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1. Algebraic Structures and Categorical Setup
1.1. The Forgetfulness.

Slogan. The idea of algebraic structures arises from forgetfulness.

Example 1.1 (↠ ∘ ↪). Every set maps 𝑓 ∶ 𝑋 → 𝑌 admits a “canonical” decomposition
𝑋 ↠ coim(𝑓) ≃ im(𝑓) ↪ 𝑌 . (1.1)

In language of 𝖢𝖠𝖳, 𝑋 and 𝑌 are discrete categories. By observation:
(1) 𝑓 is surjective as a map ⟺ 𝑓 is essentially surjective as a functor,
(2) 𝑓 is injective as a map ⟺ 𝑓 is full as a functor.

Slogan. Injection is actually surjection “in higher dimension”.

Example 1.2 (Composition of Functors). There are three kinds of “surjections” for functor 𝐹 ∶ 𝒞 → 𝒟.
(su) : essentially surjective, (fu) : full, (fa) : faithful. (1.2)

Hence, any functor decomposes into three parts:

𝒞
su, fu, not fa
−−−−−−−−→ im2(𝐹)

su, not fu, fa
−−−−−−−−→ im1(𝐹)

not su, fu, fa
−−−−−−−−→ 𝒟. (1.3)

For set maps, 𝒞 → im2(𝐹) is an isomorphism.

Proposition 1.3. The decomposition is unique under the equivalences of categories.

Definition 1.4 (Forgetfulness). Let 𝐹 ∶ 𝒞 → 𝒟 be functor.
(1) Say 𝐹 forget only attachments, whence 𝐹 is su and fu;
(2) Say 𝐹 forget only structures, whence 𝐹 is su and fa;
(3) Say 𝐹 forget only properties, whence 𝐹 is fu and fa.
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Remark 1.5. There are no inherent issues in defining previously undefined terms; however, it is not always
practical or meaningful to introduce such definitions. In what follows, we will illustrate through a few examples
that our proposed definition is reasonable.

Example 1.6 (The forgetfulness of only attachments). Let 𝖵𝖾𝖼𝗍 be the categories of “vector spaces with
ambient field”, wherein the objects are the pair (𝔽, 𝑉𝔽), and the morphism are commutative squares

𝕂 𝔽

End𝕂(𝑈𝕂) End𝔽(𝑉𝔽)

extension

. (1.4)

The functor “projecting the first entry” 𝖵𝖾𝖼𝗍 → 𝖥𝗂𝖾𝗅𝖽 is su, fu, yet not fa.

Example 1.7 (The forgetfulness of only structures). A typical kind of examples: functors sending concrete
categories into underlying sets. For instance,

𝖠𝖻finite → 𝖲𝖾𝗍𝗌finite and non-empty (1.5)
sends finite Abelian groups to their underlying sets, which is su, fa, yet not fu.

Slogan. If 𝐹 ∶ 𝒞 → 𝖲𝖾𝗍𝗌 forgets no attachments, then different morphisms are different set maps.
For such 𝐹 , one can simply view 𝖬𝗈𝗋(𝒞) as set maps. However, 𝐹 is not always compatible with universal
properties, i.e. limits and colimits indexed by sets.

Example 1.8 (The forgetfulness of only properties). Under equivalences, such functors are essentially the
inclusion of full subcategories. For instance, the inclusion 𝖠𝖻 → 𝖦𝗋𝗉 forgets the commutativity of group
product, which is fu, fa, yet not su.
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Example 1.9 (decomposition of free functor). Let 𝐹 ∶ 𝖲𝖾𝗍 → 𝖬𝗈𝖽𝑅, serving as the left adjoint to the usual
forgetful functor 𝑈 ∶ 𝖬𝗈𝖽𝑅 → 𝖲𝖾𝗍. Now the decomposition of 𝐹 is

𝖲𝖾𝗍 → 𝖲𝖾𝗍 ≃ (𝖬𝗈𝖽𝑅)′ → (𝖬𝗈𝖽𝑅)″ → 𝖬𝗈𝖽𝑅. (1.6)
Here (𝖬𝗈𝖽𝑅)′ is equivalent to 𝖲𝖾𝗍. The objects are of the form 𝑅⊕𝑆 and morphisms are induced by the
change of indices, that is,

[𝑓 ∶ 𝑆 → 𝑇 ] ⇒ [𝑅⊕𝑆 → 𝑅⊕𝑇 , (𝑟𝑠)𝑠∈𝑆 ↦ (𝑟𝑓(𝑠))𝑇 ]. (1.7)
Now (𝖬𝗈𝖽𝑅)″ is the full subcategory of 𝖬𝗈𝖽𝑅 generated by objects in (𝖬𝗈𝖽𝑅)′.
Remark 1.10. It is not so amazing that free functors are compositions of surjections (quotients), since 𝑥 ∈ ∅
satisfies any propositions.
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1.2. On Limits and Colimits.

Slogan. Universal property is exactly the initial objects or terminal objects in certain category.
In short, universal properties are nothing but limits or colimits, indexed by certain diagrams (small categories).

Example 1.11. For instance, the coproduct of a set of objects e.g. 𝑋∐𝑌 , is the is exactly the initial object
in the category 𝒟, wherein
(1) 𝖮𝖻(𝒟) = {(𝐸, 𝑓, 𝑔) ∣ 𝑓 ∶ 𝑋 → 𝐸 ← 𝑌 ∶ 𝐺};
(2) the morphisms are exactly the commutative diagrams of the form

𝑋 𝐸′ 𝑌

𝑋 𝐸 𝑌

𝑓 ′

ℓ∶

𝑔′

𝑓 𝑔

. (1.8)

Remark 1.12. Our convention of universal properties is compatible with most of the cases, since most of
the property is determined by a set indexed generators with relations; whereas the “universal property” of
localisation comes from categorical equivalent relations (usually a filtered colimit index by proper classed).

Definition 1.13 (limits). Let 𝐼 ∶ ℬ → 𝒞 be a diagram, i.e. functor from small category ℬ.
(1) Consider the co-cones with fixed base 𝐼(ℬ) and a collection of flexible generatrices {𝛼𝑏 ∶ 𝐼(𝑏) → 𝑐}𝑏∈ℬ.

Whence there is an initial object, i.e. the generatrices {𝛼0
𝑏 ∶ 𝐼(𝑏) → 𝑐0}𝑏∈ℬ which any {𝛼𝑏 ∶ 𝐼(𝑏) →

𝑐}𝑏∈ℬ factors through in a unique way, we say 𝑐0 ∶= lim−→𝐼 (along with the generatrices) a colimit of 𝐼 .
(2) The limit is exactly the opposite statement for cones.
Once we view cones (co-cones) as degenerate cylinders, generatrices are exactly the natural transformations
between 𝐼 and the constant functor, i.e. {𝛼𝑏 ∶ 𝐼(𝑏) → 𝑐}𝑏∈ℬ ∈ (𝐼, 𝑐)Funct(ℬ,𝒞). The “∃ unique” statements
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are better replaced by representable functors, i.e.
(lim−→𝐼, 𝑐)𝒞 ≃ (𝐼, 𝑐)Funct(ℬ,𝒞), 𝜑 ↦ {𝜑 ∘ [𝐼(𝑏) → lim−→𝐼]}𝑏∈ℬ (1.9)

Hence, the adjoint triple writes (lim−→ ⊣ (⋅) ⊣ lim←−).
Example 1.14. Consider the basic symbols in a category: start of an arrow 𝑠, terminal of an arrow 𝑡, along
with id∙ establish the adjoint triple 𝑡 ⊣ id∙ ⊣ 𝑠, where id∙ sends 𝒞 to the morphism category 𝒞→. Such
adjoint triple also admits an explanation in language of limits, and so is its generation to simplicial categories.
Definition 1.15 (The preserving, reflecting, and creating). Let 𝐼 ∶ ℬ → 𝒞 be a small diagram, 𝐹 ∶ 𝒞 → 𝒟
be a functor. Set lim ∈ {lim−→, lim←−}.
(1) (preserve) Say 𝐹 preserves lim, whenever (𝑐 = lim 𝐼) ⟹ (𝐹(𝑐) = lim(𝐹 ∘ 𝐼));

It also means that 𝐹 commutes with the lim.
(2) (reflect) Say 𝐹 reflect lim, whenever 𝑐 ≠ lim 𝐼 ⇒ (𝐹(𝑐) ≠ lim(𝐹 ∘ 𝐼))

It also means that only lim maps to lim.
(3) (create) Say 𝐹 creates lim, whenever lim(𝐹 ∘ 𝐼) is always of the form 𝐹(lim 𝐼).
Example 1.16. Set lim = ker, 𝐹 ∶ 𝒞 → 𝒟 are additive functors between Abelian categories.
(1) Say 𝐹 preserves all kernels, whence 0 → 𝐾 → 𝑋 → 𝑌 in 𝒞 yields 0 → 𝐹(𝐾) → 𝐹(𝑋) → 𝐹(𝑌 ) in 𝒟;
(2) Say 𝐹 reflects all kernels, whence 0 → 𝐹(𝐾) → 𝐹(𝑋) → 𝐹(𝑌 ) in 𝒟 yields 0 → 𝐾 → 𝑋 → 𝑌 in 𝒞;
(3) Say 𝐹 creates all kernels, whence 0 → 𝑀 → 𝐹(𝑋) → 𝐹(𝑌 ) in 𝒟 is exactly the image of some

0 → 𝐾 → 𝑋 → 𝑌 (where 𝑀 = 𝐹(𝐾)).
Proposition 1.17. Here are some feasible propositions on limits.
(1) By commutativity of left adjoints (resp. right adjoints), colimits (resp. limits) commutes.
(2) By currying (and Yoneda lemma), the canonical isomorphism holds for locally small categories

(lim−→−, ⋅) ≃ lim←−(−, ⋅), (⋅, lim←−) ≃ lim←−(⋅,−). (1.10)
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(3) For inclusion of small diagrams 𝑖 ∶ 𝐼0 ↪ 𝐼 with the same set of vertices, the pre-composition
𝑖∗ ∶ Funct(𝐼, 𝒞) → Funct(𝐼0, 𝒞) creates all lim. An application: the lim of chain complexes is
constructed component-wise, wherein differentials are induced by universal property of limits.

(4) Fully faithful functors (functors forgets only propositions) reflects all lim.

Example 1.18 (Why limits and filtered colimits?). Limits and filtered colimits meets logical issues. For
most of the concrete categories, e.g. 𝖲𝖾𝗍𝗌, 𝖦𝗋𝗈𝗎𝗉, 𝖠𝖻, 𝖱𝗂𝗇𝗀,
(1) the limit object is a subset of the product object, wherein 𝑥 ∈ lim←−𝑋𝑖 usually understood as the collection

of elements in 𝑋𝑖 satisfying several requirements, or just a function in 𝐼 → 𝑋;
(2) the colimit object is a quotient subset of co-product object, wherein 𝑥 ∈ lim−→𝑋𝑖 understood as the

equivalence classes whose base set is a disjoint union ⨆𝑋𝑖;
(3) the filtered colimit is a special type of colimit, where one can distinguish whether finitely many objects

are in the same equivalent class without taking colimit object.

Slogan. Limits and filtered colimits are “logical” in our common sense.

Proposition 1.19 (exchanging lims). Let 𝐹 ∶ 𝐼 × 𝐽 → 𝒞 be a bi-functor from diagrams 𝐼 and 𝐽 .
(1) There is an canonical morphism lim−→𝑖∈𝐼

lim←−𝑗∈𝐽
𝐹(𝑖, 𝑗) → lim←−𝑗∈𝐽

lim−→𝑖∈𝐼
𝐹(𝑖, 𝑗).

The canonical morphism is more used for posets, known as the “min-max” inequality.
(2) If 𝐽 is finite, 𝐼 is filtered, and 𝒞 = 𝖲𝖾𝗍𝗌, then the canonical morphism is an isomorphism.

Remark 1.20. Assume that 𝒞 has filtered colimits, finite limits, and there is some functor 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌
preserving filtered colimits, finite limits, and reflect isomorphisms. In particular, assume 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌
provides an algebraic structure. In this case, filtered colimits commutes with finite limits.

Slogan. Filtered colimits is exact for algebraic structures.
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Remark 1.21. A categorical restatement of filtered colimits lim−→𝑖∈𝐼
𝑋𝑖 is that any finite subdiagram admits a

cocone (not necessary to be the colimit).
To be explicit, let 𝑋 ∶ 𝐼 → 𝒞 be a functor. For any finite subdiagram 𝐼0 ⊆ 𝐼 , the system 𝑋(𝐼0) factors
through some 𝑋(𝑖0).
Proposition 1.22. Let 𝐼 be a filtered system, and 𝑋 ∶ 𝐼 → 𝒞 is the functor to concrete category1.
Suppose that {𝜄𝑖 ∶ 𝑍 ↪ 𝑋𝑖}𝑖∈𝐼 is a set of monomorphisms, then 𝑓 ∶ 𝑍 ↪ lim−→𝑋 is also a monomorphism.
The simple observation: in order verify (𝑓(𝑧1) = 𝑓(𝑧2)) ⇒ (𝑧1 = 𝑧2), one can firstly find 𝑥𝑖 ∈ 𝑋𝑖
which maps to 𝑓(𝑧𝑖) in the system. Since the system generated by {𝑋1, 𝑋2} factors through some 𝑋0,
where 𝑓(𝑧1) = 𝑓(𝑧2) maps from the same element in 𝑋0. Since 𝑍 ↪ 𝑋0 is injective, 𝑧1 = 𝑧2 is clear.

Example 1.23. By experiences, there are some forgetful functor creates limits and filtered colimits (e.g.
groups to sets, compact Hausdorff spaces to topological spaces, Modules to their underlying Abelian groups,
Sheaves to presheaves over Noetherian sites).

Remark 1.24. We highlight that the limit/colimit of the empty diagram is the terminal/initial object.

1For formal and general statement, one can assume that 𝒞 has generator(s) 𝐺, where “𝑥 ∈ 𝑋” is formalised by a morphism 𝑥 ∈ (𝐺,𝑋)𝒞
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1.3. What are and Why Algebraic Structures?

Definition 1.25 (Forgetful functors from algebraic structures to sets). An algebraic structure is a category
over 𝖲𝖾𝗍𝗌 via a functor 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌, provides
(1) 𝑈 is faithful, i.e. if 𝑓, 𝑔 ∈ Mor(𝒞) are different morphisms, then 𝑈(𝑓) and 𝑈(𝑔) are different maps

between underlying sets;
In other words, 𝑈 does not forget the attachments “underlying set”.

(2) 𝑈 reflect isomorphisms, i.e. 𝑈(𝑓) is bijective between sets whenever 𝑓 is an isomorphism;
A trivial fact: functors preserves isomorphisms.

(3) 𝑈 commutes with limits and filtered colimits (if exists).
In other words: one can calculate sub-object of products, or equivalences classes in set level.

(4) For most of the cases, we requires 𝒞 to have limits and filtered colimits (indexed by sets).
Here 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌 (or simply 𝒞) is called an algebraic structure.

Example 1.26. Examples and non-examples.
• 𝖲𝖾𝗍𝗌∙ (sets with a base point) and 𝖦𝗋𝗉 are algebraic structures;
•𝖬𝗈𝗇 (monoid with unit) and 𝖱𝗂𝗇𝗀 are algebraic structures;
• 𝖠𝗅𝗀𝑘, 𝖢𝗈𝗆𝗆𝖠𝗅𝗀𝑘, 𝖫𝗂𝖾𝑘 are algebraic structures (𝑘 is commutative ring);
•𝖬𝗈𝖽𝑅, and in particular 𝖠𝖻, are algebraic structures.

Recall the definition of algebraic structures. The following non-examples are worth mentioning.
• 𝖳𝗈𝗉 does not satisfies (2): let (𝑋, 𝜏1) and (𝑋, 𝜏2) be topological spaces with 𝜏1 ⊆ 𝜏2. The trivial map
(𝑋, 𝜏2) → (𝑋, 𝜏1) is bijective on sets, yet not always the homeomorphism.

• 𝖱𝗂𝗇𝗀op does not satisfies (3), since 𝑈 does not preserves colimits (e.g., coker(ℤ ↪ ℚ)) in general.

Proposition 1.27 (Major Properties of Alegbraic Structures). Let 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌 be an algebraic structure.
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(1) 𝑈(−) reflects monomorphism, epimorphism, isomorphisms, and retractions.
The key observation is that 𝑈(−) reflects the (left or right) cancelling properties.

(2) 𝑈(−) preserves isomorphisms, monomorphisms, yet not all epimorphisms.
Functors preserves isomorphisms. ℤ → ℚ is epimorphism yet not surjection.
For monomorphisms, notice that 𝑓 ∶ 𝑋 → 𝑌 is a monomorphism whenever the induced map

𝑋 ×𝑌 𝑋 → 𝑋 is an isomorphism, and 𝑋 ×𝑌 𝑋 is a kind of limit.

Proposition 1.28 (sub-codomain). We see that 𝑈(−) preserves and reflects pull-back squares. Since

𝑋 𝑋 ×𝑍 𝑌 𝑋

𝑌 𝑍 𝑌 𝑍
𝑓

split epi.

PB 𝑓

𝑖 𝑖

, (1.11)

that is, 𝑋 ×𝑍 𝑌 → 𝑋 is an split epimorphism whenever 𝑓 factor through 𝑖. We see that
(1) If 𝒞 has pull-backs, then 𝑈(−) reflects all factorisation conditions.
(2) When 𝑖 is an monomorphism, 𝑋 ×𝑍 𝑌 ≃ 𝑌 . Hence, 𝑓 ∶ 𝑋 → 𝑍 factor through the sub-object 𝑌 ,

whenever im(𝑓) ⊆ 𝑌 . It illustrates that one can take the sub-codomain if necessary.
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2. Sheaves on Algebraic Structures
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2.1. Presheaves over Algebraic Structures.

Definition 2.1 (The category of open sets). Let (𝑋, 𝜏) be the usual topological space. Define the category
of open sets 𝖮𝗉𝖾𝗇(𝑋) with 𝖮𝖻(𝖮𝗉𝖾𝗇(𝑋)) = 𝜏 , and

(𝑈, 𝑉 )𝖮𝗉𝖾𝗇(𝑋) = {𝑖𝑉 ,𝑈 𝑈 ⊆ 𝑉 ,
∅ 𝑈 ⊈ 𝑉 . (2.1)

𝖮𝗉𝖾𝗇(𝑋) is also a modular lattice closed under finite ∧ and arbitrary ∨.

Remark 2.2. Continuous map 𝑓 ∶ 𝑋 → 𝑌 gives 𝑓−1 ∶ 𝖮𝗉𝖾𝗇(𝑌 ) → 𝖮𝗉𝖾𝗇(𝑋).
By observation, 𝑓−1 ∶ 𝖲𝗎𝖻𝗌𝖾𝗍(𝑌 ) → 𝖲𝗎𝖻𝗌𝖾𝗍(𝑋) admits
(1) a left adjoint 𝑓 ∶ 𝖲𝗎𝖻𝗌𝖾𝗍(𝑋) → 𝖲𝗎𝖻𝗌𝖾𝗍(𝑌 ), i.e. 𝑓(𝐴) ⊆ 𝐵 ⟺ 𝐴 ⊆ 𝑓−1(𝐵);
(2) a right adjoint 𝑐 ∘ 𝑓 ∘ 𝑐 ∶ 𝖲𝗎𝖻𝗌𝖾𝗍(𝑋) → 𝖲𝗎𝖻𝗌𝖾𝗍(𝑌 ), i.e. 𝑓(𝐴𝑐) ⊆ 𝐵𝑐 ⟺ 𝐴𝑐 ⊆ 𝑓−1(𝐵𝑐).
By since left (resp. right) adjunction commutes with colimit (resp. limit), one has

𝑓(⋃
𝑖∈𝐼

𝑈𝑖) = ⋃
𝑖∈𝐼

𝑓(𝑈𝑖), 𝑓(⋂
𝑖∈𝐼

𝑈𝑖)⊆ ⋂
𝑖∈𝐼

𝑓(𝑈𝑖), (2.2)

𝑓−1(⋃
𝑖∈𝐼

𝑈𝑖) = ⋃
𝑖∈𝐼

𝑓−1(𝑈𝑖), 𝑓−1(⋂
𝑖∈𝐼

𝑈𝑖) = ⋂
𝑖∈𝐼

𝑓−1(𝑈𝑖). (2.3)

Some issues should be further discussed in the study of open and closed embedding.

Definition 2.3 (Presheaves). Given 𝖮𝗉𝖾𝗇(𝑋), the category of pre-sheaves is exactly the functor category
PSh(𝑋) ∶= Funct(𝖮𝗉𝖾𝗇(𝑋)op, 𝖲𝖾𝗍𝗌). (2.4)

An element 𝑠 ∈ 𝐹(𝑉 ) =∶ Γ(𝑉 , 𝐹) is called a section on 𝑉 . The morphisms are
𝐹(𝑖𝑉 ,𝑊 ) ∶= Res𝑊,𝑉 ∶ 𝐹 (𝑉 ) → 𝐹(𝑊). (2.5)

Remark 2.4. In our convention, the morphisms are indexed by 𝑓𝑗,𝑖 ∶ 𝐴𝑖 → 𝐴𝑗.
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Definition 2.5 (Presheaves in Algebraic Structures). Let 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌 be an algebraic structure. Set
PSh𝒞(𝑋) ∶= Funct(𝖮𝗉𝖾𝗇(𝑋)op, 𝒞). Clearly, the composition gives 𝑈 ∘ (−) ∶ PSh𝒞(𝑋) → PSh(𝑋).

Definition 2.6 (Direct Image). For continuous map 𝑓 ∶ 𝑋 → 𝑌 , one has 𝑓−1 ∶ 𝖮𝗉𝖾𝗇(𝑌 ) → 𝖮𝗉𝖾𝗇(𝑋).
Direct image is defined as the pre-composition of functor

𝑓∗ ∶ PSh𝒞(𝑋) → PSh𝒞(𝑌 ), 𝐹 ↦ 𝐹 ∘ 𝑓−1. (2.6)

Remark 2.7. The composition is covariant: (𝑓 ∘ 𝑔)∗𝐹 = 𝐹 ∘ (𝑓 ∘ 𝑔)−1 = 𝐹 ∘ 𝑔−1 ∘ 𝑓−1 = 𝑓∗𝑔∗𝐹 .

Definition 2.8 (Inverse image of presheaves). 𝑓𝑝 ∶ PSh𝒞(𝑌 ) → PSh𝒞(𝑋) is defined as the left adjoint of
direct image 𝑓∗. For arbitrary 𝐹 ∈ PSh𝒞(𝑋) and 𝐺 ∈ PSh𝒞(𝑌 ), one has

(𝐺, 𝑓∗𝐹)PSh𝒞(𝑌 ) ≃ {𝐺(𝑉 ) → 𝐹(𝑓−1(𝑉 ))}𝑉 ∈𝖮𝗉𝖾𝗇(𝑌 ) (2.7)

≃ {𝐺(𝑉 ) → 𝐹(𝑈) ∣ 𝑈 ⊂ 𝑓−1(𝑉 )}𝑈∈𝖮𝗉𝖾𝗇(𝑋),𝑉 ∈𝖮𝗉𝖾𝗇(𝑌 ) (2.8)

(by 𝑓 ⊣ 𝑓−1) ≃ {𝐺(𝑉 ) → 𝐹(𝑈) ∣ 𝑓(𝑈) ⊂ 𝑉 }𝑈∈𝖮𝗉𝖾𝗇(𝑋),𝑉 ∈𝖮𝗉𝖾𝗇(𝑌 ) (2.9)

≃ ⎛⎜⎜
⎝

lim−→
𝑓(•)⊂𝑉

𝐺(𝑉 ), 𝐹(•)⎞⎟⎟
⎠PSh𝒞(𝑋)

=∶ (𝑓𝑝𝐺,𝐹)PSh𝒞(𝑋). (2.10)

The final colimit is filtered, thus exists in 𝒞, and commutes with 𝑈 .

Remark 2.9. By adjunction, the composition is contravariant (𝑔 ∘ 𝑓)𝑝 = 𝑓𝑝 ∘ 𝑔𝑝.

Slogan. We can calculate both 𝑓∗ and 𝑓𝑝 on sets.
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Example 2.10 (Analysis of 𝑓𝑝 ⊣ 𝑓∗). The unit of the adjunction is idPSh𝒞(𝑌 ) → 𝑓∗𝑓𝑝. For any 𝐺 ∈
PSh𝒞(𝑌 ) and 𝑉 ∈ 𝖮𝗉𝖾𝗇(𝑌 ), one has

(𝑓∗𝑓𝑝𝐺)(𝑉 ) = (𝑓𝑝𝐺)(𝑓−1(𝑉 )) = lim−→
𝑓(𝑓−1(𝑉 ))⊂𝑊

𝐺(𝑊). (2.11)

If we further assume that 𝑓 is an surjection, one has 𝑓(𝑓−1(𝑉 )) = 𝑉 , and thus 𝜂 is an isomorphism.
The counit is 𝑓𝑝𝑓∗ → idPSh𝒞(𝑋). For any 𝐹 ∈ PSh𝒞(𝑋) and 𝑈 ∈ 𝖮𝗉𝖾𝗇(𝑋), one has

(𝑓𝑝𝑓∗𝐹)(𝑈) = lim−→
𝑓(𝑈)⊂𝑉

(𝑓∗𝐹)(𝑉 ) = lim−→
𝑈⊂𝑓−1(𝑉 )

𝐹(𝑓−1(𝑉 ))
finer system
−−−−−−−→ lim−→

𝑈⊂𝑊
𝐹(𝑊) = 𝐹(𝑈). (2.12)

Whenever 𝑓−1 ∶ 𝖮𝗉𝖾𝗇(𝑌 ) → 𝖮𝗉𝖾𝗇(𝑋) is a surjection. The counit is an isomorphism.

Example 2.11 (Stalks, and Skyscraper sheaves). Let 𝑓 ∶ {∗} ≃ {𝑥} ⊆ 𝑋 be continuos map.
The stalk functor is exactly 𝑓𝑝 ∶ PSh𝒞(𝑋) → PSh𝒞({∗}) ≃ 𝒞, i.e., for any 𝐹 ∈ PSh𝒞(𝑋),

(𝑓𝑝𝐹)({∗}) = lim−→
𝑓(∗)⊆𝑊

𝐹(𝑊) = lim−→
𝑥∈𝑊

𝐹(𝑊) = 𝐹𝑥. (2.13)

The pull-back presheaf 𝑓∗ is called skyscraper presheaf. Let 𝐴 ∈ 𝒞 be an object in algebraic structure, then

(𝑓∗𝐴)(𝑈) = 𝐴(𝑓−1(𝑈)) = {𝐴 𝑥 ∈ 𝑈,
⊤ (termianl object) 𝑥 ∉ 𝑈. (2.14)

Notation. We usually assume that 𝐹(∅) = ⊤ (terminal) for presheaves. It is harmless to deal with presheaves
without this property (one has to make this “assumption” for sheaves!).

Remark 2.12. We identify the above map with its image, i.e. 𝑥 ∶ {∗} → 𝑋, ∗ ↦ 𝑥.
(1) The unit sends 𝐹 to the skyscraper sheaf at 𝑥 with value 𝐹𝑥.
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(2) The counit is tautological, since 𝑥−1 is an surjection.
(3) If we introduce another point 𝑦 ∈ 𝑋, then the “merged” counit is

𝑦𝑝𝑥∗𝐴 = lim−→
𝑦∈𝑊

𝐴whether 𝑥∈𝑊 = 𝐴whether 𝑦∈{𝑥} = 𝐴whether {𝑦}⊆{𝑥}. (2.15)

𝑦𝑝𝑥∗ ∶ 𝒞 → 𝒞 is identical whenever {𝑦} ⊆ {𝑥}; and send any object to ∅ otherwise.
We say 𝑦 is a specialisation of 𝑥 (resp. 𝑥 is a generalisation of 𝑦) whence {𝑦} ⊆ {𝑥}

Example 2.13 (Global Sections, Constant Presheaf). Let 𝑝 ∶ 𝑋 ↠ {∗} be the canonical surjection.
The global section Γ(𝑋,𝐹) ∶= 𝐹(𝑋) coincides 𝑝∗𝐹 , i.e., (𝑝∗𝐹)({∗}) = 𝐹(𝑋).
The constant presheaf 𝐴 is defined as inverse image 𝑝𝑝𝐴 ∈ PSh𝒞(𝑋), i.e,

(𝑝𝑝𝐴)(𝑈) = lim−→
𝑈⊆𝑝−1(∗)

𝐴(∗) = {𝐴 𝑈 ≠ ∅,
⊤ 𝑌 = ∅. (2.16)

Remark 2.14. The unit of 𝑝 is identical, the counit is to take constant sheaf with respect to the global section.
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2.2. Sheafification (General Approach).

Example 2.15 (2 bad examples of presheaves). Let 𝐵𝐴 be functions of type 𝐴 → 𝐵. By practice,
(1) when a function is defined on every single point in 𝐴, it belongs to 𝐵𝐴;
(2) a function is uniquely determined by its values on every single point.
Let 𝑋 be a topological space which is not very simple, e.g. ℝ with standard topology.
(1) Let 𝐹 be the presheaf of bounded continuous functions, i.e. sending each open set 𝑈 to 𝐶0

𝑏 (𝑈). For
𝑈 ⊆ 𝑉 , Res𝑈,𝑉 is the usual restriction map 𝐶0

𝑏 (𝑉 ) → 𝐶0
𝑏 (𝑈), 𝑓 ↦ 𝑓|𝑈 .

Why it is bad? Any unbounded continuous function 𝑓 ∈ 𝐶0(ℝ) is glued by a collection sections, which
agree on their intersections; however, 𝑓 ∉ 𝐹(ℝ). Some sections should be added.

(2) Let 𝐹 be the presheaf taking value 0 on any proper open subset of ℝ, while 𝐹(ℝ) ≠ 0.
Why it is bad? For any distinct 𝑠, 𝑡 ∈ 𝐹(ℝ), the sections agree on any proper subset of ℝ. There is no

need to distinguish them. Some sections should be removed.

Definition 2.16 (Two criterions of being sheaves). In contrast to the “bad examples”, we say 𝐹 ∈ PSh(𝑋)
is a sheaf, provided the following two criteria.
(1) (unity criterion) Let 𝑈 be an open set with open cover {𝑈𝑖}𝑖∈𝐼 . We assume 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖 for simplicity.

The unity criterion says that
𝜄 ∶ 𝐹 (𝑈) → ∏

𝑖∈𝐼
𝐹(𝑈𝑖), 𝑠 ↦ (Res𝑈𝑖,𝑈(𝑠))𝑖∈𝐼 (2.17)

is always a monomorphism for arbitrary choice of 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖. In short, a global section is uniquely
determined by restrictions via arbitrary chosen open cover of it domain.

(2) (glueing criterion) Let 𝑈 be an open set with open cover 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖. The glueing says that, if for any
pair (𝑖, 𝑗) ∈ 𝐼 × 𝐼 , there is a (𝑠𝑖 ∈ 𝐹(𝑈𝑖))𝑖∈𝐼 such that Res𝑈𝑖∩𝑈𝑗,𝑈𝑖(𝑠𝑖) = Res𝑈𝑖∩𝑈𝑗,𝑈𝑗(𝑠𝑗), then there
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is a unique 𝑠 ∈ 𝐹(𝑈) such that 𝜄(𝑠) = (𝑠𝑖)𝑖∈𝐼 . In language of category, the following is an equaliser of
parallel lines:

𝐹(𝑈) ∏𝑘∈𝐼 𝐹(𝑈𝑘) ∏(𝑖,𝑗)∈𝐼×𝐼 𝐹(𝑈𝑖 ∩ 𝑈𝑗)
(Res𝑈𝑘,𝑈)𝑘∈𝐼

∏𝑘∈𝐼(∏𝑗∈𝐼 Res𝑈𝑘∩𝑈𝑗,𝑈𝑘)

∏𝑘∈𝐼(∏𝑖∈𝐼 Res𝑈𝑖∩𝑈𝑘,𝑈𝑘)
. (2.18)

In short, a collection of compatible sections glue to a global section.
Definition 2.17 (Category of sheaf). Say 𝐹 ∈ PSh𝒞(𝑋) is a sheaf, whenever the above two criteria holds.
Write 𝐹 ∈ Sh𝒞(𝑋). Since sheaves are presheaves with certain properties, the forgetful functor, the morphisms
between sheaves are just the morphisms between underlying presheaves, i.e. Sh𝒞(𝑋) ↪ PSh𝒞(𝑋) is fully
faithful.
Remark 2.18. Since 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌 commutes with products and reflect the pull-back diagrams, 𝐹 ∈ PSh𝒞(𝑋)
is a sheaf whenever 𝑈 ∘ 𝐹 ∈ PSh𝖲𝖾𝗍𝗌(𝑋).
Remark 2.19. In additive cases, the two criteria jointly establish the left exact sequence

0 → 𝐹(𝑈)⎵
unity criterion

(Res𝑈𝑘,𝑈)𝑘∈𝐼−−−−−−−−→ ∏
𝑘∈𝐼

𝐹(𝑈𝑘)
⎵⎵⎵⎵

gluing criterion

Up - Down
−−−−−−−→ ∏

(𝑖,𝑗)∈𝐼×𝐼
𝐹(𝑈𝑖 ∩ 𝑈𝑗). (2.19)

For each 𝐴⎵
𝑃

, one has 𝑃 ⟺ exactness at 𝐴.

Remark 2.20. (Very important) 𝐹(∅) = 𝐹(lim←−∅
⋅) = lim←−∅

𝐹(⋅) = ⊤ is the terminal object in the category.

Definition 2.21 (Topological Basis). Say ℬ ⊆ 𝜏 is a basis of topology space (𝑋, 𝜏), whenever
(1) any 𝑥 ∈ 𝑋 admits a cover 𝑥 ∈ 𝑈 ∈ ℬ;
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(2) for any 𝑈1, 𝑈2 ∈ 𝒞 with non-empty intersection 𝑈1 ∩𝑈2 ≠ ∅, one has 𝑈3 ∈ ℬ such that 𝑈3 ⊆ 𝑈1 ∩𝑈2.

Remark 2.22. Any 𝑈 ∈ 𝜏 admits a ℬ-cover {𝑈𝑖 ∈ ℬ}𝑖∈𝐼 such that 𝑈 = ⋃𝑖∈𝐼 𝑈𝑖. For categorical convention,
⋃∅ = ∅ and ⋂∅ = 𝑋. Topological basis provides a simpler cofinal system: For any 𝑥, we have the cofinal
systems {𝑈 ∈ ℬ ∣ 𝑥 ∈ 𝑈} and {𝑈 ∈ 𝜏 ∣ 𝑥 ∈ 𝑈}.

Proposition 2.23 (Sheaf condition for topological basis). Let ℬ be the basis of (𝑋, 𝜏). The presheaf
𝐹 ∈ PSh𝒞(𝑋) is a sheaf, whenever the following two criteria holds
(1) (unity criterion for topological basis) For any 𝑈 ∈ 𝜏 , and any open covering 𝑈 = ⋃𝑖∈𝐼 𝐵𝑖, such

that 𝐵𝑖 ∩ 𝐵𝑗 = ⋂𝑘∈𝐼𝑖,𝑗 𝐵𝑖,𝑗,𝑘, whenever there is a collection of sections {𝑠𝑖 ∈ 𝐹(𝐵𝑖)}𝑖∈𝐼 satisfying
the following 3-cycle equality

(𝑠𝑖)|𝐵𝑖,𝑗,𝑘 = (𝑠𝑗)|𝐵𝑖,𝑗,𝑘 (∀𝑘 ∈ 𝐼𝑖,𝑗), (2.20)
then there exists a unique global section 𝑠 ∈ 𝐹(𝑈) such that 𝑠|𝐵𝑖 = 𝑠𝑖

Slogan. Sh𝒞(𝑋, 𝜏) ≃ Sh𝒞(𝑋,ℬ) is an equivalence of categories.

Definition 2.24 (Seperable conditions). Let 𝐹 ∈ PSh𝒞(𝑋) be a presheaf.
(1) Say 𝐹 is separable on level of open sets, whenever

𝐹(𝑈) ↪ ∏
𝑖∈𝐼

𝐹(𝑈𝑖), 𝑠 ↦ (Res𝑈𝑖,𝑈(𝑠))𝑖∈𝐼 (2.21)

is an injection for any open cover 𝑈 = ⋃𝑖∈𝐼 𝐹(𝑈).
(2) Say 𝐹 is separable on stalk level, whenever

𝐹(𝑈) ↪ ∏
𝑝∈𝑈

𝐹𝑝, 𝑠 ↦ ([𝑠]𝑝, image of the stalk at 𝑝)𝑝∈𝑈 (2.22)

is an injection for any open subset 𝑈 .
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Remark 2.25. The sheafification over topological spaces is usually done on the stalk level, whereas the sheafi-
fication over sites (“the point-free topology” defined by axioms of open sets) is done on open set levels.
Definition 2.26 (0-th Cech cohomololy). Unwinding the definition of Cech cohomology in general, we define

𝐻0(𝒰, 𝐹) ∶= {(𝑠𝑖)𝑖∈𝐼 ∈ ∏
𝑖∈𝐼

𝐹(𝑈𝑖) ∣ 𝑠𝑖|𝑈𝑖∩𝑈𝑗 = 𝑠𝑗|𝑈𝑖∩𝑈𝑗}, (2.23)

which reads as the zeroth Cech cohomology of presheaf 𝐹 with respect to the open covering 𝒰(𝑈; {𝑈𝑖}𝑖∈𝐼).
Proposition 2.27 (Restatement of sheaf condition). Consider the canonical injection

𝐹(𝑈) → 𝐻0(𝒰(𝑈; {𝑈𝑖}𝑖∈𝐼), 𝐹 ), 𝑠 ↦ (Res𝑈𝑖,𝑈(𝑠))𝑖∈𝐼
. (2.24)

By definition, the morphism is an isomorphism for any 𝒰 whenever 𝐹 is a sheaf.
Definition 2.28 (The (−)+ functor). The zeroth cech cohomology measures “how many compatible sections
there are”. Since open sets admits finite intersection, the poset of open covering of 𝑈 with “refinement” as its
partial order, denoted by 𝒥𝑈 , admits a filtered structure. Set

(−)+ ∶ PSh𝒞(𝑋) → PSh𝒞(𝑋), 𝐹 ↦ [𝐹+ ∶ 𝑈 ↦ lim−→
𝒥op
𝑈

𝐻0(𝒰, 𝐹)]. (2.25)

The definition of functor (−)+ is determined by only the structure of 𝖮𝗉𝖾𝗇(𝑋), thus is functorial.
Remark 2.29. There is an amazing lemma one may deduce in the verification. Recall that the bi-functor
𝐻0(−,−) defined on Covering(𝑋)op × PSh𝒞(𝑋). Set the forgetful functor 𝑅 ∶ Covering(𝑋) → 𝑋, i.e. the
projection 𝒰(𝑈; {𝑈𝑖}𝑖∈𝐼) → 𝑈 (forget attachments!). Observation: 𝐻0 defines on (im2(𝑅))op × PSh𝒞(𝑋).
That is, for any morphism of the covering Φ(𝜑;−) ∶ 𝒰(𝑈;−) → 𝒱(𝑈;−), 𝐻(Φ,−) depends on 𝐻(𝜑,−).
Proposition 2.30. (−)+ is defined by filtered colimits, hence commutes with colimits and finite limits.



Sheaves on Algebraic Structures» Sheafification (General Approach) Page 20

Remark 2.31. In particular, (−)+ is an exact functor.

Example 2.32. Functorially, (−)+ makes every presheaf separable on level of open sets.
To see that 𝐹+(−) is separable on on level of open sets, we take any two section 𝑠, 𝑡 ∈ 𝐹+(𝑈) factoring
through some 𝒰𝑠, 𝒰𝑠 ∈ 𝒥𝑈 , respectively. Suppose that (𝑠) and (𝑡) agrees in ∏𝑘∈𝐾 𝐹+(𝑈𝑘). The three
coverings {𝑈𝑘}, 𝒰𝑠 and 𝒰𝑠 admits a common refinement (here the filtered structure occurs), 𝑠 coincides 𝑡 in
𝐻0(𝒰common refinement, 𝐹 ). Hence, 𝑠 = 𝑡.
Proposition 2.33. If 𝐺 is a presheaf separable on level of open sets, then 𝐺 → 𝐺+ is induced by
monomorphisms {𝐺 ↪ 𝐻(𝒰,𝐺)}𝒰∈Coverings. Since 𝒰’s forms a filtered system and monomorphisms
coincides injections of sets, the induced map 𝐺 ↪ 𝐺+ is a monomorphism.
Moreover, 𝐺+ is a sheaf. It suffices to show the monomorphism 𝐺+(𝑈) → 𝐻0(𝒰,𝐺+) for any 𝒰.
(1) (The criterion of glueing) The surjective part follows from the definition.
(2) (The criterion of unity) The injective part follows from that filter colimit is exact on sets, while the

underlying functor 𝑈 commutes with filtered colimits and reflect monomorphisms.

Example 2.34. We shall show in a trivial example that how 𝐹 → 𝐹+ → 𝐹++ =∶ 𝐹#2 works. Let (𝑋, 𝜏)
be a topological space with 𝑋 = {𝑎, 𝑏, 𝑐} and non-empty open sets 𝑎 𝑐 𝑒 . Set

𝐹(∅) = 0, 𝐹( 𝑐 ) = 𝐹( 𝑒 ) = ℚ, 𝐹(other open sets) = ℤ. (2.26)
Separating the sheaves on level of open sets, one has

𝐹+(∅) = 0, 𝐹+( 𝑐 ) = 𝐹+( 𝑒 ) = ℚ, = 𝐹+( 𝑐 𝑒 ) = ℚ ⊕ ℚ, 𝐹(other open sets) = ℤ. (2.27)
The final step of sheafification gives

𝐹#(∅) = 0, 𝐹#( 𝑐 ) = 𝐹#( 𝑒 ) = ℚ, 𝐹#(other open sets) = ℚ ⊕ ℚ. (2.28)

2The notation come from +&+ ⇒⋕
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2.3. Properties of Sheafification.

Proposition 2.35. Sheafification is functorial construction by applying (−)+ twice. When 𝐹 is already
a sheaf, it follows from 𝐹(𝑈) = 𝐻0(𝒰, 𝐹) that 𝐹 = 𝐹+, and thus 𝐹# = 𝐹 .
Hence, let 𝐺 be a presheaf and 𝐹 is any sheaf, one has (𝐺#, 𝐹 ) ≃ (𝐺, 𝐹) via pre-composing 𝐺 → 𝐺#.

Slogan. The sheafification is a left adjoint of inclusion Sh𝒞(𝑋) → PSh𝒞(𝑋).
Proposition 2.36 (Sheaves and limits). The right adjoint of (−)# creates all small limits.
(1) (Preserving) Right adjoint functor preserves all limits.
(2) (Reflecting) Fully faithful inclusion reflects all limits (and colimits).
(3) (Creating) Let 𝐹 ∶ 𝐼 → Sh𝒞(𝑋) be a diagram of sheaves. We shall show that the limit of 𝐹 in

PSh𝒞(𝑋) is exactly the limits in the sheaves category. Let 𝐺 ∈ Sh𝒞(𝑋) be any sheaf, one has
(𝐺, lim←−𝐹)PSh ≃ lim←−(𝐺,𝐹)PSh ≃ lim←−(𝐺,𝐹)Sh. (2.29)

It suffices to show that lim←−𝐹 is indeed a sheaf. Recall that our two criteria correspond to equalisers
and monomorphisms which lim←− commute with. Hence, lim←−𝐹 satisfies sheaf conditions.

Slogan. Limits of sheaves are just limits of their underlying presheaves, as what “creating” exactly means.

Remark 2.37. The right adjoint of (−)# reflects all colimits (fully-faithfulness), but does not preserves colimits
in general. By adjunction, we can only deduce that

lim−→
𝑖∈𝐼

Sh𝐹𝑖 ≃ ⎛⎜
⎝

lim−→
𝑖∈𝐼

PSh𝐹𝑖⎞⎟
⎠

#
(2.30)
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For non-examples that lim−→𝑖∈𝐼
PSh𝐹𝑖 is not a sheaf, consider the following exact sequence of sheaves

0 → 2𝜋𝑖ℤℂ∗⎵⎵⎵
constant Sh on ℂ∗

𝜄↪ 𝒪Hol
ℂ∗⎵

holomorphic functions

exp(−)
−−−−→ 𝒪Hol,Inv

ℂ∗⎵⎵⎵
invertible holomorphic functions

→ 0. (2.31)

Here exp(−) is an epimorphism but not a surjection of presheaves. Hence, cokerPSh(𝜄) is not a sheaf.

Proposition 2.38. It the structure 𝒞 is Abelian, then so is Sh𝒞(𝑋). The additivity of functors,
categorical kernel and cokernels are clear. The key part is to show that im ≃ coim.
For morphism of sheaves 𝜑 ∶ 𝐹 → 𝐺, one has

imSh(𝜑) = ker(𝐺 → (coker(𝜑))#), coimSh(𝜑) = (coker(ker𝜑))#. (2.32)
Apply sheafification functor to the short exact sequence

0 → ker(cokerPSh𝜑)⎵⎵⎵⎵⎵⎵
=cokerPSh(ker𝜑)

→ 𝐺 → coker(𝜑) → 0 (2.33)

One see that coimSh(𝜑) is the kernel of 𝐺 → coker(𝜑)#. Hence, im = coim for Abelian categories.

Remark 2.39. Abelian algebraic structures 𝒞 have limits (AB3) and filtered colimits are exact (AB5).
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3. Topological Six Functors
3.1. Direct image (−)∗ and inverse image (−)−1.

Example 3.1 (Easy sheafification). In retrospect to our general approach of sheafification, we firstly check
separable conditions on level of open sets, then take the filtered colimits of 𝐻0 as “the finest open cover”.
• What if we check separable conditions on level of stalks, which is already a filtered colimits?

It is somehow convenient to separate a section into “glueing atoms” with respect to each 𝑝 ∈ 𝑋. Set

Π ∶ PSh𝒞(𝑋) → PSh𝒞(𝑋), 𝐹 ↦ ⎡⎢
⎣
Π𝐹 ∶ 𝑉 ↦ ∏

𝑝∈𝑉
𝐹𝑝, 𝑠 ↦ ([𝑠]𝑝)𝑝∈𝑉⎤⎥

⎦
. (3.1)

The functor Π sends every presheaf to what takes germs (glueing atoms) of the sections. For instance,
(1) our first bad example is 𝐶0

𝑏 (−), where no information is lost in (Π𝐶0
𝑏 )(−);

(2) our second bad example sends every 𝑉 ⊊ ℝ to ⊤ while 𝐹(ℝ) ≠ ⊤, (Π𝐹) = ⊤ vanishes everywhere.
According to the previous definition, 𝐹 is separable on level of stalks whence 𝐹 ↪ Π𝐹 is an injection.
Now we claim that the “easy sheafification” 𝐹(−)# is constructed by taking functorial subsets in Π𝐹 ;
alternatively, we can deal with the construction from what we have already deduced, that is
• Π𝐹 is a sheaf, and the induced morphism 𝐹(−)# → Π𝐹 is an injection.

One can either verify it with our two criteria, or simply deduce from the filtered system of injections.

Remark 3.2.Π is defined with filtered colimits, thus is exact.

Proposition 3.3. Let 𝜑 ∶ 𝐹 → 𝐺 be a morphism between sheaves. The following are equivalent.
(1) 𝜑 is a monomorphism (isomorphism) of presheaves,
(2) 𝜑𝑉 ∶ 𝐹 (𝑉 ) → 𝑉 (𝑉 ) is a monomorphism (isomorphism) for any open set 𝑉 ,
(3) 𝜑 is a monomorphism (isomorphism) of sheaves,
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(4) 𝜑𝑥 ∶ 𝐹𝑥 → 𝐺𝑥 is a monomorphism (isomorphism) for any point 𝑝.
For epimorphisms, (1) ⟺ (2)⇒(3) ⟺ (4).
(1) ⟺ (2) is due to the elementary properties of functor categories.
(3) ⟺ (4) follows from the exactness of filtered colimits.
(2) ⇒ (3) follows from the fact that 𝑈 ∶ 𝒞 → 𝖲𝖾𝗍𝗌 reflects cancelling rules and isomorphisms.
For monomorphism, (3) ⇒ (2) is due to “𝑖 ∶ Sh ↪ PSh creates all small limits”.
For isomorphisms, (3) ⇒ (2) is due to fully-faithfulness of 𝑖.
Remark 3.4. Nevertheless, we can restate (4) for epimorphisms on level of (−)+, that is,
• for any 𝑠 ∈ 𝐺(𝑉 ), there exists 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 such that every Res𝑉𝑖,𝑉 (𝑠) ∈ 𝐺(𝑉𝑖) is in the image of 𝜑𝑉𝑖.

Definition 3.5 (Direct image for sheaves). Let 𝑓 ∶ 𝑋 → 𝑌 be continuous. The direct image of sheaves is
exactly the direct image of the underlying sheaf, that is,

𝑓∗ ∶ Sh𝒞(𝑋) → Sh𝒞(𝑌 ), 𝐹 ↦ [𝑓∗𝐹 ∶ 𝑉∈𝖮𝗉𝖾𝗇(𝑌 ) ↦ 𝐹(𝑓−1(𝑉 ))]. (3.2)

Remark 3.6. The direct image functor indeed sends sheaves to sheaves, since 𝑓−1 is an exact functor.
The direct image is calculated as presheaves, since 𝑓∗ is an right adjoint commuting with 𝑖.
Definition 3.7 (Inverse image for sheaves). Let 𝑓 ∶ 𝑋 → 𝑌 be continuous, where 𝑓𝑝 is the inverse image of
presheaves. By adjunction, 𝑓−1 ∶ Sh𝒞(𝑌 ) → Sh𝒞(𝑋) is defined to be the left adjoint of 𝑓∗, i.e.

(𝑓−1(−), ⋅)Sh(𝑋) ∶= ((𝑓𝑝)#(−), ⋅)Sh(𝑋) ≃ (𝑓𝑝(−), 𝑖(⋅))PSh(𝑋) ≃ (−, 𝑓∗𝑖(⋅))PSh(𝑌 ) ≃ (−, 𝑓∗(⋅))Sh(𝑌 )
(3.3)

Slogan. Stalks to points is what inverse images to open sets. Inverse images are “generalised stalks”.
Example 3.8. Recall that,
(1) for 𝑝 ∶ {∗} ↪ 𝑋, the adjunction (𝑝−1 ⊣ 𝑝∗) refers to stalk and skyscraper sheaf at 𝑝 ∈ 𝑋;
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(2) for 𝜋 ∶ 𝑋 ↠ {∗}, the adjunction (𝜋−1 ⊣ 𝜋∗) refers to global section and constant sheaf.

Remark 3.9. By definition, constant sheaves are sheafification of constant presheaves, equivalently,
(1) a constant sheaf 𝐴 is exactly the sheaf 𝐹 with (𝐹)𝑥 ≡ 𝐴, or
(2) a constant sheaf 𝐴 is exactly the sheaf 𝐹 with Γ(𝑈, 𝐹) = 𝐴number of connected components of 𝑈 .

Proposition 3.10 (Exactness of 𝑓−1). 𝑓−1 is an exact functor, since it is defined by purely filtered
colimit (𝑓𝑝-part) and sheafification ((𝑓𝑝 → 𝑓−1)-part).
A trick: (𝑓−1𝐹)𝑝 = 𝑝−1𝑓−1𝐹 = (𝑓(𝑝))−1𝐹 = (𝐹)𝑓(𝑝).
Example 3.11. Direct image is not always left exact: just think about the right derivates of global sections.
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3.2. Triple from open immersion: 𝑗! ⊣ 𝑗−1 ⊣ 𝑗∗.

Definition 3.12. Say 𝑗 ∶ 𝑈 → 𝑋 is an open immersion, whenever 𝑗 factors through an open subset of 𝑋
via an isomorphism. One can simply view 𝑗 as an inclusion of open subset when there is no ambiguity.

Example 3.13 (𝑗𝑝 ⊣ 𝑗∗). The direct image 𝑗∗ ∶ PSh𝒞(𝑈) → PSh𝒞(𝑋) sends 𝐹 to

(𝑗∗𝐹) ∶ 𝑉 ↦ 𝐹(𝑗−1(𝑉 )) = 𝐹(𝑈 ∩ 𝑉 ). (3.4)

The inverse image 𝑗𝑝 ∶ PSh𝒞(𝑋) → PSh𝒞(𝑈) sends 𝐺 to

(𝑗𝑝𝐺) ∶ 𝑊 ↦ lim−→
𝑊⊆𝑗(𝑉 )

𝐺(𝑉 ) = 𝐺(𝑊). (3.5)

(1) (Unit) The unit [id → 𝑗∗𝑗𝑝] ∶ PSh𝒞(𝑋) → PSh𝒞(𝑋) takes 𝐹 to the restriction 𝐹(− ∩ 𝑈).
(2) (Co-unit) Since 𝑗∗ is fully faithful, the co-unit [𝑗𝑝𝑗∗ → id] ∶ PSh𝒞(𝑈) → PSh𝒞(𝑈) is identical.

Example 3.14 (𝑗−1 ⊣ 𝑗∗). In the above example, once 𝐺 is a sheaf, 𝑗𝑝𝐺 = 𝑗−1𝐺 is also a sheaf.
(1) (Direct image) 𝑗∗ ∶ Sh𝒞(𝑈) → Sh𝒞(𝑋) takes 𝐹(−) to 𝐹(𝑈 ∩ −).
(2) (Inverse image) 𝑗−1 ∶ Sh𝒞(𝑋) → Sh𝒞(𝑈) takes 𝐺(−) to the restriction 𝐺|𝑈 .
(3) (Unit) [id → 𝑗−1𝑗∗] ∶ Sh𝒞(𝑈) → Sh𝒞(𝑈) is an isomorphism. Hence, 𝑗∗ is fully faithful.
(4) (Counit) [𝑗∗𝑗−1 → id] ∶ Sh𝒞(𝑋) → Sh𝒞(𝑋) sends 𝐺 to 𝐺(𝑈 ∩ −).

Notation. If 𝜄 ∶ 𝑌 ⊆ 𝑋 is an inclusion of a subspace, then write (⋅)|𝑌 as the inverse image 𝜄−1(⋅).



Topological Six Functors» Triple from open immersion: 𝑗! ⊣ 𝑗−1 ⊣ 𝑗∗ Page 27

Definition 3.15 (Occasional left adjoint 𝑗𝑝! ⊣ 𝑗𝑝). Suppose that the algebraic structure 𝒞 has the initial
object ⊥3. For 𝐺 ∈ PSh𝒞(𝑋) and 𝐹 ∈ PSh𝒞(𝑈), consider

(𝐹 , 𝑗𝑝𝐺)PSh𝒞(𝑈) ≃ {𝐹(𝑊) → 𝐺(𝑊)}𝑊∈𝖮𝗉𝖾𝗇(𝑈) (3.6)
≃ {𝐹(𝑊) → 𝐺(𝑊)}𝑊∈𝖮𝗉𝖾𝗇(𝑈) ⊔ {⊥ → 𝐹(𝑊)}𝑊 ′∉𝖮𝗉𝖾𝗇(𝑋)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

useless information

(3.7)

=∶ (𝑗𝑝!𝐹,𝐺)PSh𝒞(𝑋). (3.8)
Here 𝑗𝑝!(⋅) ∶ PSh𝒞(𝑈) → PSh𝒞(𝑋) is the extension by initial.
(1) The unit id → 𝑗𝑝𝑗𝑝! is identical (For adjoint triple 𝐹 ⊣ 𝐺 ⊣ 𝐻 , 𝐹 is fully faithful whenever 𝐻 is).
(2) The counit 𝑗𝑝!𝑗𝑝 → id send 𝐹 to

𝑊 → 𝐹(𝑈) (𝑈 ⊆ 𝑊); 𝑊 ↦ ⊥ (otherwise). (3.9)

Example 3.16. (𝑗! ⊣ 𝑗−1) For any 𝐹 ∈ Sh𝒞(𝑈), one has 𝑗𝑝!𝐹 ∈ Sh𝒞(𝑋). Denote the sheaf functor 𝑗!.
(1) (Unit) id → 𝑗−1𝑗! ∶ Sh𝒞(𝑈) → Sh𝒞(𝑈) is an isomorphism.
(2) (Counit) 𝑗!𝑗−1 → id ∶ Sh𝒞(𝑋) → Sh𝒞(𝑋) send 𝐹 to 𝑗!(𝐹 |𝑈).
Remark 3.17. On the level of stalks, (𝑗!𝐹)𝑥 = 𝐹𝑥 whenever 𝑥 ∈ 𝑈 ; otherwise (𝑗!𝐹)𝑥 = ⊥.

Slogan. When the domain 𝑊 has parts outside of 𝑈 , the set of sections on 𝑊 is ⊥.

Proposition 3.18 (Exactness of 𝑗!). On level of stalks, 𝑗! brings more isomorphic stalks.
(1) 𝑗! preserves monomorphisms, epimorphisms, and isomorphisms (check in stalk level).
(2) 𝑗! is right exact since it is the left adjoint; 𝑗! is not right exact in general (consider lim←−∅ = ⊤);
(3) For Abelian categories, 𝑗! preserves exact sequences, thus is exact.

3The terminal object always exists, since lim←−∅ = ⊤; whereas the initial object may not exists (e.g. 𝖲𝖾𝗍𝗌≠∅)
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3.3. Triple from closed immersion: 𝑖−1 ⊣ 𝑖∗ ⊣ 𝑖!.
Definition 3.19. Say 𝑖 ∶ 𝑍 → 𝑋 is a closed immersion, whenever 𝑖 factors through an closed subset of 𝑋
via an isomorphism. One can simply view 𝑖 as an inclusion of a closed subset when there is no ambiguity.

Example 3.20 ((𝑖𝑝 ⊣ 𝑖∗)). The functors are much more implicit than those in open sets.
The direct image is also a fully faithful functor. The inverse image 𝑖𝑝 of presheaf sends 𝐺 ∈ PSh𝒞(𝑋) to

(𝑖𝑝𝐺)(𝑈 ∩ 𝑍) = lim−→
𝑖(𝑈∩𝑍)⊆𝑊

𝐺(𝑊). (3.10)

In this sense, (𝑖𝑝𝐺)(𝑈 ∩ 𝑍) is the filtered colimit of the section over open sets containing 𝑈 ∩ 𝑍 .
The unit and co-unit is still implicit at this moment.

Remark 3.21. The most special thing about close embedding is that, for any 𝑝 ∉ 𝑍, there is some 𝑈𝑝∩𝑍 = ∅.

Proposition 3.22. By examination on level of stalks, 𝑖∗ preserves monomorphisms, epimorphism and
isomorphisms.
The right adjunction, 𝑖∗, is not right exact in general: once the direct image of 𝑖 ∶ ∅ → 𝑋 preserves
finite co-prods, one has

⊤ ≃ 𝑖∗(𝐹 ∐𝐺) ≃ 𝑖∗(𝐹)∐𝑖∗(𝐺) ≃ ⊤∐⊤. (3.11)
For Abelian sheaves, 𝑖∗ is exact since it preserves exact sequences.

Remark 3.23. There is also an occasionally right adjoint is 𝑖∗ when 𝒞 is “good enough”.

Notation. 𝒞 is assumed to have a zero object when we discuss supports.

Definition 3.24 (Support of a section). Take 𝐹 ∈ Sh𝒞(𝑋), and 𝑠 ∈ 𝐹(𝑈). The support of a section,
Supp(𝑠) , is defined by the following equivalent statements.
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(1) Supp(𝑠) ∶= {𝑠(𝑝) ≠ 0 ∣ 𝑝 ∈ 𝑈}  , where this definition is from analysis.
(2) Supp(𝑠) ∶= {𝑝 ∣ [𝑠]𝑝 ≠ 0}, the definition via germs.
(3) Supp(𝑠) ∶= (⋃𝑃(𝑈)𝑈)

𝑐
, where 𝑃(𝑈) means that 𝑠|𝑈 = 0 (contrapose the second statement).

Definition 3.25 (Support of a sheaf). Take 𝐹 ∈ Sh𝒞(𝑋). The support of a sheaf, Supp(𝐹) = {𝑥 ∣ 𝐹𝑥 ≠ 0}.
Remark 3.26. Supp(𝐹) is not necessary a closed subset, e.g., take 𝑋 = ℝ the standard topology, 𝒞 = 𝖬𝗈𝖽ℝ,
and 𝐹 the sheaf of continuous functions supported in ℝ>0. Now Supp(𝐹) = ℝ>0 is not closed.
For some particular kinds of 𝒞 (e.g., 𝖱𝗂𝗇𝗀), Supp(𝒪𝑋) = Supp(1∈Γ(𝑋,𝒪𝑋)) must be a closed set.
Definition 3.27 (The occasional right adjoint of 𝑖∗). For any 𝐹 ∈ Sh𝒞(𝑍) and 𝐺 ∈ Sh𝒞(𝑋),

(𝑖∗𝐹,𝐺)Sh𝒞(𝑋) ≃ {(𝑖∗𝐹)(𝑈) → 𝐺(𝑈)}𝑈∈𝖮𝗉𝖾𝗇(𝑋) (3.12)
≃ {𝐹(𝑈 ∩ 𝑍) → 𝐺(𝑈)}𝑈∈𝖮𝗉𝖾𝗇(𝑋) (3.13)

≃ {𝐹(𝑈 ∩ 𝑍) → {𝑠 ∈ 𝐺(𝑈) ∣ [𝑠]𝑝 ≠ 0 for any 𝑝 ∈ 𝑈 ∩ 𝑍}⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
sections supported in 𝑍

}
𝑈∈𝖮𝗉𝖾𝗇(𝑋)

(3.14)

⋆=∶ (𝐹 , 𝑖!(𝐺))Sh𝒞(𝑍). (3.15)
Here 𝑖∗𝑖!(𝐺) ∈ Sh𝒞(𝑋) is exactly the kernel of 𝐺(−) → 𝐺(− ∩ (𝑍)𝑐) (check in stalk level), thus is a sheaf.
Remark 3.28. There is no need to discuss 𝑖! for presheaves, since our definition depend on stalks.
Example 3.29. The right adjoint 𝑖! does not necessary preserves epimorphisms. Otherwise, then we take
the unit map of the adjunction 𝜂𝐹 ∶ 𝐹 ↠ 𝑖∗𝑖−1(𝐹), which is epimorphism as one can check on level of stalks.
By assumption, the following composition should be an epimorphism

𝑖!(𝐹)
𝑖!(𝜂𝐹 )−−−−→ 𝑖!(𝑖∗𝑖−1𝐹)

𝑖∗ is fully faithful
−−−−−−−−−−→∼ 𝑖−1(𝐹). (3.16)
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Now consider the closed embedding 𝑝 ∶ {∗} ↪ ℝ. For 𝐹 ∈ Sh𝒞(ℝ) the above morphism is 0 → 𝐹𝑝 ≠ 0.
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3.4. Topological Six Functors on Presheaves.

Notation. Let 𝑖 ∶ 𝑍 → 𝑋 is a closed immersion and 𝑗 ∶ 𝑈 → 𝑋 is an open immersion. 𝑍 = 𝑈𝑐.

Example 3.30. For 𝒞 with initial object ⊥, we have the diagram of five functors:

Sh𝒞(𝑈) Sh𝒞(𝑋) Sh𝒞(𝑍)
𝑗!

𝑗∗

𝑗−1

𝑖−1

𝑖∗ . (3.17)

Here 𝑗! ⊣ 𝑗−1 ⊣ 𝑗∗ is the adjoint triple, where 𝑗! and 𝑗∗ are fully faithful.
The composition of the first row, 𝑖−1 ∘ 𝑗! takes 𝐻 ∈ Sh𝒞(𝑈) to the constant sheaf ⊥ ∈ Sh𝒞(𝑈) 4.
The composition of the second row sends 𝐺 ∈ Sh𝒞(𝑍) to the constant sheaf ⊤ ∈ Sh𝒞(𝑈).
For 𝐹 ∈ Sh𝒞(𝑋), the sequence

[𝑗!𝑗−1𝐹 counit−−−−→ 𝐹 unit−−→ 𝑖∗𝑖−1𝐹] = {[𝐹𝑝 = 𝐹𝑝 → ⊤] 𝑝 ∈ 𝑈,
[⊥ → 𝐹𝑝 = 𝐹𝑝] 𝑝 ∈ 𝑍. (3.18)

Example 3.31. Suppose the category has zero object, we have the full diagram of 6 functors:

Sh𝒞(𝑈) Sh𝒞(𝑋) Sh𝒞(𝑍)
𝑗!

𝑗∗

𝑗−1

𝑖−1

𝑖!

𝑖∗ . (3.19)

Here the left and right parts are adjoint triple, the composition of each row is 0.
• (Explanation of 𝑖!𝑗∗ ≃ 0.) For any 𝐹 ∈ Sh𝒞(𝑈), any section of (𝑗∗𝐹)(𝑊) supported in 𝑍 ∩𝑊 is zero.

4The sheaf takes value ⊤ for on ∅ and ⊥ on non-empty sets. Since the product of ⊥ is ⊥ itself.
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Since ⊤ = ⊥ = 0, the sequence completes to
0 → 𝑗!𝑗−1𝐹 → 𝐹 → 𝑖∗𝑖−1𝐹 → 0. (3.20)

There is also a functorial kernel sequences
0 → 𝑖∗𝑖!𝐹 → 𝐹 → 𝑗∗𝑗−1𝐹. (3.21)

Clearly, 𝑖∗𝑖!𝐹 → 𝐹 is a monomorphism (injection). For exactness5 at 𝐹 :
(1) Assume 𝑝 ∈ 𝑍. For any [𝑠]𝑝 ∈ 𝐹𝑝, whenever there exists 𝑡 ∈ [𝑠]𝑝 supported in 𝑍, 𝑡 has zero germs in 𝑉 .
(2) Assume 𝑝 ∈ 𝑈 . Trivial.

Proposition 3.32. Let 𝒞 be an Abelian category. PSh𝒞(⋅) is also Abelian.

Sh𝒞(𝑈) Sh𝒞(𝑋) Sh𝒞(𝑍)
𝑗!

𝑗∗

𝑗−1

𝑖−1

𝑖!

𝑖∗ . (3.22)

Red (resp. blue, purple) arrows are exact (resp. fully faithful, both). Moreover,
0 → 𝑗!𝑗−1𝐹 → 𝐹 → 𝑖∗𝑖−1𝐹 → 0, (3.23)

0 → 𝑖∗𝑖!𝐹 → 𝐹 → 𝑗∗𝑗−1𝐹 (not right exact). (3.24)

Remark 3.33. The second arrow is not right exact in general. The first sequence is deduced purely on stalks
level; whereas the deduction of the second sequence is partially based on open sets.

Definition 3.34 (Flasque sheaf). Say 𝐹 ∈ Sh(𝐹) is flasque, whenever Res is always a surjection.
5Let 𝒞 be with zero object. Say 𝑋

𝑓
−→ 𝑌

𝑔
−→ 𝑍 is exact, whenever 𝑔−1(0) = im(𝑓).
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Remark 3.35. For flasque sheaf 𝐹 , the morphism 𝐹 → 𝑗∗𝑗−1𝐹 is a surjection and thus an epimorphism. The
second sequence completes to a short exact sequence

0 → 𝑖∗𝑖!𝐹 → 𝐹 → 𝑗∗𝑗−1𝐹→ 0. (3.25)

Example 3.36. Roughly speaking, the global section of a flasque sheaf carries information of section on the
subspaces. The flasque sheaf is somehow related to “separable”. For instance,
(1) The constant sheaves are not flasque in general, e.g. 𝐹(ℝ) → 𝐹(ℝ±) ≃ 𝐹(ℝ)⊕2.
(2) (Π𝐹)(⋅) ∶= ∏𝑝∈(⋅)𝐹𝑝 is flasque. Hence every sheaf embeds to some flasque sheaves.
(3) One can apply “Yoneda trick” to some of the categories, e.g. for any inclusion 𝑖 ∶ 𝑈 → 𝑉 , one has

𝐹(𝑖) = (𝐹(𝑉 ) → 𝐹(𝑈))𝖲𝖾𝗍 ≃ ((ℎ𝑉 , 𝐹 )𝖯𝖲𝗁(𝑋) → (ℎ𝑈 , 𝐹 )𝖯𝖲𝗁(𝑋)) = (ℎ𝑖, 𝐹 )𝖯𝖲𝗁(𝑋). (3.26)
Here ℎ𝑈 ∶= (−,𝑈)𝖮𝗉𝖾𝗇(𝑋). If (ℎ𝑖, 𝐹 ) is an surjection (e.g., 𝐹 is injective), then 𝐹(𝑖) is an surjection.

Proposition 3.37. For a cateogorical explanation of “flasque”, the right derive R∙Γ(𝑈,−) vanishes.

Take 0 → 𝐹
𝑓
−→ 𝐺

𝑔
−→ 𝐻 → 0 as the exact sequence for sheaves where 𝐹 is flasque. We shall show that

𝐺(𝑈)
𝑓𝑈−−→ 𝐻(𝑈) is always a surjection.

For any section ℎ ∈ 𝐻(𝑈), the test of sheaf epimorphism says that
• there exists a gluing ℎ = ⨆𝐼 ℎ𝑖/ ∼ such that every ℎ𝑖 ∈ 𝐻(𝑈𝑖) is the image of some 𝑔𝑖.

For any pair (𝑖, 𝑗), one has
(𝑔𝑖 − 𝑔𝑗)|𝑈𝑖∩𝑈𝑗 ∈ ker(𝑔𝑈𝑖∩𝑈𝑗) = im(𝑓𝑈𝑖∩𝑈𝑗). (3.27)

Now we can free extend the sections in 𝐹 ! We assume 𝐹 is a subsheaf of 𝐺 for a shorthand. Take
𝐹(𝑈𝑖) ↠ 𝐹(𝑈𝑖 ∩ 𝑈𝑗), 𝑔𝑖𝑖,𝑗 ↦ (𝑔𝑖 − 𝑔𝑗), (3.28)
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such that, by gluing 𝑔𝑖𝑖,𝑗 𝑔
𝑗
𝑗,𝑖, one has 𝑔𝑖,𝑗 ∈ 𝐹(𝑈𝑖∪𝑈𝑗). By such procedure, one can “kill” any fintie many

indices in 𝐼. The “exhaustion” of the induction gives ℎ ∈ im(𝑓𝑈), which shows that 𝐺(𝑈) → 𝐻(𝑈)
is a surjection. The “exhaustion” is reasonable, since filtered colimits preserves open sets, and 𝐼 is a
filtered colimits of its finite subsets.

Remark 3.38. The proof is similar for pointed categories.

Proposition 3.39 (Partially 2-out-of-3). Take short exact sequence of sheaves, 0 → 𝐹
𝑓
−→ 𝐺

𝑔
−→ 𝐻 → 0.

Suppose that 𝐹 is flasque, then 𝐺 is flasque whenever 𝐻 is flasque.
For any inclusion 𝜄 ∶ 𝑈 ⊆ 𝑉 , one has coker(𝐹(𝜄)) = 0. Hence coker(𝐺(𝜄)) = 0 ⟺ coker(𝐻(𝜄)) = 0.
Remark 3.40. Left adjoint functors preserves flasqueness, by commuting lemmas.

Example 3.41 (MV base sequence). We rewrite (⇒ occasionally exists)
0 → Γ𝑍(𝐹)⎵

𝑖∗𝑖!𝐹
→ 𝐹 → Γ𝑈(𝐹)⎵

𝑗∗𝑗−1(𝐹)
⇒ 0; 0 → 𝐹𝑈⎵

𝑗!𝑗−1𝐹
→ 𝐹 → 𝐹𝑍⎵

𝑖∗𝑖−1𝐹
→ 0. (3.29)

By checking exactness on level of stalks, one has the following sequences.
(1) For covering of closed subspaces 𝑍1 ∪ 𝑍2 = 𝑋, there is a pullback-pushout square:

0 → 𝐹 → 𝐹𝑍1 ⊕ 𝐹𝑍2 → 𝐹𝑍1∩𝑍2 → 0. (3.30)
(2) For covering of closed subspaces 𝑍1 ∪ 𝑍2 = 𝑋, there is a pullback square:

0 → Γ𝑍1∩𝑍2(𝐹) → Γ𝑍1(𝐹) ⊕ Γ𝑍2(𝐹) → 𝐹 ⇒ 0. (3.31)
(3) For open covering of open subspaces 𝑈1 ∪ 𝑈2 = 𝑋, there is a pullback square

0 → 𝐹𝑈1∩𝑈2 → 𝐹𝑈1 ⊕ 𝐹𝑈2 → 𝐹 → 0. (3.32)
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(4) For open covering of open subspaces 𝑈1 ∪ 𝑈2 = 𝑋, there is a pullback square
0 → 𝐹 → Γ𝑈1 ⊕ Γ𝑈2 → Γ𝑈1∩𝑈2 ⇒ 0. (3.33)

Example 3.42 (Example from Homological Algebra). The ideal comes from quasi-coherency, roughly speak-
ing, finitely presented modules.
Let 𝒞 be an additive category.

Example 3.43 (More on constant presheaf). Take the canonical morphism 𝜋 ∶ 𝑋 ↠ {∗}.
(1) The direct image 𝜋∗ ∶ PSh𝒞(𝑋) → 𝒞 is just the global section.
(2) The inverse image 𝜋𝑝 ∶ 𝒞 → PSh𝒞(𝑋) sends 𝐴 to the constant presheaf 𝐴.
(3) We claim that 𝜋𝑝! ∶ PSh𝒞(𝑋) → 𝒞 sends 𝐹 to 𝐹(∅), since

(𝜋𝑝! ⊣ 𝜋𝑝 ⊣ 𝜋∗) ⟺ ( lim−→
𝖮𝗉𝖾𝗇(𝑋)op

⊣ (−) ⊣ lim←−
𝖮𝗉𝖾𝗇(𝑋)op

) (3.34)

(4) “𝜋𝑝!” has a left adjoint, constructed by “void map 𝑖 ∶ ∅ → 𝑋”. We find that 𝜋𝑝! = 𝑖−1 ⊢ 𝑖𝑝!, sending
𝒞 → PSh𝒞, 𝐴 ↦ [∅ ↦ 𝐴, (¬ ∅) ↦ ⊥]. (3.35)

Form the perspective of free-forgetful adjunction, 𝜋𝑝! forgets only properties since it is the left-left adjoint
of a fully faithful functor. The “free” left adjoint of 𝜋𝑝! restrict anything from the initial.

(5) 𝜋∗ also has a right adjoint. By observation, lim−→𝖮𝗉𝖾𝗇(𝑋)op purely depends on 𝑋, i.e. independent from
the choice of topology. It is straight forward to verify the right adjoint of 𝜋∗ sends

𝒞 → PSh𝒞(𝑋), 𝐴 ↦ [𝑋 → 𝐴, ¬ 𝑋 ↦ ⊤]. (3.36)
It follows that we have the adjoint pentuple

𝐴 ↦ [ 𝑋 ↦ 𝐴
¬𝑋 ↦ ⊤] Γ(∅,−) (−) Γ(𝑋,−) 𝐴 ↦ [¬ ↦ ⊤

∅ ↦ 𝐴]⊣ ⊣ ⊣ ⊣ . (3.37)
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Remark 3.44. Consider → ∼ 𝖮𝗉𝖾𝗇({∗}). One has (⊥ → ?) ⊣ 𝑡 ⊣ id∙ ⊣ 𝑠 ⊣ (? → ⊤) for morphism
categories.

Example 3.45. A basic fact: the adjoint triple 𝐿 ⊣ 𝑀 ⊣ 𝑅 gives adjoint endofunctors 𝐿𝑀 ⊣ 𝑅𝑀 .
For instance, let 𝜄 ∶ 𝖮𝗋𝖽≤𝑛 → 𝖮𝗋𝖽<𝜔 be the inclusion of finite ordinals ≤ 𝑛.
One can identify 𝜄 = 𝜋−1 ∶= 𝖮𝗉𝖾𝗇([𝑛]) → 𝖮𝗉𝖾𝗇(ℕ) where 𝜋(𝑑) = min(𝑑, 𝑛). Hence,

[𝜋𝑝! ⊣ 𝜋𝑝 ⊣ 𝜋∗] ⇒ [(𝜋𝑝!𝜋𝑝) ⊣ (𝜋∗𝜋𝑝)]. (3.38)
It is exactly the adjoint of “skeleton” ⊣ “coskeleton”.

4. Recollement of categories
4.1. Six functors from Localisations of Additive Categories.

Notation. For the most basic settlement for homological algebra, categories are additive.

Example 4.1 (Where to glue 𝒞?). For 𝒞 be additive. Take the Yoneda embedding
𝜄∗ ∶ 𝒞 → AddFunct(𝒞op,Ab), ⋆ ↦ (−, ⋆). (4.1)

We write AddFunct(𝒞op,Ab) =∶ Ab(𝒞) for simplicity. Now there is

? Ab(𝒞) 𝒞?

𝑗∗

. (4.2)

Remark 4.2. Ab(𝒞) is somehow too large to handle. In practice, we usually consider the “smallest” Abelian
category which has a subcategory equivalent to 𝒞.
In short, the aim is to find 𝒞 ↪ 𝒞 where the least information is lost.
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Example 4.3. Here is a sequence where we make an additive category 𝒞 “complete”.
additive Karoubian finite cocomplete finite cosmoi cosmoi

𝒞 𝒞⊕ 𝒞coker ab(𝒞) Ab(𝒞)
. (4.3)

(1) Kabourian means that idempotent morphism 𝑓2 = 𝑓 has kernel and cokernels, or simply complete w.r.t.
summand for additive cases.
Example: let 𝒞 be the category wherein the objects are small open subsets of ⋃𝑛<𝜔 ℝ𝑛, and moprhisms

are smooth maps. Now 𝒞⊕ is the category of smooth manifolds.
(2) Finite cocompleteness means all small diagram has colimits, or simply “cokernels exists” for additive cases.
(3) Cosmoi means complete and cocomplete.

Proposition 4.4. 𝒞coker quotient of the morphism category 𝒞→.
Notice that 𝒞coker is taken from the Yoneda embedding 𝒞 ↪ Ab(𝒞). Hence,

• 𝐹 ∈ 𝖮𝖻(𝒞coker) is represented by some 𝑋
𝑓
−→ 𝑌 ∈ 𝖬𝗈𝗋(𝒞), via (−,𝑋)

(−,𝑓)
−−−→ (−, 𝑌 ) → 𝐹(−) → 0.

To see that 𝒞coker has cokernels, we take arbitrary 𝐹𝑖 ∶= coker((−, 𝑓𝑖)) and consider the 2-term projective
resolution 𝑃 ∙

𝑖 . coker(𝜑 ∶ 𝐹1 → 𝐹2) is exactly 𝐻0(Cone(𝜑∙)) ≃ coker((−, 𝑃 1
2 ⊕ 𝑃 0

1 ) → (−, 𝑃 0
2 )).

Definition 4.5 (Finite presented). For additive cateogry 𝒞 coker, define the finitely presented category ab(𝒞)
as the homotopic category 𝒞→/ ∼. That in, the objects are of the form 𝐹(−), identified by a morphism

(−,𝑋)
(−,𝑓))
−−−−→ (−, 𝑌 ) → 𝐹(−) → 0. (4.4)



Recollement of categories» Six functors from Localisations of Additive Categories Page 38

Proposition 4.6. 𝒞coker is abelian, iff 𝒞coker has kernels, iff ≥ 3 terms projective resolution exists, iff
any (−, 𝑌 ) → (−,𝑍) fits into an exact sequence (−,𝑋) → (−, 𝑌 ) → (−,𝑍), iff 𝒞 has weak kernel.

Remark 4.7. By Yoneda trick, (−,𝑋) is the projective object in 𝒞coker. Here is a comparision with 𝖬𝗈𝖽:

• (−,𝑋) is to finitely genereated projective modules, is what 𝐹 ∈ 𝒞coker to finitely presented modules.

Example 4.8. Now, our diagram becomes

coker(−, 𝜑) ?

ker(𝑖−1) 𝒞coker 𝒞

(−,𝑋) 𝑋

?

𝑖∗
𝑗−1

𝑗∗

. (4.5)

Where the red arrows are fully faithful. Whenever 𝑗−1 exists, it follows from the adjunction that

(𝑗−1(coker(−, 𝜑)),𝑋)𝒞 ≃ (coker(−, 𝜑), (−,𝑋))coker(𝒞) (4.6)
≃ ker((−, 𝜑), (−,𝑋))coker(𝒞) (4.7)

(Yoneda) ≃ ker(𝜑,𝑋)𝒞 (4.8)
≃ (coker(𝜑),𝑋)𝒞. (4.9)

Remark 4.9. It is resonable to assume 𝒞 has cokernels.
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Proposition 4.10. We have show 0 → 𝑖!𝑖!𝐹 → 𝐹 → 𝑗∗𝑗−1𝐹 for sheaves, thus wish that

coker(−, 𝜑) coker(𝜑)

ker(𝑖−1) 𝒞coker 𝒞

ker[coker(−, 𝜑) → (−, coker𝜑)] coker(−, 𝜑)

𝑖∗

𝑖!

𝑗−1

𝑗∗

. (4.10)

is an adjunction. To see that (𝐺(−), 𝑗−1(coker(−, 𝜑))) ≃ (𝐺(−), (−, coker(𝜑))), it suffices to show
that any composiiton

𝐺(−) → coker(−, 𝜑) → (−, coker(𝜑)) (𝜑 ∶ 𝐴 → 𝐵) (4.11)
is zero. For any 𝑋 ∈ 𝒞, the map 𝐺(𝑋) → (𝑋, coker(𝜑)) factors through

(𝑋,𝐴) → (𝑋,𝐵) → (𝑋, coker(𝜑))), (4.12)
which is zero.

Remark 4.11. Form the perspective of stable categories, 𝑗−1 ∶ 𝒞coker → 𝒞 erases phantom functors.

Definition 4.12 (Localisation of categories). The general approach for localisation: given any category 𝒞,
and a class of morphisms 𝑆, construct the “path cateogory” by adding inverse morphisms in 𝑆, define some
resonable equivalent classes of morphisms, and finally define the quotient category 𝒞[𝑆−1]. The localisation
is the composition of

𝑄 ∶ 𝒞
generate the path category
−−−−−−−−−−−−−−−−→ 𝒞

quotient some paths
−−−−−−−−−−−−→ 𝒞[𝑆−1], (4.13)
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which in identical for objects, and morphisms are equivalent classes of the compositon
→ ∘ ⟸ ∘ → ∘ ⟸ ∘ → ∘ ⟸ ∘ ⋯⎵

finite many
→ ∘ ⟸ ∘ → ∘ ⟸ . (4.14)

Here ⟸ is the formal inverse of some 𝑆 in 𝒞.
We highlight that the construction is based on NGBC axiom system rather than ZFC.

Remark 4.13. The “equivalent classes in a category” is the same thing as the filtered colimits of large diagram
(whose base set is a proper class). It is no need to introduce NGBC axioms strictly; just remember that,
never take class of classes, and always state the uniqueness under equivalences.

Proposition 4.14 (Universal property of localisation). Let 𝑄 ∶ 𝒞 → 𝒞[𝑆−1] be the localisation. For any
functor 𝐹 ∶ 𝒞 → 𝒟 sending each 𝑠 ∈ 𝑆 to some isomoprhism in 𝖬𝗈𝗋(𝒟), there is a factorisation

𝒞
𝑄
−→ 𝒞[𝑆−1] 𝐹−→ 𝒟. (4.15)

In sense of equivalences of categories, the factorisation is unique.

Remark 4.15. This is not the “universal property” in our convention.

Proposition 4.16. Here are some remarkable properties of localisation which are easy to proof:
(1) if 𝒞[𝑆−1] and 𝒞[𝑇−1] factors through each other, then the categories are equivalent;
(2) the pre-composition (− ∘𝑄) ∶ Funct(𝒞,𝒟) is fully faithful, i.e. the natural transformations (𝐹1, 𝐹2)

and (𝐹1𝑄,𝐹2𝑄) coincides;
(3) localisation preserves finite colimits6;
There are some special cases of localisation for additive categories.
(1) When 𝑆 is cloesd under finite “matrix direct sums”, then the localisation category is additive.
6Be careful when during the proof of (𝒞 ×𝒟)[(𝑆 × 𝑇)−1] ≃ (𝒞[𝑆−1]) × (𝒟)[𝑇−1], one can use “Yoneda lemma” to show that both sides satisfies the same universal property
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(2) The stable category 𝒞/ℬ is a localisation, where 𝑆 are morphisms factors through objects in ℬ.
(3) For some cases, 𝑆 satisfies some “Ore properties” such that the zigzag morphisms are simplified.
The localisation of additive category is not necessary additive: take 𝖵𝖾𝖼ℝ and 𝑆 = {0 → ℝ}.

Slogan. The upper part of the six functor diagram comes from localisations!

Example 4.17 (The construction of localisation sequences). Let 𝐿 ∶ 𝒞 → 𝒟 be a left adjoint functor, and
denote its the right adjoint 𝑅. Suppose that there is some class of morphism 𝑆 ⊆ 𝖬𝗈𝗋(𝒞) such that 𝐿(𝑆)
are isomorphisms in 𝒟.
It takes some times to verify that, 𝑅 is fully faithful whenever 𝒞[𝑆−1] → 𝒟 is an equivalence. Now,

𝒞[𝑆−1]

ker𝐿 𝒞 𝒟

≃

𝜄

ker of unit

𝐿

𝑅

. (4.16)

The proofs on localisations are usually locally complicated and globally unreadable.
If 𝐿 is an equivalence, then we have the following fully faithful pullback

𝐿∗ ∶ (𝒟,𝒟) → (𝒞,𝒟), 𝑇 ↦ 𝑇 ∘ 𝐿.. (4.17)

Hence, 𝐿∗ gives the isomprhism Φ ∶ Nat[id𝒟, 𝐿𝑅] ≅ Nat[𝐿, 𝐿𝑅𝐿]. The preimage of 𝐿𝜂 is 𝜃 ∶ id𝒟 → 𝐿𝑅.

(1) The composition of id𝒟
(id𝒟)𝜃
⟶ (id𝒟)(𝐿𝑅)(id𝒟)

𝜀(id𝒟)
⟶ id𝒟 is idid𝒟

, since

𝜀𝜃 ∈ Nat[id𝒟, id𝒟] ≅ Nat[𝐿, 𝐿] ∋ 𝜀𝜃𝐿. (4.18)

Hence, [𝐿 𝜀𝜃𝐿⟶ 𝐿] = [𝐿 𝜃𝐿⟶ 𝐿𝑅𝐿 𝜀𝐿⟶ 𝐿] = [𝐿
𝐿𝜂
⟶ 𝐿𝑅𝐿 𝜀𝐿⟶ 𝐿] = id𝐿.

(2) the composiiton of 𝐿𝑅
𝜃(𝐿𝑅)
⟶ (𝐿𝑅)(id𝒟)(𝐿𝑅)

(𝐿𝑅)𝜀
⟶ 𝐿𝑅 is id𝐿𝑅, since

(𝐿𝑅)𝜀 ∘ 𝜃(𝐿𝑅) ∈ Nat[𝐿𝑅,𝐿𝑅] ≅ Nat[𝐿𝑅𝐿,𝐿𝑅𝐿] ∋ (−)𝐿. (4.19)

Now [𝐿𝑅𝐿
(−)𝐿
⟶ 𝐿𝑅𝐿] = [𝐿𝑅𝐿 𝜃𝐿𝑅𝐿⟶ 𝐿𝑅𝐿𝑅𝐿 𝐿𝑅𝜀𝐿⟶ 𝐿𝑅𝐿] = [𝐿𝑅𝐿

𝐿(𝜂𝑅)𝐿
⟶ 𝐿𝑅𝐿

𝐿(𝑅𝜀)𝐿
⟶ 𝐿𝑅𝐿] = id𝐿𝑅𝐿.

We learn from above that (id, 𝐿𝑅) is a adjoint to 𝒟 → 𝒟, hence 𝐿𝑅 is a natural isomoprhism. As a result, 𝑅 is fully faithful.
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Proposition 4.18 (Construct localisation without “𝒟”). Let 𝒞 be an category. Suppose that there is an
endofunctor 𝐼 ∶ 𝒞 → 𝒞 and a natural transformation 𝜂id𝒞 → 𝐼, such that

𝐼𝜂 = 𝜂𝐼 ∶ 𝐼 → 𝐼 ∘ 𝐼 (4.20)
is a natural isomorphism. There is a diagram picture for this subsection

𝑋 𝐿𝑋

ker𝐿 𝒞 im1(𝐼)

ker(𝜂𝑋) 𝑋 𝑆⟂

𝑖∗

𝑖!

𝑗−1

𝑗∗
≃

. (4.21)

The notation 𝑆⟂ is discused as follows.

Example 4.19. There are another ways to charactarise im1 by taking “sub” instead of the “quotient”. Let
𝑆⟂ ⊆ 𝖮𝖻(𝒞) be a collection of objects charactarised by the following equivalent statements.
(1) 𝑋 ∈ 𝑆⟂ whenever (−,𝑋)𝒞 → (−,𝑋)𝒞[𝑆−1] is an natural isomorphism in Funct(𝒞op, 𝖲𝖾𝗍𝗌).
(2) 𝑋 ∈ 𝑆⟂ whenever (𝑠,𝑋)𝒞 is a bijection for any 𝑠 ∈ 𝑆.
In this case, 𝑆⟂ is eqivalent to im1(𝐼).
Remark 4.20. The notation and the general theory comes from torsion pairs.
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4.2. Glueing Serre subcategory.

Definition 4.21. Let 𝒜 be an Abelian category. Say the full subcategory 𝒜′ is a Serre-subcategory, whenever
𝒜′ is closed under subobjects, quotients objects, and extensions.

Slogan. In short, the Serre-subcategory means“two out of three on short exact sequences”.

Definition 4.22 (Serre quotient). Let 𝒯 ⊆ 𝒜 be a Serre sub-category. Define
𝒜/𝒯 ∶= 𝒜[𝑆−1] (𝑠 ∈ 𝑆) ⟺ ker 𝑠 and coker(𝑠) ∈ 𝖮𝖻(𝒯). (4.22)

Here 𝑆 is indeed a multiplicative system (both left and right).

Example 4.23. The construction of 𝒜/𝒯 is implicit. At least it is clueless to determine whether 𝒜/𝒯 is
Abelian or not. Recall that the localisation w.r.t. (left) multiplicative system is defined over a “large filtered
colimit” (equivalence relation of categories), i.e.

lim−→
(𝑠,𝑀)∈𝐼

(𝑋,𝑀)𝒜 ≅ (𝑋, 𝑌 )𝒜/𝒯 (𝐼 ∶= {(𝑠,𝑀) ∣ (𝑠 ∶ 𝑌 → 𝑀) ∈ 𝑆}). (4.23)

Since 𝑆 is closed under epi-mono factorisation, it suffices to see the cofinal filtered system
lim−→

(𝑠,𝑀)∈𝐼
(𝑋,𝑀)𝒜 ≅ (𝑋, 𝑌 )𝒜/𝒯 (𝐼 ∶= {(𝑠,𝑀) ∣ (𝑠 ∶ 𝑌↠𝑀) ∈ 𝑆}). (4.24)

For right multiplicative system, the filtered colimits takes over subobjects of 𝑋.

𝑆0
𝑋 𝑆1

𝑋 𝑆2
𝑋 ⋯ 𝑋

𝑄0
𝑌 𝑄1

𝑌 𝑄2
𝑌 ⋯ 𝑌

. (4.25)
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Suppose that 𝒜 somehow concrete (well-powered and AB5), one has
(𝑋, 𝑌 )𝒜/𝒯 ≃ lim−→(𝑆𝑋, 𝑄𝑌 )𝒜 (𝑆𝑋 ↪ 𝑋 and 𝑌 ↠ 𝑄𝑌 ∈ 𝑆). (4.26)

Now 𝒜/𝒯 is Abelian. For instance, ker𝒜/𝒯(𝑓 ⋅ 1−1) and ker𝒜(𝑓) satisfies the same universal property:
{(𝑋, ker 𝑓)𝒜/𝒯}𝑋 ≃ {lim−→

𝑆𝑋

(𝑆𝑋, ker 𝑓)𝒜/𝒯}𝑋 ≃ {ker lim−→
𝑆𝑋

(𝑆𝑋, 𝑓)𝒜/𝒯}𝑋 ≃ {ker(𝑋, 𝑓)𝒜/𝒯}𝑋. (4.27)

Example 4.24. Some properties related to isomorphism theorems. Here is a comparison with Verdier
quotient of triangulated categories.
(1) Kernel of an exact functor is a Serre subcategory.
(2) Kernel of an △ functor is thick subcategory.
(3) Whenever exact functor 𝐹 ∶ 𝒜 → ℬ annihilates 𝒯, 𝐹 factors through the localisation 𝒜/𝒯.
(4) Whenever △ functor 𝐹 ∶ 𝒜 → ℬ annihilates 𝒯, 𝐹 factors through the localisation 𝒜/𝒯.
(5) Let 𝒯 ⊆ 𝒯′ ⊆ 𝒜 be 2 inclusions of Serre subcategories, then 𝒯 is also the Serre subcategory of 𝒜.

Moreover, 𝒯′/𝒯 ⊆ 𝒜/𝒯 is also an inclusion of Serre subcategory and 𝒯′/𝒯
𝒜/𝒯 ≃ 𝒯′/𝒜.

(6) Let 𝒯 ⊆ 𝒯′ ⊆ 𝒜 be 2 inclusions of thick subcategories, then 𝒯 is also the thick subcategory of 𝒜.
Moreover, 𝒯′/𝒯 ⊆ 𝒜/𝒯 is also an inclusion of thick subcategory and 𝒯′/𝒯

𝒜/𝒯 ≃ 𝒯′/𝒜.

Example 4.25. Here we setup of localisation of Serre subcategory. Suppose the exact functor 𝒜 → 𝒜/𝒞
admits two-sided adjoints. Now there is a picture

𝒯 𝒜 𝒜/𝒯𝑖∗

𝑖!

𝑖−1

𝑗−1

𝑗∗

𝑗!
. (4.28)
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Along with the kernel sequence (lower part)

0 → 𝑖∗𝑖!𝐴 → 𝐴 → 𝑗∗𝑗−1𝐴, (4.29)

and the cokernel sequence

𝑗!𝑗−1𝐴 → 𝐴 → 𝑖∗𝑖−1𝐴 → 0. (4.30)

Proposition 4.26. A criterion for 𝑆⟂. For any 𝑌 ∈ 𝑆⟂ and any 𝑋 ∈ 𝒯:
(1) (00𝑋, 𝑌 )𝒜 is a bijection, hence (𝑋, 𝑌 )𝒜 = 0;
(2) For any short exact sequence 0 → 𝑌

𝑓
→ 𝐸 → 𝑋 → 0, (𝑓, 𝑌 ) is a bijection. Hence, 𝑓 is a split

monomorphism and thus Ext1(𝑋, 𝑌 ) = 0.
Conversely, suppose that ⟂Hom(−, 𝑌 ) and ⟂Ext1(−, 𝑌 ) are zeros on 𝒞.
(1) For any monomorphism 𝑖 ∈ 𝑆, one has

0 → 𝐴 𝑖→ 𝐵 → 𝑋 → 0 ⟹ 0 = (𝑋, 𝑌 ) → (𝐵, 𝑌 ) ∼→ (𝐴, 𝑌 ) → Ext1(𝑋, 𝑌 ); (4.31)

(2) For any epimorphism 𝑝 ∈ 𝑆, one has

0 → 𝑋 → 𝐶
𝑝
→ 𝐷 → 0 ⟹ 0 → (𝐷, 𝑌 ) ∼→ (𝐶, 𝑌 ) → (𝑋, 𝑌 ) = 0. (4.32)

Hence, 𝑌 ∈ 𝑆⟂.

Remark 4.27. The analogue in triangulated is the 𝑡-structure.
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Example 4.28. Where the ideals comes from? Let 𝒜 be Abelian categories with injective envelope, and 𝒯
a Serre subcategory. Suppose the localisation sequence (lower part of 6-functors) of Serre subcategory.

Inj(𝒯) Inj(𝒜) Inj(𝒜/𝒯) Inj(𝑆⟂)

𝒯 𝒜 𝒜/𝒯 𝑆⟂

≃

𝑖∗

𝑖!

𝑗−1

𝑗∗

≃
. (4.33)

Then there is a functorial decomposition of injective objects, making

Spec(𝒯) ⊔ Spec(𝒯) ≃ Spec(𝒜/𝒯). (4.34)

Unwinding the topologies, the “spec” here means the isomorphism classes of injective envelopes. The ideal
comes from Matlis duality.

Remark 4.29.𝒜 is usually a Grothendieck category, and 𝒯 is a Serre subcategories closed under coproducts,
thus is also a Grothendieck category.

Example 4.30. Where the Grothendieck categoryies usually found?



Recollement of categories» Glueing Serre subcategory Page 47



Recollement of categories» Approximation, and more Page 48

4.3. Approximation, and more.

Example 4.31. Back to 𝜑 ∶ 𝒟 → 𝒞. There is an induced
𝜑−1 ∶ Ab(𝒞) → Ab(𝒟), 𝐺(−) → 𝐺(𝜑(−)). (4.35)

From axiom of choice, any module 𝑀 admits some presentation 𝑅⊕𝜆 → 𝑅⊕𝜇 → 𝑀 → 0. Hence we wish
there are some “categorical colimit” for 𝐹(−) = lim−→(−,𝑋), such that there is 𝜑! ⊣ 𝜑−1:

𝒞 𝒟

Ab(𝒞) Ab(𝒟)

𝜑

𝜑−1

𝜑! . (4.36)

The isomorphism comes from
(lim−→(−,𝑋),𝐺(𝜑(−)))Ab(𝒞) ≃ lim←−((−,𝑋),𝐺(𝜑(−)))Ab(𝒞) (4.37)

Yoneda≃ lim←−((−,𝜑(𝑋)),𝐺(−))Ab(𝒟) ≃ (lim−→(−,𝜑(𝑋)),𝐺(−))Ab(𝒟). (4.38)
Under “some condition”, one has that

𝒟 ab(𝒟) Ab(𝒟)

𝒞 ab(𝒞) Ab(𝒞)

𝜑 𝜑! 𝜑!𝜑−1 𝜑−1 . (4.39)

where the presentation of 𝜑!(coker(−, (𝑓)))𝒟 = coker(−, 𝜑(𝑓))𝒞. A condition is that 𝜑 is an inclusion of
covariant finite subcategory, which state that 𝑐 ∈ 𝒞 admits a precover of some 𝑑 → 𝑐.
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Under the settings above, we can complete the upper part of the picture:

𝒞/𝒟 𝒞 𝒟

ad(𝒞/𝒟) ab(𝒞) ab(𝒟)

𝑖 𝑗

𝑖∗

𝑖−1

𝑗−1

𝑗! . (4.40)

When all arrows exists, there are 6-commutative squares ↓ ∘𝑘 = 𝐾∘ ↓.

Example 4.32. For Serre subcategory with good conditions, one has

𝑆⟂ 𝒜 𝒯

ab(𝑆⟂) ab(𝒜) ab(𝒯)

𝑖∗

𝑖!

𝑖−1

𝑗−1

𝑗!

𝑗∗

𝐼∗

𝐼−1

𝐼 !
𝐽−1

𝐽!

𝐽∗

. (4.41)
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Example 4.33. A ring is a degenerated category. Let 𝑅 be a ring and with idenpotent element 𝑒2 = 𝑒.

Mod𝑅 Mod𝑒𝑅𝑒

Mod𝑅op Mod(𝑒𝑅𝑒)op

(𝑒𝑅𝑒(𝑒𝑅)𝑅,−)𝑅

−⊗𝑒𝑅𝑒(𝑒𝑅)𝑅

𝑒𝑅⊗𝑅−

(𝑒𝑅(𝑒𝑅𝑒)op,−)

. (4.42)

Now we generalise 𝑅 to a additive categories 𝒞 of Lex-type. Then fix any object 𝑋 ∈ 𝖮𝖻(𝒞), and take
𝒟 ∶ {𝑋}⊕ (the projective objects generalised to 𝑋). One has the diagram

𝒞/𝒟 𝒞 𝒟

ab(𝒞/𝒟) ab(𝒞) ab(𝒟)

𝑗∗

𝑗!

𝑗−1

𝑖!

𝑖−1

𝑖∗

𝐽!

𝐽∗

𝐽−1

𝐼−1

𝐼−1

𝐼∗

. (4.43)

There may be some problems in this diagram (but at least it is true for commutative Artinian rings, or for a
big functor category Ab). We leave it as a conjecture.
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4.4. Rerollement of Triangulated Categories (and its uses).

Definition 4.34 (Gluing (rerollement) of triangulated categires). The data: three △ categories and six
functors along with a diagram

𝒱 𝒞 𝒲𝑖∗

𝑖−1

𝑖!
𝑖−1

𝑗!

𝑖∗

, (4.44)

satisfying the following conditions
(1) the left triple and right triple are adjoints;
(2) the composition of rows are zero;
(3) 𝑗!𝑗−1(⋅) → (⋅) → 𝑖∗𝑖−1(⋅) → 𝑗!𝑗−1(⋅)[1] is functorial from objects to distinguished triangles;
(4) 𝑖∗𝑖−1(⋅) → (⋅) → 𝑗∗𝑗−1(⋅) → 𝑖∗𝑖−1(⋅)[1] is functorial from objects to distinguished triangles;
(5) all red functors 𝑗!, 𝑗∗ and 𝑖∗ are fully faithful, thus the remaining 4 units (counits) are isomorphisms.
For Serre subcategories, or sheaves in general, the exact sequences are only half-exact.

Proposition 4.35. The exactness of rows: ker(𝑖−1) = im1(𝑗!), etc., follows from △.

Remark 4.36. From series of works due to ?, the left (resp. right) part of the rerollement completes to the whole
picture (unique under equivalence). There are also discussions on split rerollement (sheaves over component).

Example 4.37. (and its uses). Some remarkable works on rerollement of triangulated categories.
(1) (Happle’s work on “finite dim gl conjecture”) Let 𝐷(𝐵) ⟸ 𝐷(𝐴) ⟸ 𝐷(𝐶) be a recollement of derived

categories over Artin algebras. gl dim(𝐴) < ∞ (𝐵 has finite global dimension) whenever gl dim(𝐵) +
gl dim(𝐶) < ∞.
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(2) (A picture from Konig.) Assume there is rerollement of

𝐷−(𝐵) 𝐷−(𝐴) 𝐷−(𝐶)𝑖∗

𝑖−1

𝑖!
𝑗−1

𝑗!

𝑗∗

. (4.45)

(a) Assume either gl dim(𝐶) < ∞ or gl dim(𝐶) < ∞, the diagram restricts to 𝐷𝑏;
• Only lower half of the diagram exists in general.

(b) When gl dim(𝐶) < ∞, the diagram restricts to 𝐾𝑏(Proj(−));
• Only upper half of the diagram exists in general.

(c) (♡) recollement of triangulated categories recollect 𝑡-structures.

𝑖−1(𝑋) 𝑋 𝑗−1(𝑋)

𝒜≤0 𝒞≥0 ℬ≥0

𝒜 𝒞 ℬ

𝒜≥0 𝒞≤0 ℬ≤0

𝑖!(𝑌 ) 𝑌 𝑗−1(𝑌 )

𝑖−1 𝑗−1

𝑖∗

𝑖−1

𝑖!
𝑗−1

𝑗!

𝑗∗

𝑖! 𝑗−1

. (4.46)

Suppose that 𝒜 ⟸ ℬ ⟸ 𝒞 are recollement, where the 𝑡-structures pf 𝒜 and 𝒞 are given.
There is an induced 𝑡 structure for 𝒞, where
(i) 𝑌 ∈ 𝒞≤0 whenever 𝑗−1(𝑌 ) ∈ ℬ≤0 and 𝑖!(𝑌 ) ∈ 𝒜≤0;
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(ii) 𝑋 ∈ 𝒞≥0 whenever 𝑗−1(𝑋) ∈ ℬ≥0 and 𝑖−1(𝑋) ∈ 𝒜≥0;

Definition 4.38 (𝑡-structure). Let (𝐷, [1],△) be a triangulated category.
One can simply view 𝐷 as a derived category of a Abelian category.

A 𝑡-structure of on 𝐷 is a pair of full subcategory (𝐷≤0, 𝐷≥0),
A simple example: 𝐷𝐼 = Ch𝐼(𝒜)/ ∼, where 𝑋 ∈ Ch𝐼(𝒜) ⟺ {𝐻𝑖(𝑋) = 0 ∣ 𝑖 ∉ 𝑆}.

such that
(1) 𝐷≥0 is closed under suspension [1], and 𝐷≤ is closed under desuspension [−1].
(2) (−,−) ∶ 𝐷≤0 ×𝐷≥1 → 0 (or simply (−∞, 0] ∩ [1,+∞) = ∅).
(3) Every object 𝑋 admits a 𝑡-factorisation (−)≤0 → 𝑋 → (−)≥1 → (−)≤0[1].
Proposition 4.39. The heart 𝐷♡ ∶= 𝐷≥0 ∩𝐷≤0 is an Abelian category.

For simple cases of derived categories, 𝒜 ↪ 𝐷0𝒜 is fully faithful.
By support of homological groups, it is easy to guess

ker(𝑓) = (ker△(𝑓))≤0, coker(𝑓) = (coker△(𝑓))≥0. (4.47)
The amazing part is that coim ≃ im is due to octagon lemma.

Remark 4.40 (stable 𝑡-structure). Say a 𝑡-structure (𝐷≤, 𝐷≥) is stable, if both 𝐷≥,≤ are triangulated.
In short, stable means closed under [±1]. The “combinatorial” examples (e.g. the derived category) are not
stable, thus we never use the notation 𝐷≥,≤ for stable 𝑡-structures thenceforth.
A series of examples of stable triangulated categories come from projective-acyclic pairs.
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