .A;B/ is hereditary, this pair of pairs in a Hovey pair.
This suggests we return to the results of Section 7.2 and ask if the two pairs of cotor-
sion pairs we formed in C.R-Mod/ give us a Hovey pair. The pairs we formed were
.C.A/; C.A/?/; .C.A/ \ E , .C.A/ \ E/?/, .?C.B/; C.B// and .?.C.B \ E/;

C.B/ \ E/. We want to argue that we get two associated Hovey pairs. These are
.C.A/ \ E , .C.A/ \ E/?/, .C.A/; C.A/?/ and .?C.B/; C.B//, .?.C.B/ \ E/;

C.B/ \ E/.
We will consider a single cotorsion pair in C.R-Mod/, say .C ;D/, and ask when

it could be the first pair or the second pair of a Hovey pair. In order to be the first pair
of a Hovey pair, we would need C � E and in order to be the second pair we would
need D � E . The next lemma is concerned with the question of when .C ;D/ could
be the second pair of Hovey pair.

Lemma 7.4.1. Let .C ;D/ be a cotorsion pair in C.R-Mod/ such that D � E . Then
D D E \ .C \ E/?.

Proof. We have .D � E by hypothesis. Also D D C? � .C \ E/?. So D �
E \ .C \ E/?. Now let D 2 E \ .C \ E/?.
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We want to argue that D 2 D D C?. So if C 2 C we need to show that
Ext1.C;D/ D 0. We now recall that .?E;E/ is a cotorsion pair which is cogen-
erated by a set (see section 4.1). So this cotorsion pair is complete. This means that
we have an exact sequence 0! C ! E ! P ! 0 with E 2 E and P 2 ?E . Since
D � E , we have ?E � ?D D C . So P 2 C and hence E 2 C since C is closed
under extensions. SoE 2 C\E . SinceD 2 .C\E/?, we have that Ext1.E;D/ D 0.
But 0! C ! E ! D ! 0 gives the exact sequence

0 D Ext1.E;D/! Ext1.C;D/! Ext2.P;D/

But now P 2 ?E and D 2 E . If 0 ! D ! I ! D0 ! 0 is exact with I injective,
then I is exact. SoD0 is exact, i.e.D0 2 E . But then 0 D Ext1.P;D0/ D Ext2.P;D/.
So since Ext2.P;D/ D 0, we get that Ext1.C;D/ D 0. Thus we have established
that D D E \ .C \ E/?.

With the notation of the lemma above, we consider the prospective Hovey pair
.C \E; .C \E/?/; .C ;D/ D .C ;E\ .C \E/?/. In fact if the first pair is a cotorsion
pair, then we do have a Hovey pair.

Theorem 7.4.2. If .A;B/ is a cotorsion pair in R-Mod which is cogenerated by a
set, then .C.A/ \ E; .C.A/ \ E/?/; .C.A/; C.A/?/ is a Hovey pair.

Proof. With the remark immediately preceding this theorem and using Theo-
rem 7.2.15, we see that we only need that C.A/? � E . Since .A;B/ is a cotorsion
pair, we have R 2 A. Hence Sk.R/ 2 C.A/ for all k. Then the claim C.A/? � E

follows from Corollary 2.1.7.

Dual arguments give the next result.

Theorem 7.4.3. If .A;B/ is a cotorsion pair in R-Mod which is cogenerated by a
set, then .?C.B/; C.B//; .?.C.B/\ E/; C.B/\ E/ is a Hovey pair in C.R-Mod/.

These two results provide us with two Hovey pairs in C.R-Mod/ associated with
the cotorsion pair .A;B/ in R-Mod. In general these pairs are distinct.

7.5 Exercises

1. Prove Theorem 7.4.3.

2. Give an example where the two Hovey pairs of Theorem 7.4.2 and Theorem 7.4.3
are distinct.

3. Find an example of a cotorsion pair .A;B/ in R-Mod which is cogenerated by a
set where QA ¤ C.A/ \ E (see Sections 7.2 and 7.3).
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4. Let Inj � R-Mod consist of all the injective modules. Show that ?C.Inj/ � E

where E is the class of exact complexes.

5. With the same notation as in problem 4., find an example where ?C.Inj/ ¤ E .

6. This exercise concerns the material in Section 7.2. With the notation of that sec-
tion, let � D ! (the least infinite ordinal number) and suppose M D P

n<! An

for submodules An of M .

Find examples where:

a) every S � ¹njn < !º is closed

b) the only closed S � ¹njn < !º are ;, ¹0º; ¹0; 1º; : : : ; ¹0; 1; 2; : : : ; nº; : : : and
¹0; 1; 2; 3; : : : ; n; : : : º.
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Minimal Complexes

8.1 Minimal Resolutions

Let 0 ! M ! E0 ! E1 ! � � � be a minimal injective resolution of the left
R-Module M , then the complex E D : : : 0 ! 0 ! E0 ! E1 ! E2 ! � � �
has the property that if f W E ! E is a homology isomorphism, then f induces a
commutative diagram

0 �� M ��

��

E0

f

��

�� E1

f

��

�� E2

f

��

�� � � �

0 �� M �� E0 �� E1 �� E2 �� � � �

where M ! M is an isomorphism. Then since we began with a minimal injective
resolution of M we get that f 0; f 1; : : : are all isomorphisms. So f W E ! E is
an isomorphism. The same argument can be given in case we start with a minimal
projective resolution (when such exists) or any kind of minimal resolution we get
from a class F of left R-modules which is covering or enveloping (see Section 5.1 of
Volume I). These examples motivate the next definition.

Definition 8.1.1. A complex C 2 C.R-Mod/ is said to be homologically minimal if
any homology isomorphism f W C ! C is an isomorphism in C.R-Mod/.

When a ring R is local and left Noetherian, then any finitely generated left R-mod-
ule M has a projective cover P ! M (see Theorem 5.3.3 of Volume I). In fact P is
then free and finitely generated. If P D Rn, then Ker.P D Rn ! M/ � mn where
m is the maximal ideal of R. Since R is left Noetherian, Ker.P ! M/ is finitely
generated and so we see that M has a minimal projective resolution

� � � ! P1 ! P0 !M ! 0

with each Pn finitely generated and free. We also have Im.PnC1 ! Pn/ � mPn for
n � 0.

It would be of interest to characterize the homologically trivial P 2 C.R-Mod/
where each Pn is a finitely generated free module. If we use a weaker notion of
minimality then we can get a complete characterization of the minimal such P .
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Definition 8.1.2. A complex C 2 C.R-Mod/ is said to be homotopically minimal if
every homotopy isomorphism f W C ! C (see Section 3.2) is an isomorphism.

Note that if f W C ! C is a homotopy isomorphism, then f is a homology
isomorphism. So if C is homologically minimal it is also homotopically minimal.
But the converse is not true (see the exercises).

Proposition 8.1.3. If R is a local ring with maximal ideal m and P 2 C.R-Mod/ is
such that each Pn is free and finitely generated, then P is homotopically minimal if
and only if Im.PnC1 ! Pn/ � mPn for all n.

Proof. Suppose that P satisfies the conditions and that f W P ! P is a homo-
topy isomorphism. We want to prove that f is an isomorphism. The morphism
f W P ! P induces a morphism P=mP ! P=mP which is easily seen to be a ho-
motopy isomorphism. So P=mP ! P=mP is a homology isomorphism. But by our
condition on P , we have that dnC1.PnC1/ � mPn for each n and so the d on P=mP
is 0. Hence P=mP ! P=mP is an isomorphism. This means Pn=mPn ! Pn=mPn

is an isomorphism for every n. But then by Nakayama’s lemma, fn W Pn ! Pn is an
isomorphism and so f W P ! P is an isomorphism.

Conversely, suppose P is homotopically minimal. If dnC1.PnC1/ ª mPn for
some n, let y 2 PnC1; nC 1.y/ … mPn. So PnC1; Pn ¤ 0 and y and dnC1.y/ are
parts of bases of PnC1 and Pn, respectively. We have the subcomplex T D � � � !
0 ! Ry ! Rx ! 0 ! � � � of P with Ry Š Rx Š R. So the complex T is
homotopically trivial.

We now claim T is a direct summand of P . For consider the exact sequence 0 !
T ,! P ! P=T ! 0. By our choice of T , this sequence splits at the module level.
So it can be thought of as the short exact sequence associated with a mapping cone
of a morphism g W S.P=T / ! T . But T is homotopically trivial and so g Š 0.
But this gives that the sequence is split exact. So we have P D T ˚ P=T . But
then the morphism 0 ˚ idP=T W P ! P is a homotopy isomorphism which is not
an isomorphism. This contradiction shows we must have dnC1.PnC1/ � mPn for
every n.

We now would like to characterize the homotopically trivial I 2 C.R-Mod/ where
each In is injective. The characterization and the argument are similar (in a dual
sense) to that given in Proposition 8.1.3 above. However, the step corresponding to
the fact that T � P is a direct summand of P will require the next result.

Lemma 8.1.4. If g W C ! D is a morphism in C.R-Mod/ such that the morphism
D ! C.g/ of the exact sequence 0 ! D ! C.g/ ! S.C / ! 0 is a homotopy
isomorphism, then S.C / is homotopically trivial.
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Proof. We will use the construction of Section 3.4. Recall that if X 2 C.R-Mod/,
then we can form the complex Hom.D;X/. This construction is functorial, so we can
form the sequence

0! Hom.S.C /;X/! Hom.C.g/;X/! Hom.D;X/! 0

of complexes. From the definition of these complexes and from the fact that 0 !
D ! C.g/! S.C /! 0 splits at the module level, we see that this sequence is ex-
act. By hypothesisD!C.g/ is a homotopy isomorphism. But the Hom.C.g/;X/!
Hom.D;X/ is also a homotopy isomorphism. But this means that Hom.C.g/;X/!
Hom.D;X/ is a homology isomorphism. Consequently, the complex Hom.S.C /;X/

is exact. Letting X D S.C /, we have that Hom.S.C /; S.C // is exact. Then using
Proposition 3.4.3 we get that idS.C / Š 0. By this means that S.C / is homotopically
trivial (see Section 3.2).

Proposition 8.1.5. Let I 2 C.R-Mod/ be such that Im is an injective module for
every m. Then the following are equivalent:

1) I is homotopically trivial

2) I has no nonzero factors which are homotopically trivial

3) Zn.I / �0 In (i.e. In is an essential extension of Zn.I /) for each n.

Proof. 1/) 2/ If I D I 0 ˚ I " where I 0 ¤ 0 and where I 0 is homotopically trivial,
then as in the proof of Proposition 8.1.3 we can produce a homotopy isomorphism
f W I ! I that is not an isomorphism.
2/ ) 3/. If In is not an essential extension of Zn.I /, let Zn.I / \ U D 0 for

a submodule U � In, U ¤ 0. Then dn j U is an injection. Since U � In and
since In is injective we can find V � In with U �0 V and V injective. Then since
dnjU is an injection we get dnjV is also an injection. So we have the subcomplex

� � � ! 0 ! V
Š�! dn.V / ! 0 ! � � � of I . But from Section 1.4 we see that this

complex is injective. So it is a direct summand of I . But it is homotopically trivial.
This contradicts 2).
3/ ) 1/. Let f be a homotopy isomorphism. We first prove that Ker.f / D 0.

Let g give a homotopy inverse of f . So g ı f Š idC . It suffices to prove that
Ker.g ıf / D 0. For n 2 Z letKn D Ker..g ıf /n/ and let Ln D Kn\Zn.I /. Then

Ln �0 Kn. Now suppose g ı f sŠ idC . So idC � g ı f D d ı s C s ı d .
If we apply this equation to x 2 Ln and use the fact that x 2 Ker..g ı f /n/ \

Ker.dn/, we get that x D dnC1.sn.x//. So snjLn and dnC1jsn.Ln/ are injections.
Hence sn.Ln/ \ ZnC1.I / D 0. But then, by 3), sn.Ln/ D 0. So Ln D 0 and thus
since Ln �0 Kn, we have that Kn D 0.



Section 8.2 Decomposing a Complex 81

So now we have Ker.g ı f / D 0 and so that Ker.f / D 0. Hence we have a short

exact sequence 0 ! I
f! I ! Coker.f / ! 0. Since In is injective for each n,

we have that this sequence splits at the module level and so can be thought of as a
short exact sequence associated with a mapping cone. By Lemma 8.1.4, we get that
Coker.f / is homotopically trivial. Now we appeal to Proposition 3.3.3. Note that
since f is a homotopy isomorphism, Œf � clearly admits a retraction (and in fact an
inverse) inK.R-Mod/. This means we can write I D I 0˚Coker.f / (where I 0 Š I ).
Since Coker.f / is homotopically trivial, we can create a homotopy isomorphism g W
I ! I that is 0 on Coker.f /. But from the above, we know Ker.g/ D 0. Hence
Coker.f / D 0 and so f is an isomorphism.

Lemma 8.1.6. Let C;D 2 C.R-Mod/ be homotopically minimal. If f W C ! D is
a homotopy isomorphism, then f is an isomorphism.

Proof. If g W D ! C is such that Œg� D Œf ��1, then g is also a homotopy isomor-
phism. So gıf W C ! C is a homotopy isomorphism. Thus gıf is an isomorphism
since C is minimal. Similarly f ı g is an isomorphism. Hence f (and g) are isomor-
phisms.

8.2 Decomposing a Complex

Proposition 8.2.1. If I 2 C.R-Mod/ is such that In is injective for every n, then
I D I 0˚I 00 where I 0 is homotopically minimal and where I 00 is homotopically trivial.
Furthermore if I D J 0˚J 00 is another such decomposition, then I 0 ! I ! J 0 is an
isomorphism where both maps I 0 ! I and I ! J 0 come from the decompositions
above.

Proof. For each n we pick a maximal submodule Un � In such that Zn.I / \ Un D
0. Then Un is injective and we have the injective subcomplex � � � ! 0 ! Un

Š!
dn.Un/ ! 0 ! � � � of I . The sum of these subcomplexes is direct. So if I is
this sum, then I is injective. So I is a direct summand of I . If I D I 0 ˚ I 00,
then by the construction of I 00 we get that I 00 is homotopically minimal (by (3) of
Proposition 8.1.5).

So we have the desired decompositions I D I 0˚I 0. If J D J 0˚J 0 is another such
decomposition, then I 0 ! I and I ! J 0 are homotopy isomorphism since I 0 and
J 00 are homotopically trivial. Hence the composition I 0 ! I ! J 0 is a homotopy
isomorphism. So I 0 ! J 0 is a homotopy isomorphism. Thus by Lemma 8.1.6,
I 0 ! J 0 is an isomorphism.
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8.3 Exercises

1. a) Find a module M having a submodule S such that Hom.M=S;M/ D 0 and
such that there is an endomorphism f W M ! M with f .S/ � S such
that S ! S is an automorphism of S but such that f W M ! M is not an
automorphism of M .

b) Let C D � � � ! 0!M !M=S ! 0! 0! � � � (with M in the 0th place).
Argue that C is homotopically trivial but not homologically trivial.

2. If C and C 0 in C.R-Mod/ are homologically (homotopically) minimal, show that
C ˚ C 0 is homologically (homotopically) minimal. Hint. Look at exercise 3 of
Chapter 4 of Volume I.

3. If R is a left perfect ring and P 2 C.R-Mod/ is such that all Pn are projec-
tive, prove that P has a direct sum decomposition P D P 0 ˚ P 00 where P 0 is
homotopically minimal and where P 00 is homotopically trivial.

4. If � � � ! P1 ! P0 ! M ! 0 is a projective resolution of the left R-module
M , let P D � � � ! P1 ! P0 ! 0! � � � . If P has a direct sum decomposition
P D P 0˚P 00 as in 3 above, argue that � � � ! P 02 ! P 01 !M ! 0 is a minimal
projective resolution of M .

5. Let P 2 C.R-Mod/ be such that every Pn is finitely generated and projec-
tive. Let P � be the complex � � � ! P ��1 ! P �0 ! P �1 ! � � � where P �n D
Hom.Pn; R/ is the algebraic dual of Pn. Argue that P is homotopically minimal
if and only if P � is homotopically minimal.

6. Prove that a ring R is left perfect if and only if every P 2 C.R-Mod/ with all Pn

projective has a direct sum decomposition P D P 0˚P 00 with P 0 homotopically
minimal and P 00 homotopically trivial.

7. Find examples of short exact sequences 0! C 0 ! C ! C 00 ! 0 in C.R-Mod/
where C 0 and C 00 are homotopically trivial but where C is not homotopically
trivial.
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Cartan and Eilenberg Resolutions

A Cartan and Eilenberg projective resolution of a complex C is a certain exact se-
quence of complexes

� � � ! P�1 ! P 0 ! C ! 0

To define these resolutions we need to begin with the notion of a Cartan–Eilenberg
projective complex. Then we will consider an injective version of these notions.

9.1 Cartan–Eilenberg Projective Complexes

Definition 9.1.1. A complex P 2 C.R-Mod/ is said to be Cartan–Eilenberg pro-
jective complex (hereafter called a C–E projective complex) if P , Z.P /, B.P /, and
H.P / all have each of their terms a projective module.

Remarks and Examples 9.1.2. A direct sum of a family of complexes is C–E pro-
jective if and only if each of the summands is C–E projective. For any k 2 Z, Sk. NR/
and Sk.R/ are C–E projective. Hence any free, and so any projective complex is C–E
projective. Also any complex P with all Pn projective and such that dP D 0 is C–E
projective.

The next result shows that from these observations we can find all C–E projective
complexes.

Proposition 9.1.3. A complex P 2 C.R-Mod/ is a C–E projective complex if and
only if P has a direct sum decomposition P D P 0 ˚ P 00 where P 0 is a projective
complex and where P 00 has all its terms projective and 0 differential (i.e. dP 00 D 0).

Proof. Assume P D P 0 ˚ P 00 with P 0 projective and where each P 00n is projective
and dP 00 D 0. Then by the remarks above P is C–E projective.

Conversely, assume P is C–E projective. For every n we have the exact sequence

0! Zn.P /! Pn ! Bn�1.P /! 0

and
0! Bn.P /! Zn.P /! Hn.P /! 0:

Since Bn�1.P / and Hn.P / are projective modules, these sequences are split exact.
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So using these splittings, we get Zn.P / D Bn.P /˚Hn.P / and Pn D Zn.P /˚
Bn�1.P /. Combining these we get Pn D Bn.P /˚Hn.P /˚ Bn�1.P /. Then with
these decompositions we get that dn W Pn D Bn.P /˚Hn.P /˚Bn�1.P /! Pn�1 D
Bn�1.P /˚Hn�1.P /˚Bn�2.P / is the map .x; y; z/ 7! .z; 0; 0/. As a consequence,
we see that P D P 0 ˚ P 00 where P 0 is the direct sum of the complexes

� � � ! 0! .0˚ 0˚ Bn�1.P //! .Bn�1.P /˚ 0˚ 0/! 0! � � �

and where P 00 is the direct sum of the complexes � � � ! 0 ! Hn.P / ! 0 ! � � � .
So using the description of the projective complexes in Chapter 1, we see that P 0 is
projective. Hence we have the desired direct sum decomposition.

We now want to argue that every C 2 C.R-Mod/ has a C–E projective precover
(see Chapter 5 of Volume I). To do so, first note that if P 00 has dP 00 D 0, then a
morphism P 00 ! C (for any C 2 C.R-Mod/) has a morphism P 00 ! Z.C/. If
P 00 ! Z.C/ is an epimorphism,Q00 has dQ00 D 0 andQ00 ! C is a morphism, then
the diagram

Q00

P

��









��

P 00 �� Z.C/

can be completed to a commutative diagram, and so

Q00

P

���
�

�
�

��

P 00 �� C

can be completed to a commutative diagram.

Proposition 9.1.4. Every C 2 C.R-Mod/ has a C–E projective precover.

Proof. Let '0 W P 0 ! C be an epimorphism where P 0 is a projective complex and
let '00 W P 00 ! C be such that each P 00n is projective, dP 00 D 0, and such that the
corresponding P 00 ! Z.C / is an epimorphism. Let ' W P 0 ˚ P 00 ! C agree with
'0 on P 0 and with '00 on P 00. Let  W Q ! C be any morphism where Q is C–E
projective. Write Q D Q0 ˚Q00 where Q0 is projective and where dQ00 D 0. Then
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each of the diagrams

Q0

��	
	

	
	

��

P 0 �� C

and Q00

���
�

�
�

��

P 00 �� C

can be completed to commutative diagrams. Hence so can

Q

���
�

�
�

��

P �� C

Note that this precover is an epimorphism and so every precover is an epimorphism.

9.2 Cartan and Eilenberg Projective Resolutions

Definition 9.2.1. If C 2 C.R-Mod/, then by a Cartan and Eilenberg projective res-
olution (or a C–E projective resolution) of C we mean a complex of complexes

� � � ! P�2 ! P�1 ! P 0 ! C ! 0

where each P�n is C–E projective and where P 0 ! C , P�1 ! Ker.P 0 ! C/ and
P�n ! Ker.P�nC1 ! P�nC2/ for n � 2 are C–E projective precovers.

Every complex C has such a resolution, and we get the usual comparison results
concerning such resolutions.

The next result will be used to give a characterization of these resolutions.

Lemma 9.2.2. Let 0 ! A0 ! A ! A00 ! 0 be a complex of complexes in
C.R-Mod/. Consider the complexes:

1) 0! A0 ! A! A00 ! 0

2) 0! Z.A0/! Z.A/! Z.A00/! 0

3) 0! B.A0/! B.A/! B.A00/! 0

4) 0! A0=Z.A0/! A=Z.A/! A00=Z.A00/! 0

5) 0! A0=B.A0/! A=B.A/! A00=B.A00/! 0

6) 0! H.A0/! H.A/! H.A00/! 0
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If 1) and 2) are exact, then all of 1)–6) are exact. If 1) and 5) are exact, then all of
1)–6) are exact.

Proof. Assume 1) and 2) are exact. Apply the snake lemma of Section 2.3 to the
following diagram

0 �� Z.A0/
� �

��

�� Z.A/
� �

��

�� Z.A00/
� �

��

�� 0

0 �� A0 �� A �� A00 �� 0

This gives 4).
Recall that we can consider d W A ! S.A/ as a morphism of complexes. This

induces an isomorphism A=Z.A/ ! B.S.A//. So using this we see that 3) , 4).
Then we can again use the snake lemma to get 5) and 6).

If 1) and 5) are exact, then the snake lemma gives 3) is exact. Then using the snake
lemma on

0 �� A0

d 0

��

�� A

d
��

�� A00

d 00

��

�� 0

0 �� B.S.A0// �� B.S.A// �� B.S.A00// �� 0

we get 2) exact. So then as above we get 1)–6) are all exact.

Proposition 9.2.3. LetQ be a C–E projective complex in C.R-Mod/ and letQ! C

be a morphism in C.R-Mod/ with kernel K. Then the following are equivalent

a) Q! C is a C–E projective precover

b) 0! K ! Q! C ! 0 and 0! Z.K/ �Z.Q/! Z.C/! 0 are exact

c) for any k 2 Z, any diagrams

Sk. NR/

���
�

�
�

�

��

Q �� C

and Sk.R/

���
�

�
�

��

Q �� C

can be completed to commutative diagrams.
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Furthermore, when these conditions hold we get

0! B.K/! B.Q/! B.C/! 0

0! K=Z.K/! Q=Z.Q/! C=Z.C/! 0

0! K=B.K/! Q=B.Q/! C=B.C /! 0

0! H.K/! H.Q/! H.C/! 0

are exact.

Proof. First note that if Q ! C is a C–E projective precover, then Q ! C ! 0 is
exact and so 0 ! K ! Q ! C ! 0 is exact. And if this sequence is exact, so is
0! Z.K/! Z.Q/! Z.C/.

Hence we see that the equivalence of b) and c) is given by Lemma 9.2.2.
Using the isomorphisms Hom.Sk.R/; C / Š Z�k.C / and Hom.Sk. NR/; C / Š

C�kC1, we see that c) , b). We get c) , a) by using Proposition 9.1.3 and the
observation that (with the notation of that result) that we have P D P 0 ˚ P 00 � F D
F 0 ˚ F 00 with P 0 a direct summand of F 00 where F 0 is free and F 00 has all its terms
F 00n free and where dF 00 D 0. So then F 0 is a direct sum of copies of Sk. NR/’s and F 00
of copies of Sk.R/’s. The last claim follows from Lemma 9.2.2 above.

Theorem 9.2.4. If � � � ! P�2 ! P�1 ! P 0 ! C ! 0 is a complex of complexes
in C.R-Mod/ where each P�n is C–E projective, then it is a C–E projective resolu-
tion of C if and only if it is exact and � � � ! Z.P�2/ ! Z.P�1/ ! Z.P 0/ !
Z.C/! 0 is exact. When this is the case,

1) � � � ! B.P�2/! B.P�1/! B.P 0/! B.C/! 0,

2) � � � ! P=Z.P�1/! P 0=Z.P 0/! C=Z.C/! 0,

3) � � � ! P�1=B.P�1/! P 0=B.P 0/! C=B.C /! 0 and

4) � � � ! H.P�1/! H.P 0/! H.C/! 0

are also exact.

Proof. These claims follow from Proposition 9.2.3 above and the definition of a C–E
projective resolution.

We note that when we have such a resolution as in the above, then at the module
level, we get the projective resolutions

� � � ! P 1
n ! P 0

n ! Cn ! 0

� � � ! Zn.P
1/! Zn.P

0/! Zn.C /! 0

and so forth.
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9.3 C–E Injective Complexes and Resolutions

The definitions and results of this section are dual to those of Sections 9.1 and 9.2.

Definition 9.3.1. A complex I 2 C.R-Mod/ is a C–E injective complex if I , Z.I /,
B.I / and H.I/ all have each of their terms an injective module.

A product of complexes is C–E injective if and only if each of the complexes is
C–E injective. Any direct summand of a C–E injective complex is C–E injective.

Proposition 9.3.2. A complex I 2 C.R-Mod/ is C–E injective if and only if I has a
direct sum decomposition I D I 0 ˚ I 00 where I 0 is injective and I 00 has all its terms
injective modules and d I 00 D 0.

Proof. Dual to that of Proposition 9.1.3.

Proposition 9.3.3. Every C 2 C.R-Mod/ has a C–E injective preenvelope.

Proof. If C ! I 0 and C=B.C / ! I 00 are monomorphisms where I 0 is an injective
complex and I 00 has all its terms injective and d I 00 D 0, then C ! I 0 ˚ I 00 is a C–E
injective preenvelope.

A C–E injective resolution of C 2 C.R-Mod/ is defined in the obvious manner.

Theorem 9.3.4. If 0 ! C ! I 0 ! I 1 ! � � � is a complex of complexes in
C.R-Mod/ where each In is C–E injective, then it is a C–E injective resolution of
C if and only if 0 ! C ! I 0 ! I 1 ! � � � and 0 ! C=B.C / ! I 0=B.I 0/ !
I 1=B.I 1/! � � � are exact. When this is the case, we get all four of the other related
sequences exact, namely that the following

1) 0! Z.C/! Z.I 0/! Z.I 1/! � � �
2) 0! B.C/! B.I 0/! B.I 1/! � � �
3) 0! C=Z.C/! I 0=Z.I 0/! I 1=Z.I 1/! � � �
4) 0! H.C/! H.I 0/! H.I 1/! � � �

are exact.

Proof. We only indicate the modifications we need to carry out the duals of the cor-
responding result concerning a C–E projective resolution. We first note that if I
is an injective module, then Sk. NI / and Sk. NI / are C–E injective complexes. For
C 2 C.R-Mod/, we have isomorphisms Hom.C; Sk. NI // Š Hom.CkC1; I / and
Hom.C; Sk.I // Š Hom.Ck=Bk.C /; I /. With these observations the proof can be
completed.
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9.4 Cartan and Eilenberg Balance

The balance in this section is that of Chapter 8 of Volume I.

Proposition 9.4.1. Let 0 ! K ! P ! C ! 0 be exact in C.R-Mod/ where
P ! C is a C–E projective precover of C . If I 2 C.R-Mod/ is C–E injective, then
0! Hom.C; I /! Hom.P; I /! Hom.K; I /! 0 is exact.

Proof. We use the decomposition I D I 0 ˚ I 00 of Proposition 9.3.2. Then using
the structure theorem for injective complexes (see Chapter 1), we see that we only
need to prove that if I 2 R-Mod is an injective module then Hom.�; Sk. NI // and
Hom.�; Sk.I // each leaves the sequence 0 ! K ! P ! C ! 0 exact. But
then we use the isomorphisms given at the end of the proof of Theorem 9.3.4 and
see that the claim follows from the exactness of 0 ! K ! P ! C ! 0 and
0! K=B.K/! P=B.K/! C=B.C /! 0, i.e, from the exactness of 0! Kn !
Pn ! Cn ! 0 and of

0! Kn=Bn.K/! Pn=Bn.P /! Cn=Bn.C /! 0

for each n 2 Z.

The dual result with a dual proof is:

Proposition 9.4.2. Let 0 ! D ! I ! C ! 0 be exact in C.R-Mod/ where
D ! I is a C–E injective preenvelope of D. If P 2 C.R-Mod/ is C–E projective,
then 0! Hom.P;D/! Hom.P; I /! Hom.P; C /! 0 is exact.

The two results give us the main result of this section.

Theorem 9.4.3. The functor Hom.�;�/ on C.R-Mod/ � C.R-Mod/ is right bal-
anced by C–E Proj�C–E Inj where C–E Proj is the class of C–E projective complexes
and C–E Inj is that of the C–E injective complexes.

9.5 Exercises

1. Let P D P 0 ˚ P 00 D Q0 ˚ Q" be two decompositions of a C–E projective
complex P as in Proposition 9.1.3. Argue that P 00 ! P 0 ˚ P 00 D Q0 ˚Q00 !
Q00 is a homology isomorphism. So deduce that P 00 ! Q00 is an isomorphism.

2. Let D 2 C.R-Mod/ have dD D 0. Show that D has a C–E injective envelope
D ! I and that d I D 0.

3. Let 0 ! C 0 ! C ! C 00 ! 0 be an exact sequence in C.R-Mod/. Prove that
0 ! Hom.P; C 0/ ! Hom.P; C / ! Hom.P; C 00/ ! 0 is exact for every C–E
projective complex P if and only if 0 ! Z.C 0/ ! Z.C/ ! Z.C 00/ ! 0 is
exact.
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4. If 0 ! C 0 ! C ! C 00 ! 0 in C.R-Mod/ is exact and if 0 ! Z.C 0/ !
Z.C/ ! Z.C 00/ ! 0 is exact, prove the C–E projective version of the horse
shoe lemma.

5. Let P 2 C.R-Mod/ and suppose that B.P / and H.P / both have all their terms
projective. Argue that P is a C–E projective complex.

6. Given P D P 0 ˚ P 00 ! C in C.R-Mod/ where P 0 is projective and P 00 has all
its terms projective and dP 00 D 0. If P 00 ! Z.C/ and P 0 ! C ! C=Z.C/ are
both epimorphisms, argue that P ! C is a C–E projective precover.

7. Let .C i /i2I be a family of complexes in C.R-Mod/. Show that there are C–
E projective precovers P i ! C i such that

L

i2I P
i ! L

i2I C
i is a C–E

projective precover. Deduce that if Qi ! C i is a C–E projective precover for
each i 2 I then

L

i2I Q
i ! L

i2I C
i is also a C–E projective precover.

8. If P;E 2 C.R-Mod/ where P is C–E projective and E is exact prove that
Ext1.P;E/ D 0. Then argue that if E is such that Ext1.P;E/ D 0 for all
C–E projective complexes P , then E is exact.

9. Prove that a product of C–E injective preenvelopes is a C–E injective preenvelope.



Bibliographical Notes

Chapter 1. The material in this chapter is standard. The characterizations of the
projective and injective complexes are well known but perhaps hard to find.

Chapter 2. The interpretation of elements of Ext1.M;N / (where M and N are
modules) as short exact sequences can be found in MacLane [19]. The arguments
are categorical and so carry over to more general abelian categories. Much more
information on mapping cones can be found in Verdier’s thesis [22].

Chapter 3. Most of the material in this chapter is standard, but the approach owes
much to Bourbaki [2]. This is background material for reading about triangulated and
derived categories. The splitting results appeared in [9] and [3]. The Koszul section
(i.e. Section 3.5) can be found in Greenlees and Dwyer [14].

Chapter 4. Cotorsion pairs were introduced by Salce [21] in the category of abelian
groups. The terminology seems to have come from Harrison’s thesis [15]. Interest in
them was stirred by the Eklof–Trlifaj paper [6] and by applications in categories of
complexes (Enochs, Jenda, Xu [9]). The Dold triplet (but not with that terminology)
appeared in that paper, but it was Greenlees and Dwyer’s work [14] that suggested the
results in Section 4.2.

Chapter 5. The topic of this chapter is from Neeman [20] but the approach is that
of Bravo, Enochs, Jacob, Jenda, and Rada.

Chapter 6. The material in this chapter can be found in Hovey [17].

Chapter 7. The treatment of the Hill lemma is from Göbel and Trlifaj [13]. Much
of the rest of the chapter is based on work of Gillespie (see [11] and [12]).

Chapter 8. The fact that minimal projective and injective resolutions give rise to
homologically minimal complexes was noticed once the existence of these minimal
resolutions was observed. The first definition of a homotopically minimal complex
seems to have been given in Enochs, Jenda, Xu [9]. In that paper there was an early
version of Proposition 8.1.5 (Proposition 3.15 of [9]). The complete version is due to
Krause [18]. Proposition 8.14 is from Avramov and Martsinkovsky [1].



92 Bibliographical Notes

Chapter 9. These resolutions were introduced in the last chapter of Cartan and
Eilenberg ([4]). Verdier gave the definition of a Cartan–Eilenberg injective complex
in his thesis ([22], Definition 4.6.1).
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Kaplansky, 40
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left adjoint, 49

left lifting property, 55

M
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model structure, 55
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of degree p, 27
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partial
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projective, 7
class, 48
dimension, 26
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pushout diagram, 17
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quotient complex, 2, 3
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right adjoint, 49
right lifting property, 55

S
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Snake lemma, 22
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